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Models of infectious disease spread that incorporate contact heterogeneity

through contact networks are an important tool for epidemiologists studying

disease dynamics and assessing intervention strategies. One of the chal-

lenges of contact network epidemiology has been the difficulty of

collecting individual and population-level data needed to develop an accu-

rate representation of the underlying host population’s contact structure. In

this study, we evaluate the utility of common epidemiological measures (R0,

epidemic peak size, duration and final size) for inferring the degree of het-

erogeneity in a population’s unobserved contact structure through a

Bayesian approach. We test the method using ground truth data and find

that some of these epidemiological metrics are effective at classifying contact

heterogeneity. The classification is also consistent across pathogen trans-

mission probabilities, and so can be applied even when this characteristic

is unknown. In particular, the reproductive number, R0, turns out to be a

poor classifier of the degree heterogeneity, while, unexpectedly, final epi-

demic size is a powerful predictor of network structure across the range of

heterogeneity. We also evaluate our framework on empirical epidemiologi-

cal data from past and recent outbreaks to demonstrate its application in

practice and to gather insights about the relevance of particular contact

structures for both specific systems and general classes of infectious disease.

We thus introduce a simple approach that can shed light on the unobserved

connectivity of a host population given epidemic data. Our study has

the potential to inform future data-collection efforts and study design by

driving our understanding of germane epidemic measures, and highlights

a general inferential approach to learning about host contact structure in

contemporary or historic populations of humans and animals.

1. Introduction
The accurate mathematical modelling of infectious disease outbreaks is important

as a tool to understand and predict epidemic dynamics and evaluate the effective-

ness of intervention strategies. In the context of directly transmitted pathogens, this

ability relies, in part, on an understanding of the contact patterns between the

individuals (hosts) of a population. Traditional epidemiological modelling

accounts for contact behaviour through both implicit and explicit mechanisms

and at different levels of abstraction. Purely compartmental models are used to

model subsets of populations of individuals and allow different parameters to

govern the rates of interaction between each. This approach has been successfully

applied in capturing some of the heterogeneity inherent in contact patterns

between groups of hosts. Contact network models, by contrast, explicitly define
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potential disease-transmitting connections between all individ-

uals in a population, allowing for the incorporation of

heterogeneous mixing at the lowest level. Contact networks rep-

resent individuals as network nodes and represent potentially

disease-transmitting contact between individuals as network

edges. The total number of edges connecting an individual

with others is referred to as the individual’s degree.
The probability distribution of these degrees for all individuals

in a network (i.e. population) is referred to as the network’s

degree distribution. The contact heterogeneity in a population is

thus reflected in the variance of the network’s degree distri-

bution. Gaining an understanding of a host population’s

distribution of contacts provides structural information useful

in characterizing and intervening in disease outbreaks, and

has been demonstrated in numerous human, wildlife and

livestock disease systems (e.g. [1–10]).

Gathering direct information about contact patterns via

survey-based or device-based techniques to parametrize net-

work models is often a time- and labour-intensive process,

however [11,12]. Typically, these data are used to parametrize

probabilistic contact network models. These models can then

be used as the basis for predictive or public health intervention

studies. While an understanding is beginning to emerge of

which network structures are relevant for different classes of

infectious disease, it is far from clear how to choose among

different models of contact heterogeneity. That is, the probabil-

istic approach assumes a certain model a priori that may or may

not be relevant to the disease of interest. (Alternatives to this

paradigm do exist; notably, synthetic network models that

use census and other socio-demographic data to infer possible

contact networks using a first-principles approach [5,13].)

An alternative to these data-hungry strategies is a statistical

approach, where a contact network model is inferred using avail-

able host and epidemic data within a likelihood framework [12].

A key benefit to this approach is that, in addition to providing

information on which contact network model likely produced

the observed data, the likelihood of alternative models can be

evaluated to see how justifiable that choice is in relation to

those alternatives. Previous work using a statistical approach

has been carried out, where population structure is inferred

using a broad range of data from infection/recovery times

[14–17] to viral molecular sequence data [18,19]. However,

much of this inferential work is specific to certain disease systems,

is based on severe assumptions about the underlying contact

structure or requires significant amounts of outbreak data [12].

