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Abstract: In this study, an unmanned aerial vehicle (UAV) with a camera and laser ranging module
was developed to inspect bridge cracks. Four laser ranging units were installed adjacent to the camera
to measure the distance from the camera to the object to calculate the object’s projection plane and
overcome the limitation of vertical photography. The image processing method was adopted to
extract crack information and calculate crack sizes. The developed UAV was used in outdoor bridge
crack inspection tests; for images taken at a distance of 2.5 m, we measured the crack length, and the
error between the result and the real length was less than 0.8%. The developed UAV has a dual-lens
design, where one lens is used for bridge inspections and the other lens is used for flight control. The
camera of the developed UAV can be rotated from the horizontal level to the zenith according to user
requirements; thus, this UAV achieves high safety and efficiency in bridge inspections.

Keywords: unmanned aerial vehicle; bridge inspections; crack identification; digital image processing

1. Introduction

Countries worldwide mostly use visual inspection methods for bridge structure in-
spection. For bridges with high piers and those that run across rivers and are difficult to
approach, professionals must use equipment such as large bridge inspection vehicles with
lifting platforms, boats, and ladders to perform detailed inspections. Such inspections are
technically complex and difficult and increase the job risks for professionals [1]. Moreover,
for bridges that are considerably tall or wide, bridge inspection vehicles are unsuitable for
structural inspections. In many situations, such as those in Figure 1a,b, during traditional
bridge inspection operations, the inspectors need to use a ruler to measure the length
and the width of the bridge crack. Under this condition, the maximal value is 1 m. If the
distance between the inspector and inspected surface is larger than this, the inspectors
cannot measure the bridge crack; they can only take an image of the crack. If the distance
is larger than 6 m, it is hard to take a clear image and recognize it with human eyes. This
influences the completeness and correctness of the data from bridge inspections. (Figure 1).
Although visual inspections are essential for bridge-planning-related tasks that ensure
bridge availability and safety (e.g., assessing the current deterioration conditions of bridges
and performing bridge maintenance), these inspections have many disadvantages [2]. Thus,
following the development of unmanned aerial vehicles (UAVs), researchers and profes-
sionals have investigated the feasibility of combining UAVs with digital photo processing
technology to overcome the problems involved in visually inspecting concrete cracks [3–5].
UAVs can capture images of the surface cracks in civil engineering structures from a closer
distance, which enables relevant personnel to more accurately identify cracks [6]. Bridge
inspection through UAVs outperforms traditional bridge inspection methods in two aspects.
First, areas that are difficult to examine using traditional bridge inspection methods can
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be examined using UAVs. Second, images can be collected more cheaply, safely, and flexibly
when using UAVs than when using traditional bridge inspection methods [7]. Chan et al. [8]
indicated that UAVs have considerable potential in performing bridge condition inspec-
tions, and UAVs ensure that inspectors do not need to be within a close range from the
bridge when conducting a visual assessment.
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inspection area.

