
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Fan Deng,
Nanfang Hospital, Southern Medical
University, Guangzhou, China

REVIEWED BY

Jingjuan Hu,
Southern Medical University, China
Xue-Tao Yan,
Shenzhen Bao’an Maternal And Child
Health Hospital, China

*CORRESPONDENCE

Jingyi Chen
year0216@163.com
Yu Wang
wang_yu000@sina.com
Chengyi Wu
250991569@qq.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Intestinal Microbiome,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

RECEIVED 10 August 2022
ACCEPTED 19 August 2022

PUBLISHED 05 September 2022

CITATION

Huang P, Cao J, Chen J, Luo Y,
Gong X, Wu C and Wang Y (2022)
Crosstalk between gut microbiota and
renal ischemia/reperfusion injury.
Front. Cell. Infect. Microbiol.
12:1015825.
doi: 10.3389/fcimb.2022.1015825

COPYRIGHT

© 2022 Huang, Cao, Chen, Luo, Gong,
Wu and Wang. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Mini Review
PUBLISHED 05 September 2022

DOI 10.3389/fcimb.2022.1015825
Crosstalk between gut
microbiota and renal ischemia/
reperfusion injury

Peng Huang1†, Jianwei Cao2†, Jingyi Chen1*†, Yanrong Luo3,
Xiaofang Gong1, Chengyi Wu1* and Yu Wang1*

1Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China,
2Department of Microscopic Orthopedics of Hand and Foot, Taihe Hospital, Hubei University of
Medicine, Shiyan, China, 3Physical examination center, Shiyan Hospital of Integrated Traditional and
Western Medicine, Shiyan, China
Renal ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury

and the cause of rapid renal dysfunction and high mortality. In recent years, with

the gradual deepening of the understanding of the intestinal flora, exploring renal

IRI from the perspective of the intestinal flora has become a research hotspot. It

is well known that the intestinal flora plays an important role in maintaining

human health, and dysbiosis is the change in the composition and function of the

intestinal tract, which in turn causes intestinal barrier dysfunction. Studies have

shown that there are significant differences in the composition of intestinal flora

before and after renal IRI, and this difference is closely related to the occurrence

and development of renal IRI and affects prognosis. In addition, toxins produced

by dysregulated gut microbes enter the bloodstream, which in turn exacerbates

kidney damage. This article reviews the research progress of intestinal flora and

renal IRI, in order to provide new treatment ideas and strategies for renal IRI.

KEYWORDS
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Overview

Renal ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury and

the cause of rapid renal dysfunction and high mortality (Zhang et al., 2020; Ke et al., 2021;

Zhang et al., 2021a; Zhou et al., 2021). It is a complex but not fully understood process. In

recent years, more and more studies have found that intestinal flora is associated with

renal IRI (Ding et al., 2019). There are millions of microorganisms living in the human

body (Liu et al., 2021; Lu et al., 2021; Wang et al., 2021). These microorganisms are

widely present in the skin (Boxberger et al., 2021), gastrointestinal tract (Chen et al.,

2021), nasal cavity (Bassis et al., 2014), oral cavity (Blaustein et al., 2021) and

reproductive tract. In a healthy organism, they cooperate and influence each other in
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ways that do not cause disease. And multiple studies have found

a strong link between gut microbiota and kidney disease (Hu

et al., 2017; Ticinesi et al., 2018; Gryp et al., 2020). This article

reviews the research progress of gut microbiota and renal IRI, in

order to provide new treatment ideas and strategies for renal IRI.
Renal IRI

Ischemia-reperfusion injury (IRI) refers to the phenomenon

that when tissues or organs regain blood supply after ischemia,

they do not recover the function of tissues and organs, but

aggravate the dysfunction of function and metabolism and

structural destruction (Deng et al., 2021a; Deng et al., 2021b;

Deng et al., 2022a). Because of its special structure and function,

kidney is also extremely sensitive to IRI. During renal

transplantation, the transplanted kidney disorder inevitably

experiences donor hemodynamic kidney disorder. IRI of the

transplanted kidney can cause delayed recovery of graft function,

primary nonfunction of the transplanted kidney, acute rejection,

etc., which is an important factor affecting early renal function

recovery and long-term survival of the transplanted kidney (Wu

et al., 2021b; Feng et al., 2022; Kitani et al., 2022). Therefore, the

prevention and treatment of renal transplantation IRI has

become a hot topic in the field of renal transplantation in

recent years.
Intestinal microbiota

Intestinal microbiota plays a very important role in a series of

pathophysiological processes such as resistance to pathogen

invasion, establishment of body immunity, nutrient digestion

and absorption, body growth and metabolism, immune anti-

tumor and so on (Daoust et al., 2021; Delaroque et al., 2021;