A general framework that uses available data and informs

future collection of epidemiological data is thus necessary.

In this study, we take an initial step towards this goal and

evaluate the utility of commonly gathered epidemiological

data for inferring contact network heterogeneity using a like-

lihood-based model selection framework. By using data that

are commonly available for a variety of different disease sys-

tems, our approach seeks to make optimal use of collected

data and inform future collection efforts. We evaluate three

classes of network models that can be broadly classified by

their increasing level of contact heterogeneity, looking specifi-

cally at whether it is possible to distinguish between these

types using high-level and common epidemiological sum-

mary statistics. In this way, we are not so much attempting

to pin down an exact network, but instead looking to deter-

mine what level of heterogeneity the data support, and

which individual epidemiological metrics provide the most

confidence towards this support. We test our inferential
framework with synthetic and empirical contact data,

comparing model selection results for each individual epide-

miological measure with ground truth (i.e. the network class

that generated it). We also evaluate our framework on empirical

epidemiological data from historical and recent outbreaks,

where the underlying contact structure is unknown, to demon-

strate how our framework could be applied in practice and

used to gather insights about the relevance of certain contact

structures for general classes of infectious disease. In doing

so, we determine that only certain epidemiological statistics

are informative and consistent in recovering the level of

contact heterogeneity in an underlying host population.
2. Material and methods
Here, we present our inferential framework in general, the con-

tact network models and epidemiological data types that

specify it as well our method for generating likelihood functions.

In addition, we will also describe three procedures for testing the

framework, using both synthetic and empirical data.

2.1. Bayesian classification of contact heterogeneity
We design a Bayesian classification or model selection framework

[20–22] to infer contact structure heterogeneity in the host popu-

lation based on commonly gathered summary measures in

infectious disease epidemiology. For a given set of m contact net-

work models, fMig; i [ ½1; . . . ;m�, the posterior probability of

each model given data, X, and the per-contact probability of

transmission (referred to as transmissibility from here on), T, is

PðMijX;T; u;NÞ ¼
PðMijT; u;NÞPðXjMi;T; u;NÞ

PðXjT; u;NÞ : ð2:1Þ

We specify this general framework by network models Mi

which are parametrized by a population size, N, and a degree

distribution with parameter u. Thus, networks of class Mi are

assumed to be simple and static random graphs of size N with

specified degree distributions. While this is a simplifying

assumption, networks of this class are well studied and are

found to be suitable models of contact structure relevant to

rapidly spreading epidemic diseases [5,23,24]. We select

three (m ¼ 3) random graph models (Mi) of specified degree

distributions with k [ ½1;N � 1�:
—Poisson, with degree distribution

p1
k ¼

e�uu k

k!
ð2:2Þ

—‘exponential’1, with degree distribution

p2
k ¼ ð1� e�uÞ e�uðk�1Þ ð2:3Þ

—scale-free, with degree distribution

p3
k ¼

k�u

zðuÞ ; ð2:4Þ

where z is the Riemann zeta function.

We choose these distributions as representatives of a spectrum

of network structures, and to facilitate comparisons with previous

work. The prior on the network models is taken to be uniform and

independent of T, u and N. If priors are available for any of these

parameters, they can be included in this analysis. We choose to pre-

sent the results over a range of fixed values of T, u, N to discern any

patterns in the classification based on these parameters.

Further, we specify X, the data, in equation (2.1) to individu-

ally be four common epidemiological metrics. These metrics

capture the impact of an epidemic on public health systems: (i)

R0, the basic reproductive ratio, which represents the initial
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growth rate of an outbreak and we calculate it empirically as the

average number of secondary cases in the early part of the

outbreak; (ii) epidemic peak size (r), which is the maximum

number of infected individuals at any generation, and represents

the maximum capacity surge on public health systems; (iii) epi-

demic size (s), which is the total number of infected

individuals, and represents the total burden on public health

capacity; and (iv) epidemic duration (d), which is the number

of generations the outbreak lasts and represents the length of

burden on public health systems.