The number of images captured by UAVs during bridge inspections is markedly large.
Thus, to effectively extract crack information from images, scholars have proposed using
various image-processing techniques. These techniques can roughly be divided into four
categories: grayscale thresholding algorithms [9], edge-detection algorithms [10], graph-
theory-based algorithms [11,12], and machine-learning algorithms [13–18]. Although these
methods have advantages in identifying cracks, the size of cracks in images is given in the
unit of pixels, without any information about the image-taking distance. Therefore, it is
impossible to calculate the metric size of the cracks (length and width in the metric unit;
crack length means the longest distance along the crack from one end to the other, and the
crack widths mean the maximum vertical distance from the crack edge). Consequently,
some scholars have attempted to use range-finding equipment to directly obtain photo-
shooting distances. For example, Zhong et al. [19] employed an octocopter UAV that
used a laser range finder installed on its camera to measure object distances and pixel
resolutions. There are two main problems in the bridge inspection task: collecting data
with the required information (for example, distance to object) and crack recognition in
images. Well-performing data collection and image processing methods are necessary to
obtain satisfactory bridge inspection results. Tian et al. [20] studied a data collection system
equipped with a camera and a laser range finder and used the system to conduct laboratory
tests on concrete beams with cracks. A laser range finder (range precision = ±2 mm) with
the laser beams aligned parallel to the camera and perpendicularly to the object was used
to determine the accurate distance between the camera and the object. The captured
images were calibrated and used to produce grayscale images, which were then subjected
to thresholding conducted using the Otsu method [21]. Subsequently, a combination of
Canny operators was employed for edge detection [22], which allowed for the accurate
identification of crack edges. Finally, the object distance method, whose calculation is
based on optical triangular similarity theory and involves converting pixel size into metric
system units, was used to calculate crack size in metric system units. The results verified
the system’s accuracy in measuring cracks with a width larger than 0.1 mm and revealed a
92% accuracy in crack length measurement. Kim et al. [23] adopted UAVs integrated with
cameras and sound-wave range finders and studied tests performed on-site on the concrete
wall of a sports center. An ultrasonic displacement sensor (range precision = ±3 mm) was
used for the tests; the sensor was aligned in parallel to the camera and perpendicularly
to the wall to accurately measure the distance between the camera and the object. The
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captured images were calibrated and used to produce grayscale images. These images were
then subjected to Sauvola local thresholding, which involved binarizing the images with
two parameter combinations that had the lowest estimation error for the actual crack length
and width. Next, skeletonization and edge detection were performed to extract the skeleton
and contour pixels. The length and width were determined by measuring the length of the
main crack axis and the width of the nearest contour pixels, respectively, on the two sides
of the main crack axis. Finally, the object distance method was used to convert the pixel size
into metric system units to calculate the crack dimensions in metric system units. According
to the result, the measurement method provided accurate measurements for cracks with a
width larger than 0.25 mm and had a 96.7% accuracy in measuring crack length. However,
in this approach, only one range sensor is used to obtain the photo-shooting distance. Thus,
assuming that the cameras are perpendicular to the targets, measurement errors occur if
cracks are tilted, which makes the approach impractical.

To overcome the limitations of vertical photo-shooting, in this study, a UAV system
that contains a camera and laser ranging module was designed and developed to inspect
the side and bottom areas of bridge structures. These areas are dimly lit narrow spaces
between bridge beams and columns, from which satellite positioning signals cannot be
obtained. A tripod head was installed on the developed UAV, and a camera was mounted
on the tripod head. Four laser ranging modules were installed adjacent to the camera
(called the “inspection camera” in this study) to measure the distance from the camera to
the object to calculate the projection plane of the object and accurately calculate the position
of the inspection camera relative to the bridge and the metric image scales. Moreover, the
image-processing method (the image-processing methods that we used are the Grayscale
threshold algorithm and the graph theory, including the Sauvola local thresholding method,
Zhang–Suen Skeletonization algorithm, and Erosion in Morphology, etc.) was used to
extract crack information and calculate crack sizes, which ensured the integrity of the
tracking and safety assessments for bridge cracks. The contributions of this paper are as
follows:

(1) This study developed an adapted UAV for bridge inspection operations and the
inspection camera. The camera is installed on the tripod head and can rotate from 90◦

(horizontal plane) to 180◦ (zenith), which enables the UAV to inspect the sides and
bottom of bridges.

(2) This study developed the architecture and method used to integrate the camera and
the laser ranging module on the embedded system (Raspberry Pi 4). Additionally,
the object projection measurement method was proposed, which can overcome the
limitations of vertical photography.

(3) This study proposed an image-processing method and process to extract crack infor-
mation and metric size.

The rest of this article is structured as follows: In Section 2, we indicate the develop-
ment and research methods used for the system, explaining the design and development of
the hardware structure of the bridge inspection UAV system. We also describe the methods
used to integrate the camera and laser ranging modules and the measuring accuracy test.
Furthermore, we show the methods used for crack recognition and measurements. Next,
in Section 3, we conduct a performance and accuracy analysis for the bridge inspection
operation for the UAV system that integrates the camera and laser ranging modules. Finally,
in Section 4, we conclude with the contributions of this study and its future developments.