Tsou et al., 2021; Zhao et al., 2021). It can interact with intestinal

epithelial cells, other organs and the whole body. There are a large

number of immune cells and many immune factors in intestinal

tissue, which play an important role in intestinal mucosal

immunity. The gut is an important organ in the body,

responsible for the digestion and absorption of nutrients. In

addition, as the largest lymphoid organization inside the body,

intestinal tract still holds the function that endocrine and immune

regulate concurrently. Intestinal epithelial cells are the barrier

between the body and the external environment. The

microorganisms (intestinal flora) in the intestines are closely

related to the metabolic and immune functions of the intestine.

Studies have confirmed that the body’s homeostasis and the

intestinal immune function depend on the balance of bacteria in

different degrees, and once this balance is destroyed, it will lead to

the occurrence of related diseases (Bruellman and Llorente, 2021;

Han et al., 2021; Khan et al., 2021; Shute et al., 2021; Sun et al.,

2021; Deng et al., 2022b; Hu et al., 2022). The dysregulation of gut
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microbiota can be caused by many factors, such as age (Du et al.,

2021; Janiak et al., 2021), lifestyle (Pauer et al., 2021; Shin et al.,

2021), dietary habits (Neumann et al., 2021; Tap et al., 2021; Yu

et al., 2021), immunity (Foley et al., 2021; Hosseinkhani et al.,

2021) and the use of antibiotics (Kang et al., 2021; Mcdonnell

et al., 2021; Strati et al., 2021; Vicentini et al., 2021).
Gut-kidney axis

In 2011, Professor Meijers first proposed the “gut-kidney

axis” theory (Meijers and Evenepoel, 2011). The core of the

theory is that chronic renal failure causes colonic microbiota

disorder, and pathogenic bacteria produce metabolic toxins,

mainly indoxol sulfate and p-cresol. These toxins enter the

circulation and lead to systemic inflammation and oxidative

stress injury, thus aggravating kidney injury. With the

popularization of metagenomics and metabolomics technology

in recent years, the relationship between “microbiota - toxin-

barrier - inflammation” event chain has been clarified. The

disruption of mucosal barrier caused by colonic microbiota

disorder and the shift of bacterial metabolites are considered

as the most core link of the whole “gut-kidney axis” (Yang et al.,

2018; Giordano et al., 2021).

There are interactions between gut microbiota and various

organs of human body, and there is a bidirectional synergistic

relationship between gut and kidney (Wang et al., 2020; Wu

et al., 2020; Lai et al., 2021; Lauriero et al., 2021; Xiang et al.,

2021). Under normal physiological conditions, the intestine has

a regulatory effect on kidney function, including neuroendocrine

involvement. For example, glucagon-like peptide-1 (GLP-1)

(Wu et al., 2021a; Zhuang et al., 2021), guanosine (Estaki

et al., 2014), glucagon (Müller et al., 2020; Insuela et al., 2021),

vasoactive intestinal peptide (Song et al., 2021), polypeptide (Qi

et al., 2021), gastrin (Stewart et al., 2020) and other intestinal

factors can regulate renal dysfunction. Pathological conditions,

due to dietary restrictions and gastrointestinal, most of the

patients in the gut microbial metabolism, which is mainly

composed of protein hydrolysis into fermentation mode, the

end product of protein by the metabolism of gut microbes such

as phenol, indole are the endotoxin source of uremia, such as its

nephrotoxicity and vascular toxicity has been confirmed that

many clinical research institute (Ondrussek-Sekac et al., 2021).

Intestinal metabolites of host and flora affect the whole body

through the blood circulation, in addition to the intestinal

nervous and immune systems, the brain, gut, flora and kidney

are closely related and promote disease. On the other hand, renal

IRI can destroy the composition and metabolism of intestinal

microbiota, and long-term imbalance of intestinal microbiota

can lead to renal injury, such as secondary IgA nephropathy

induced by intestinal diseases (Yang et al., 2020). Any

interference between this bidirectional communication can
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lead to a variety of serious complications, such as chronic kidney

disease, end-stage renal disease, and septic acute kidney injury.