The likelihoods, PðXjMi;T; u;NÞ (for each Mi and T value, for

fixed u and N ), can be acquired through either an analytical or a

simulation approach. A simulation-based approach is used here

to estimate the likelihood function for each data type (i.e. epide-

miological measure). We use the configuration model [25]

to generate instances of simply connected random graphs of size

N and degree distribution as specified in equations (2.2)–(2.4).

Subsequently, we perform Monte Carlo simulations for a suscep-

tible–infected–recovered (SIR) epidemic model with a single

initial infected case and per-contact transmissibility, T, on these net-

works, generating frequency distributions for each epidemic

measure to use as likelihood functions. (This approach has simi-

larities to the approximate Bayesian computation approach used

for Bayesian inference [26–28].) The alternative approach would

be to use an analytical epidemic model to generate a likelihood func-

tion for each epidemiological measure, based on the network class

and pathogen transmissibility, and would eliminate the need for

simulations. We make a preliminary evaluation of such an analytical

framework [29] in the electronic supplementary material.

The classification of a population’s contact heterogeneity

occurs through model selection among the network models Mi.

Given one epidemiological datum, X (of type R0, r, s, or d), par-

ameters T, u, N and the likelihoods generated earlier, a posterior

probability is calculated for each model Mi using equation (2.1).

The selected network model is the one with the highest posterior

probability.

2.2. Evaluating the classification framework
We test our framework in three stages using (i) synthetic contact

network and synthetic epidemiological data to understand the

inferential power of each epidemiological measure under idealized

conditions; (ii) empirical contact network and synthetic epidemio-

logical data to assess how informative each measure is given

complex underlying network structure but idealized epidemiolo-

gical assumptions; and (iii) empirical epidemiological data from

historical and recent epidemic outbreaks where the contact net-

work is unobserved to evaluate this method on systems with

both complex network structure and complex epidemiology.

In each case, the provided epidemiological data (synthetic in

the first two testing stages, empirical in the third) are summarized

as the four metrics defined above (R0, r, s, or d), and used to calcu-

late posterior probabilities of each network class, Mi. In the first two

testing stages, we have knowledge of the underlying contact net-

work structure (synthetic for the first stage, empirical for the

second), and will use it to judge the classification of contact hetero-

geneity as inferred by our method.

2.2.1. Synthetic testing data
To systematically test our framework, we simulate epidemiologi-

cal data on generated contact networks. Using the configuration

model [25], we generate 10 random networks of size N=10 000

for each degree distribution specified in equations (2.2)–(2.4),

where u is chosen so that the mean degree is approximately 6

(+0.1). (We discuss the sensitivity of these results to network

size and mean network degree in the electronic supplementary

material.) We generate epidemic data on each of these networks

with 10 000 SIR epidemic simulations, with transmissibilities, T,
ranging from 0.1 to 0.5, at 0.05 intervals. The transmission probabil-

ities are chosen to represent a range of pathogens, from low-

transmissibility pathogens such as severe acute respiratory

syndrome and influenza to more highly transmissible pathogens

such as measles. Each of the epidemic simulations are then summar-

ized as the four epidemiological measures, R0, r, s, d, to be used as

data to test the classification framework. Classification of contact het-

erogeneities (i.e. network class model selection) based on this data

occurs through the calculation of posterior probabilities, using

equation (2.1), the likelihoods PðXjMi;T; u;NÞ (for each Mi and T
value, for fixed u and N, as described by the synthetic data) and a

uniform prior, PðMijT; u;NÞ.

2.2.2. Empirical network testing data
In addition to systematic testing with synthetic epidemic data on

simulated networks, we also test our framework with synthetic

epidemic data on empirical contact networks from various studies

spanning human and livestock systems. The purpose of these

experiments is to control for complexities in epidemiology by con-

fronting our framework with empirical contact network data that

do not conform to the structural assumptions made in our syn-

thetic networks (above). The number of nodes, N, is provided in

each study, and the transmission probability, T, is chosen so that

an epidemic resulted in an expected final size of approximately

0.25N. The four chosen datasets are the following.

— A contact network (for a sexually transmitted disease) based

on surveys of romantic and sexual relationships between

adolescents in a mid-size Midwestern US town [2] (N ¼ 278,

T ¼ 0.75). (We refer to this network as ‘adolescent sexual’.)

— A high-resolution network of cattle movement between farms

in the UK during the month of April 2004 [30] (N ¼ 37 787

T ¼ 0.22). (We refer to this as ‘cattle’.)

— A high-resolution radio-frequency identification (RFID) tag-

based network of face-to-face interactions lasting at least

10 min among students and staff at a California high school

[31] (N ¼ 661, T ¼ 0.27). (We refer to this as ‘school’.)

— An urban contact network (for a respiratory disease) gener-

ated based on data from Vancouver, British Columbia [5,10]

(N ¼ 12 729, T ¼ 0.072). (We refer to this as ‘urban’.)

(Further information on network topology for each dataset is

provided in the electronic supplementary material.)

We simulate 1000 epidemics on these empirical contact net-

works to produce replicate data on epidemiological measures,

R0, r, s, d. Classification of contact heterogeneities (i.e. network

class model selection) based on these data occurs through the cal-

culation of posterior probabilities, using equation (2.1), the

likelihoods PðXjMi;T; u;NÞ (for each Mi and T value, for fixed u

and N, as defined in the empirical study) and a uniform prior,

PðMijT; u;NÞ.
For validation of the contact structure inferred by

these epidemiological data, we statistically fit the degree distri-

butions of the known empirical networks. For each of

our datasets, we evaluate three one-parameter candidate distri-

butions (Poisson, exponential, scale-free) using maximum-

likelihood estimation (MLE) to fit the distribution parameters. We

then use the Kullback–Liebler divergence (K–L divergence) to

select the most appropriate degree distribution for the data. The

best-fit distribution for each dataset is presented in §3, and is

used for validation of our inferred results (see the electronic sup-

plementary material for more details).

2.2.3. Empirical epidemic testing data
Lastly, we test our framework with data from empirical epidemic

outbreaks. These data come from studies that do not necessarily

provide an estimate of the underlying contact network, but do
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provide an estimate of at least one epidemiological measure: epi-

demic final size, peak size or duration. In every case, an estimate

of N and either an estimate of the mean degree or R0 were pro-

vided. In cases where an estimate of the mean degree was

provided, it was used to determine a fixed value of u in

equations (2.2)–(2.4) so that each had a mean degree value match-

ing the estimate. In cases where an estimate of mean degree is not

provided, we assume a broad range of values for mean degree, and

use a range of values for R0 (provided in the study or from the lit-

erature), to calculate a value for T based on the following

relationship (where pk is the proportion of nodes with degree k
from equations (2.2), (2.3) or (2.4)) [5]:

R0 ¼ T
P

k kðk � 1ÞpkP
k kpk

:

The three empirical outbreaks are results of respiratory, sexual

and food-borne diseases, respectively.

— Measles: a severe outbreak of measles in 1861 in the isolated

village of Hagelloch, Germany resulted in all children

under the age of 14 being infected [15,32,33]. The susceptible

population (children of age , 14 who did not have maternal

immunity) was of size N ¼ 185, and the epidemic produced a

final size of 185 individuals. The value of R0 was assumed to

be between 6 and 10 [34], and the mean degree was varied

from 8 to 30.

— Gonorrhea: in early 1999, a localized outbreak of

Neisseria gonorrhea occurred in Alberta, Canada [35]. The sus-

ceptible population (for which the data were collected) was

N ¼ 39, of which 20 individuals were infected. A mean

number of contacts per individual (mean degree) of 2.1 was

measured in the study, and R0 was assumed to be between

1 and 3 [36].

— Norovirus: in the summer of 2004, there was a norovirus out-

break at an international scout jamboree in The Netherlands,

which was divided into seven camps [37]. We use data pro-

vided on two of the camps that became infected: (i) camp

‘1’: N ¼ 721, epidemic final size ¼ 77, peak size ¼ 19

and (ii) camp ‘2’: N ¼ 825, epidemic final size ¼ 41, peak

size ¼ 16. For the inference, we make the simplifying assump-

tion that each camp did not mix with others and thus treat

them as isolated epidemics. R0 was assumed to be between

1.88 and 2.3 as estimated in the study, and mean degree is

varied from 5 to 20.