Not only that, intestinal tract plays an important role in

regulating blood sodium and potassium metabolism (Olson

et al., 2018). The absorption of sodium and potassium in the

intestine changes the blood concentration and stimulates the

renin-angiotensin system, which leads to the change of

the excretion of sodium and potassium in the kidney to

maintain the blood sodium and potassium concentration

relatively normal. Long-term intestinal sodium and potassium

absorption disorder makes the kidney to sodium and potassium

concentration sensitivity retardation and glomerular filtration

rate decrease, resulting in renal function damage. When

intestinal damage loses the ability to regulate blood

phosphorus, it will also increase the metabolic burden of

the kidney.
Gut microbiota and immunity

The intestinal tract is the largest immune organ. Intestinal

microbiota and intestinal mucosal immune cells not only play a

role in intestinal inflammatory diseases, but also control the

immune response of extraintestinal organs. The over-activation

of innate immune response plays an important role in the

intestinal tract pathogenesis of acute kidney injury. Therefore,

gut microbiota and intestinal mucosal immune cells may affect the

prognosis of acute kidney injury. As the “second genome of

human beings”, gut microbiota is involved in the regulation of

many metabolic pathways, such as human gene expression,

nutritional development, adaptive immunity and so on. Studies

of chemokines associated with T-cell infiltration have found that

gut microbiota can stimulate the production of immune

chemokines, thereby facilitating the killing of tumor cells by T-

cells. Studies on gut microbiota and host immunity have

confirmed that gut microbiota is an important factor to

stimulate the maturation of “mucosal immune system” and

“systemic immune system”, and gut microbiota can act as signal

molecules to regulate intestinal development, angiogenesis and

lymphocyte development. In addition, more and more studies

have shown that the gut microbiota also plays an extremely

important role in protecting the host from pathogenic

microorganisms. For example, goblet cells in the intestinal

mucosa secrete a mucin, which has a compact inner mucus layer

and is resistant to bacteria. The outer mucus layer can compete

with pathogenic microorganisms to bind adhesin receptors of

epithelial cells, thus achieving the purpose of inhibiting the

adhesion and colonization of pathogenic microorganisms in the

intestinal tract. Lactobacillus in the gut can promote mucin

expression. Some genera of Firmicutes have the ability to

penetrate the mucus layer, and they can stimulate intestinal

epithelial cells to produce a large number of antimicrobial

proteins, thereby limiting the contact between bacteria and
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of pathogenic microorganisms in the intestine. Therefore, the

homeostasis of intestinal flora plays an indispensable role in

regulating the development of host immune system and

maintaining normal immune function of the body.
Diet-gut microbiota-kidney

Dietary fiber

Dietary fiber is a source of carbohydrates for the microbiota

(Coker et al., 2021; Zuo et al., 2022). The composition of the

colonic microbiota is significantly influenced by diet and its

assimilation in the small intestine (Murga-Garrido et al., 2021).

Dietary fiber escapes the digestive process of the small intestine

and becomes the main source of carbohydrates for the colonic

microbiota. Dietary fiber is fermented by colonic microbiota into

short-chain fatty acid, which play an important role in

maintaining intestinal epithelial integrity and energy

homeostasis, and they repair hypoxic damage in renal

epithelial cells by improving mitochondrial biogenesis

(Andrade-Oliveira et al., 2015).
Dietary protein

Dietary protein digested in the upper digestive tract is a

nitrogen source for colonic microbiota (Westerterp-Plantenga

et al., 2009). The fate of these proteins in the colon is largely

determined by the availability of energy for the growth and

development of the colonic microbiota, which is largely derived

from carbohydrate fermentation. If the availability of

carbohydrates is high, proteins and their intermediates are

either assimilated into bacterial biomass or fermentated into p-

cresol, indole, phenol and amines by Clostridium and

bacteroides in the absence of carbohydrates. The protein

fermentation products are further processed to form uremic

toxins such as p-cresol sulfate and indoxol sulfate (Rysz et al.,

2021). These toxins circulate in the blood due to their high

affinity (non-covalent interaction) with albumin and are released

by renal tubular secretion. If uremic retained solutes accumulate

in the body, they increase the incidence of glomerulosclerosis

and the progression of kidney disease. Therefore, their

concentration in the blood can be used to measure the

functional efficiency of the kidney. Indole phenol sulfate and

other toxic effects of cresol sulfate including increased

inflammation, endothelial dysfunction and vascular

calcification, oxidative stress increase, erythropoiesis reduced,

increased cell aging, thrombosis, atherosclerosis formation, left

ventricular hypertrophy, insulin resistance, renal tubular

interstitial fibrosis and renin - angiotensin aldosterone system

activation (Vanholder et al., 2014).
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Dietary fat