Classification of contact heterogeneities (i.e. network class

model selection) based on the epidemiological datum provided

in each study occurs through the calculation of posterior prob-

abilities, using equation (2.1), the likelihoods PðXjMi;T; u;NÞ
(for each Mi and T value, for fixed u and N, as specified in the

empirical study or inferred) and a uniform prior, PðMijT; u;NÞ.
We note that these experiments are performed for a range of

values of the mean degree or T so as to characterize the depen-

dence of the network inference to variation in these parameters

(which does exist naturally).

3. Results
Using the Bayesian model selection framework described

earlier, we evaluate the inference of contact heterogeneity

using four common epidemiological metrics: R0, the repro-

ductive ratio; r, the epidemic peak size; d, the epidemic

duration; and s, the epidemic final size. Given each data

type, we consider the posterior probabilities of three net-

work classes (random graphs with degree distributions of

Poisson, exponential and scale-free), representing the range

of degree heterogeneity (from the fairly homogeneous Pois-

son to the highly heterogeneous scale-free). We emphasize
that we are not attempting here to pin down an exact net-

work, but instead are looking to determine what level of

contact heterogeneity is supported by the data, and which

individual epidemiological metrics provide the most

confidence towards this support.
3.1. Testing with synthetic network data
Here, we assess the inferential strengths and limitations of epi-

demiological data to infer underlying contact heterogeneity,

using synthetic epidemic data generated on synthetic host

population contact networks. The four epidemiological

measures (R0, r, s and d) gathered from the synthetic epidemic

data display different utilities as classifiers among themselves

and, notably, among different transmission probability values.

To evaluate the reliability of the classifiers, we treat the

results of the Bayesian analysis as a binary classification: for

every network class, Mi, we define a positive result as one

where the model Mi is supported most (i.e. with the highest

posterior probability PðMijX;T; u;NÞÞ by the epidemic

datum. Using these results, classified as positive and negative

for each network class, we consider the sensitivity and the

specificity of the epidemiological measures as classifiers. Sen-

sitivity indicates the proportion of positives for which the

true network class is inferred as most likely (true positive

rate), while specificity indicates the proportion of negatives

for which the network classes that are not true are not

inferred as most likely (true negative rate; more information

is provided in the electronic supplementary material).

Together, these two ratios present a picture of how reliable

each measure is at classifying the networks. The results

shown in figure 1 highlight that overall the classifiers perform

well, with only R0 having a trade-off between specificity and

sensitivity, and tending to be more specific than sensitive. Epi-

demic final size, peak size and duration, on the other hand,

tend to balance both high specificity and sensitivity (for most

transmission probabilities). While peak size and duration per-

form better as transmissibility decreases, final size classifies

more effectively for increasing transmissibility values. How-

ever, sensitivity and specificity only account for categorical

model choice and do not take into account model selection

uncertainty.

An evaluation of the posterior probabilities provides a

more quantitative measure of the confidence in each network

type given the data. These probabilities are shown for each

epidemiological measure (across all network classes and

transmission probabilities) in figure 2 and describe the utility

of the measures as classifiers. Predictions based on R0 are

reliable for the most heterogeneous (scale-free) networks

(albeit with large variances) across transmission probabilities,

but are largely ambiguous for Poisson and exponentially dis-

tributed networks. Classifications based on r and d become

less effective for higher T values; that is, sufficiently transmis-

sible pathogens propagate through all population types

efficiently, leading to similar-sized epidemic peaks and dur-

ations. Contact heterogeneity based on s, final size, is most

consistent across T values and thus is appropriate to use

when transmissibility is not well known a priori. Although

the certainty in classification decreases for moderate values

of T (0.15–0.25) (see the electronic supplementary material,

figure S4, for comparison of final size distributions), the classi-

fication is still strong. The s-classifier also remains most

effective (for all T values) for populations with smaller (,2)
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or larger mean degrees, or for smaller population sizes (see sen-

sitivity analysis in the electronic supplementary material).

Overall, these results show that all epidemic measures are

most sensitive towards scale-free networks and least towards

exponentially distributed networks.

3.2. Testing with empirical network data
We now use synthetic epidemiological data generated on four

empirical contact network populations to assess how infor-

mative each measure is given complex underlying network

structure but idealized epidemiological assumptions. Our

results are validated in each case by knowledge of the true

contact network and its statistical best fit. In figure 3 (box

plots) we show, for each empirical contact network (adoles-

cent sexual, cattle, school and urban), the posterior

probabilities of each network class based on three of the

four data types, s : final size, r : peak size, d : duration. (We

choose to ignore R0 in this analysis, given its poor perform-

ance in the previous testing stage.) In addition, for each

empirical contact network, we show the posterior degree
distribution, calculated via Bayesian model averaging [20,38],

p�k ¼
X3

i¼1

pi
kPðMijX;T; u;NÞ

as the sum of the three model degree distributions weighted

by the posterior probabilities for each network class, Mi. For

each network class i, the model degree distributions, pk
i , are

generated using equations (2.2)–(2.4), with u fitted to each

empirical contact network dataset.

The degree distribution of the adolescent sexual network

(figure 3a) has a best fit of exponential (using the K–L diver-

gence values, given the MLE estimates). (All K–L divergence

values and best-fit distributions are shown in the electronic

supplementary material, table S1, and figures S9–S12.) It is

inferred by our model selection as Poisson based on the final
size (s) and peak size (r) classifiers, but as exponential by

the duration (d) classifier. This result confirms our sensitivity

analysis that all classifiers for networks of mean degree two,

for small population sizes, are relatively ambiguous for the

transmission probability used here (see sensitivity analysis in

the electronic supplementary material). For the cattle move-

ment network (figure 3b), a scale-free network is selected

strongly by statistical fitting, and both the s and r classifiers

strongly prefer the same. The d classifier provides significant

evidence for the exponential network, reflecting the disassorta-

tive nature of this network [39]. For the school network

(figure 3c), the Poisson degree distribution is supported by

both our model selection and by the K–L divergence best fit.

The d classifier does provide weaker support, due to the

small population size (see sensitivity analysis in the electronic

supplementary material). Lastly, the epidemiological data pro-

duced over the urban network (figure 3d) strongly match the

K–L divergence best fit of a Poisson degree distribution. The

true degree distribution of this empirical network looks to be

more complex than any of the three network classes, but

its dominant feature, a dispersed peak with a moderate average

degree, is most consistent with a Poisson distribution. In

addition, the network is strongly modular and moderately

assortative (see the electronic supplementary material), but

still acts like a Poisson-distributed random network with

respect to epidemic outcomes.

These results underline that the common epidemiological

measures we have chosen to use as data within the Bayesian

model selection framework can be useful at correctly classify-

ing the level of contact heterogeneity in a population.

Epidemic final sizes are most consistent in this respect,

except in the case of small population sizes with extremely

low connectivity, which is in accordance with our results

using the synthetic testing data. Epidemic duration,

although effective when population size and mean degree

are small, is not strongly reliable otherwise (see the
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electronic supplementary material, figure S7). These results

demonstrate that although each of these networks has

complex network structure (clustering, assortativity, modu-

larity), a classification framework based on the assumption

of randomness still predicts the contact heterogeneity as

reflected in the degree distribution well. However, they also

suggest that network features (such as significant disassorta-

tivity) that are a result of more than the degree distribution

are not captured by these epidemic measures (especially dur-

ation). In addition, these findings highlight that the

framework works well across a broad range of mean degree

values (2–16) and transmission probabilities (0.07–0.75).
3.3. Classification of empirical epidemic data
The results of the previous two sections elucidate how infor-

mative various epidemic measures are about population

contact heterogeneity, even in the presence of complex net-

work structure. Given these results, we now infer contact

heterogeneity under the three models using epidemic data

from some historical and recent outbreaks where the
population contact structure is unknown, with our results

presented in figure 4.