Choline, carnitine and lecithin are the main components of

dietary fat (Higarza et al., 2021). Mammals lack the enzymes

needed to break the cyanide bonds of these fatty components.

However, the colonic microbiota has trimethylamine lyase,

which breaks cyanide bonds. The combined action of

trimethylamine lyase in bile and liver enzymes (namely flavin-

containing monooxygenases) results in the formation of

trimethylamine N-oxide by carnitine and choline. According to

a 2021 study published in the journal Science, high-fat diets

impair mitochondrial function in colonic epithelial cells, increase

intestinal oxygen and nitrate concentrations, promote the growth

of Escherichia coli and the breakdown of choline, lead to increased

levels of trimethylamine, and ultimately, the harmful circulating

metabolite trimethylamine N-oxide. Trimethylamine N-oxide,

like other uremic toxins, enters the body’s circulation and is

released by the kidneys. Increased trimethylamine N-oxide is

directly associated with the progression of chronic kidney disease

(Liu et al., 2020). trimethylamine N-oxide concentrations can be

up to 20 times higher in patients with end-stage renal disease

compared to healthy controls. High trimethylamine N-oxide

results in deleterious consequences such as increased platelet

activity, thrombogenic potential, renal tubulointerstitial fibrosis,

and the development of atherosclerosis.
Gut microbiota in renal IRI

Changes in gut microbes and
metabolites induced by renal IRI

It was found that renal IRI resulted in increased serum levels

of 32 acylcarnitines, which were correlated with creatinine and

urea. Levels of three amino acids (tyrosine, tryptophan and

proline) decreased. In addition, there was a significant

association between intestinal bacterial abundance and

metabolite levels. The levels of Rothia and staphylococcus were

positively correlated with creatinine and urea levels, respectively

(Andrianova et al., 2020).
Antibiotics

Currently, the effect of antibiotic deletion of gut microbiota

on renal IRI remains controversial. Diba Emal et al. found that

microbiota depletion significantly attenuated renal injury,

dysfunction, and remote organ damage, and maintained renal

tubule integrity after renal IRI. Compared with control mice,

mice with intestinal microbiota depletion expressed lower levels

of F4/80 and chemokine receptors CX3CR1 and CCR2 in F4/80+

renal resident macrophages and bone marrow monocytes. In

addition, bone marrow monocytes from mice depleted of gut
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microbiota exhibited reduced migration to CX3CL1 and CCL2

ligands compared with control bone marrow monocytes. In

addition, fecal transplantation in antibiotic-treated mice

showed that fecal transplantation from untreated mice

abolished the protective effect of microbiota depletion on renal

IRI (Emal et al., 2017). Therefore, inhibition of inflammatory

response by targeting microbiome derived mediators may be a

promising therapeutic approach for renal IRI. Yang et al. found

that increased Enterobacteriaceae and decreased Lactobacillus

and ruminococcus were found to be markers of dysbiosis caused

by kidney IR and were associated with reduced levels of short-

chain fatty acids, intestinal inflammation, and intestinal leakage.

Depletion of the microbiota by oral antibiotics prevents kidney

IRI. This nephroprotective effect was associated with reduced Th

17, Th 1 responses and expansion of regulatory T cells and M2

macrophages. The study demonstrates a unique bidirectional

relationship between kidney and gut during acute kidney injury.

Dysregulation of the gut microbiota, inflammation and leaky

intestines are the consequences of acute kidney injury, but they

are also important factors in determining the severity of post-

acute kidney injury (Yang et al., 2020). Therefore, targeting the

gut microbiota may provide a novel therapeutic strategy for

acute kidney injury.