For a measles outbreak from the small town of Haggel-

loch, Germany (figure 4a), the final size and peak size

posterior likelihoods for each network class and various

mean degrees suggest that the Poisson contact network is

the most likely model, albeit not strongly so, except where

the mean degree value is greater than 23. The choice of Pois-

son is reasonable in that it has the lowest contact

heterogeneity of the three contact network models and

measles has been relatively well modelled in the past using

a homogeneous-mixing model [40,41]. The scale-free network

model also has relatively high posterior probabilities at lower

mean degree values. The most likely explanation for this

result is that the mean degree among children less than the

age of 14 in Hagelloch was in fact greater than 23 (where

the Poisson model is the only likely model). This hypothesis

is not unreasonable as the school class sizes in Hagelloch

varied from 30 to 90 children. (However, this result is at

odds with the results of Groendyke et al. [15,42] who predict

an average degree of 8–12.)
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For a gonorrhea outbreak from a town in Alberta, Canada

(figure 4b), for transmission probabilities in the range 0.1–0.55,

the scale-free model is strongly preferred. At higher trans-

mission probabilities (0.6þ , not shown), Poisson and

exponential network models are more likely. Empirical evi-

dences suggest that gonorrhea has a transmission probability

lower than 0.55 due to characteristics of the bacterium itself

[43,44]. Research also suggests that the scale-free model is a

reasonable prediction in this case, as degree distributions of

human sexual contact networks have been shown to exhibit

high levels of contact heterogeneity and are characterized by

a core group of highly active individuals that tend to bridge

more isolated individuals [45–48].

For a norovirus outbreak from two camps in a children’s

summer jamboree (figure 4c,d), the epidemic final and peak

sizes strongly indicate that a scale-free network underlies the

population in both cases. Norovirus typically spreads very

quickly in a population, usually by person-to-person contact

by means of faecal–oral or aerosol transmission [37]. Multiple

factors mediate norovirus transmission such as host movement

and environmental contamination and thus what constitutes a

potentially disease-transmitting contact is vague. It is unclear

in this study which factor drove the outbreak, but our data sup-

port an underlying population with a large degree of

heterogeneity in their disease-causing contacts. This heterogen-

eity could point to variation in individual hygiene behaviour or

be the result of primary environmental transmission. The

model selection results are consistent across all mean degree

values, thus adding more confidence to the prediction.

For all three of these studies, the results of our model

selection framework are mainly consistent with known attri-

butes of each disease. Overall, the framework based on

epidemic size and/or peak size gives an accurate characteriz-

ation of the support for various levels of contact
heterogeneity and therefore gives important information

towards future model development for each disease system.

In addition, all predictions are fairly consistent across the

range of mean degrees or transmission probabilities.

Although we are not explicitly estimating other parameters

for any of these systems, the model selection for network

class can be followed up by model selection on the

mean degree (or more precisely, the value of u) and the

transmission probability [20].
4. Discussion
Directly transmitted pathogen dynamics are fundamentally

driven by the interactions between individuals in the host

population that make up infectious contact and lead to trans-

mission. Network epidemiology has come a long way in

demonstrating the impact that the structure of these inter-

actions (which make up the contact network) has on the

progression of an infectious disease [5,11,24,49–52]. In this

study, we have developed a predictive framework to show

that common epidemiological measures can give important

insights into the contact structure of a host population. The

important dependence that has been established between con-

tact network structure and infectious disease dynamics is both

a motivation for why a framework like ours is needed and a key

to its development. In particular, we have focused on the het-

erogeneity in the host population’s contact structure as

represented through the degree distribution. Although

degree heterogeneity is only one of the characteristics that

describes a network, it has been understood to play a funda-

mental role in describing variation in disease transmission

[24,53], and has been recently shown to in fact account for

much of the variation in many cases [54].
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From our analysis, it is evident that some epidemiological

measures better distinguish contact heterogeneities in the

underlying populations. The reproductive number does seem

to have some potential as a classifier, but performs poorly,

especially for less-connected populations. (In our sensitivity

analysis, shown in the electronic supplementary material, we

find that the R0 classifier improves for more connected popu-

lations (mean degree � 10).) All the remaining measures also

have mixed results for varying parts of the mean degree and

transmissibility parameter space. (Given these results, the

development of a joint likelihood approach that combines

information from multiple epidemic measures could be pro-

ductive. Although not the goal of this study, we present a

preliminary analysis based on combined metrics in the elec-

tronic supplementary material.) Overall, our primary and

sensitivity analyses indicate that a less-connected host popu-

lation with a moderate or highly transmissible pathogen (as

often occurs in human sexually transmitted disease systems)

can best be classified by final size or peak size; while a

highly connected host population with a low or moderately

transmissible pathogen (as often is the case for human respirat-

ory disease outbreaks) is better classified by final size and in

many cases by duration. That final size is a good classifier is

likely due to the low variability it exhibits for a given contact

network structure. The exception to the effectiveness of final

size as the most reliable metric is that of an extremely sparsely

connected (mean degree � 2) and small host population sizes

(N , 500).

The inferential results from epidemiological data genera-

ted over known empirical contact networks, each

constructed via different methods, show that our model

selection framework is robust in the face of contact networks
that do not strictly conform to one of the three model classes.

The fact that the model selection is accurately able to classify

the contact structure (from the three model options) recon-

firms that the degree distribution characterizes the network

structure well for epidemic outcomes, even in the presence

of complex network characteristics such as transitivity

and assortativity. (Further work is needed, however, to

detect other secondary structures such as modularity from

epidemiological data.) In addition, the posterior degree distri-

butions specify reasonable approximations to the true degree

distributions, providing a more informed a priori contact

structure for predictive and intervention modelling studies

of future outbreaks.

When applied to epidemiological data from populations

where little is known about the underlying contact network,

our framework provides important insights into the structure

of these populations and illustrates how this method can be

used in practice. In contrast to the sample sizes in our pre-

vious experiments, these predictions are based on one data

point each, and still produce predictions that are congruent

with our understanding of the respective disease systems.

These predictions can also begin to shed some light on the

relationship between network structure and certain classes

of disease systems (i.e. a pathogen with a given transmission

mode and the type of population it spreads in). Sexually

transmitted disease spread in heterosexual and homosexual

populations has been the most well-studied case in this

regard. There has been a significant amount of work investi-

gating the high degree of heterogeneity found in sexual

contact networks, made up of the monogamous many and

promiscuous few [45,46,48]. The spread of childhood diseases

such as measles spreading among cohorts of susceptible
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children is also a classic example where the level of hetero-

geneity has typically been assumed (to be low, in this case),

although never shown. Our predictions on the Hagelloch out-

break provide evidence in this direction. Few other disease

systems have been investigated in this manner and thus we

have a poor understanding of whether or not certain contact

structures characterize certain classes of diseases. The strong

support towards high contact heterogeneity in the norovirus

outbreaks points to transmission of gastrointestinal pathogens

as being driven by super-spreading events, either due to

strong environmental seeding or as a result of individual

behaviour.

This initial framework does have notable limitations,

however. Primarily, we have made assumptions on the

pathogen spread that may not hold in all cases. We assume

no incubation period, a constant generation time and no

variability in susceptibility or transmissibility. The frame-

work also assumes a static contact network, not accounting

for dynamics in contact structure due to social changes or

public health interventions [55]. Although these additional

complexities are not expected to fundamentally weaken the

approach, further work is necessary. Lastly, our approach is

designed for large-scale epidemics only (i.e. R0 . 1 and the

outbreak spreads to a significant proportion of the popu-

lation). An important future challenge will be to develop a

framework based on endemic or early outbreak surveillance

data, which could be used to classify population structure

before an epidemic occurs, so that the results could be used

to predict and design interventions in real time.
Thus, we have designed a simple and general predictive

framework that can shed light on a host population’s connec-

tivity, given epidemic data. Our approach has a low demand

for data in terms of both quantity and availability, and has

the potential to inform future epidemiological data-collection

efforts and study design by driving our understanding of

germane epidemic measures in the context of contact struc-

ture inference. While our study is a first step towards a

larger goal, a statistical approach powered by existing (epide-

miological) data could greatly contribute towards the

characterization of host contact structure, without the need

to spend resources or compromise privacy in accessible

populations, while making it possible to describe unreach-

able human and animal populations of the past.
Endnote
1The ‘exponential’ degree distribution is a discrete probability distri-
bution common in network theory.
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