However, Osada Y et al. reported that microbiome depleted

mice had significantly lower bacterial 16S rRNA expression,

luminal concentrations of short-chain fatty acids and bile acids,

and plasma glucose levels than vector-treated mice. In addition,

antibiotic treatment significantly reduced renal glucose and

pyruvate levels. The mRNA expression levels of glucose 6-

phosphatase and phosphoenolpyruvate carboxykinase in renal

cortex of antibiotic treated mice were significantly higher than

those of vector treated mice. Antibiotic treatment caused more

severe tubular injury after renal IR. The study confirms that

microbiome depletion is associated with reduced levels of

pyruvate in the kidney, which may be caused by activation of

renal gluconeogenesis. Microbiome depletion can increase the

susceptibility of the kidney to IR injury (Osada et al., 2021). Gut

microbiota protects against tubular injury in a mouse model of

renal IR. Acute kidney injury induced dysregulation of intestinal

flora leads to changes in D-amino acid metabolism. In injured

kidneys, the activity of D-amino acid oxidase is reduced. Oral

administration of D-serine attenuated renal injury in B6 mice

and D-serine depleted mice. D-serine inhibits hypoxia-induced

renal tubular injury and promotes proliferation of renal tubular

cells after hypoxia. Finally, circulating D-serine levels were

significantly associated with decreased renal function in acute

kidney injury patients (Nakade et al., 2018).
Probiotics

Zeng et al. found that oral administration of the probiotic

Lactobacillus casei Zhang corrected intestinal microbial
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dysregulation induced by bilateral renal IR, attenuated renal

injury, and delayed its progression to chronic kidney disease in

mice. Lactobacillus casei Zhang increased serum and kidney

levels of short-chain fatty acids and nicotinamide, thereby

reducing renal inflammation and damage to renal tubular

epithelial cells (Zhu et al., 2021). These results suggest that

oral administration of Lactobacillus casei Zhang is a potential

therapy to attenuate renal injury and slow the progression of

renal decline by altering SCFA and nicotinamide metabolism.

Administration of Bifidobacterium bifidum BGN4 significantly

increased gut microbiota diversity and prevented the expansion

of Enterobacteriaceae and Bacteroidetes, hallmarks of AKI-

induced dysbios i s . In addit ion, administra t ion of

Bifidobacterium bifidum BGN4 significantly reduced IRI-

induced other changes in the colonic microenvironment,

including effects on colonic epithelial cell permeability,

apoptosis, and infi l tration of neutrophils and pro-

inflammatory macrophages (Yang et al., 2021). Lactobacillus

acidophilus ATCC 4356 attenuates renal IRI and improves gut

microbial distribution through anti-oxidative stress and anti-

inflammatory responses (Zhang et al., 2021b).
Short-chain fatty acids

Short-chain fatty acids are fermentation end products

produced by the gut microbiota and have anti-inflammatory

and histone deacetylase inhibitory properties. Recently, it has

been observed that treatment with the three main short-chain

fatty acids (acetate, propionate, and butyrate) improved renal

dysfunction caused by injury by modulating inflammatory

processes. In addition, short-chain fatty acids ameliorated the

effects of hypoxia on renal epithelial cells by improving

mitochondrial biosynthesis. Notably, mice treated with

acetogenic bacteria also had better results after acute kidney

injury (Andrade-Oliveira et al., 2015). Butyrate treatment

significantly enhanced renal function and structure, decreased

serum creatinine levels, and reduced pathological damage to

renal tissue. With the recovery of renal function after kidney

transplantation, short-chain fatty acids increased and were

negatively correlated with creatinine (Sun et al., 2022).
Conclusion

Intestinal microbiota and its products are closely related to

renal IRI, and external factors such as diet structure and drug

application have a great influence on intestinal microbiota.

Therefore, in the management process of patients with renal

IRI, the influence and interaction on intestinal microbiota

should be taken into account when reasonable treatment

options are selected. In addition, a deeper understanding of
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the function and composition of the gut microbiota of patients

can provide a focal point for the development of rational and

individualized treatment. It will be the focus of future research to

carry out more studies on the intestinal microbiome of renal IRI,

improve the metagenomic sequencing of intestinal microbiota in

recipients, explain the mechanism of intestinal microbiota

assisting the body’s immunity and the relationship between

kidney diseases and intestinal microbiota. In view of the

beneficial effects of probiotics on renal diseases and the

efficacy and safety of fecal microbiota transplantation,

individualized application of probiotics and fecal microbiota

transplantation may become a new treatment strategy for

renal IRI.
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