2. Materials and Methods
2.1. Design and Development of a UAV System for Bridge Inspection

As bridges are located in diverse environments and multi-copter UAVs are prone to
environmental interference, UAVs must be miniaturized to allow for them to reach as close
as possible to the bridge structures and to reduce spatial constraints and wind pressure
during bridge inspections. Furthermore, a UAV’s motor speeds must be sufficiently high to
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enhance its agility and wind resistance. Lighting equipment must be installed on UAVs to
enable them to clearly view structural conditions.

In this study, a light UAV with a wheelbase of 63 cm was designed to clearly photo-
graph the deteriorations in various bridge components and make relevant measurements
close to the components. To prevent the UAV’s propeller from colliding with the main
beams at the bottom of bridges and the subsequent crashing of the UAV, the propeller was
installed under the main shaft of the UAV, which improves the UAV’s safety and conve-
nience of operation under bridges. The developed UAV comprises three basic components:
a camera (SONY DSC-RX0), a ranging module (Lidar-100), and an embedded system (i.e.,
Raspberry Pi 4; Figure 2a). The tripod head installed on the body of the UAV can rotate
from 90◦ (horizontal plane) to 180◦ (zenith), which enables the UAV to inspect the sides and
bottom of bridges. The camera of the UAV has a dual-lens design, where one lens is used
for inspections and the other lens is used for UAV control. The inspection lens is placed
on the tripod head (Figure 2b,c), whereas the control lens is placed in front of the UAV to
enable the UAV to inform users about its dynamic conditions, thereby ensuring flight safety.
Pixhawk2 Cube Orange is used as the data transmission and flight control system. It offers
a one-button return for launch and route-planning functions, and considerably enhances
the operation efficiency of aerial photography. The maximal effect distance at which the
UAV digital remote-control equipment can transmit a video can reach 3 km, which makes
it suitable for inspecting large or cross-river bridges.
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Figure 2. Self-assembled unmanned aerial vehicle (UAV) system for bridge inspection: (a) architec-
tural diagram of the UAV; (b) architectural diagram of the inspection lens; (c) inspection camera from
horizontal plane rotated to zenith.

When we process and calculate the images taken by this camera, low levels of lens
distortion, a long focus and high image resolution are the main factors. The UAV camera,
which is market-sell or self-assembled, is usually used with a fish-eye lens. This allows us
to obtain a wider field of view and more conveniently control the UAV. This could lead to
more lens distortion, causing serious deformations in the image (Figure 3a). We chose the
inspection camera without a fish-eye lens. The lens distortion is smaller (Figure 3b), and
image deformation is low. The lens distortion can be improved by some camera methods,
but the effect will decline according to the severity level of the lens distortion. In addition,
in order to quickly transport real-time images to the ground station, the image resolution
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obtained with an original UAV camera is small. Taking our system as an example, there are
specifications for original and inspection cameras (Table 1). With a photo-shooting distance
of 2 m, the pixel size of projections on the object plane is 6.192 mm with an original UAV
camera, but 0.582 mm with an inspection camera. This means that the spatial resolution
accuracy is improved by about 10%.
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Table 1. Specifications of original UAV and inspection cameras.

Items Original UAV Camera Inspection Camera

Resolution (pixels) 976 × 494 4800 × 3200
Focus length (mm) 2.5 9.346

Image sensor size (inch) 1/3 1
Pixel size (mm) 0.007743 0.00275

With increases in the UAV the weight of the UAV, the UAV’s flight time shortens. This
is a big challenge in UAV development. We used the lithium polymer (LI-PO) battery. Its
capacity is 5200 mah, weight is 406.8 g, and flying time is 30 min. After adding the camera
and laser ranging module to the UAV, the flight time is only 16 min. We can still add about
200 g to achieve the maximum limit. Therefore, we used the lithium iron phosphate (LFP)
battery. Its capacity is 9000 mah and its weight is 577.8 g. The weight increases by 171 g,
but the flight time is 23 min. This can increase by 7 min, with an improvement of about
10%. Under the condition that the UAVs are the same size, the battery is the key factor
to increase the UAV’s flight time. The battery develops each day. In the future, we will
obtain a battery with a lower weight and higher capacity. This will support a long flight
and improve the efficiency of UAV applications.

2.2. Integration of the Camera and a Laser Ranging Module

As shown in Figure 4a–c, small laser ranging modules (with a self-designed outer
casing manufactured through three-dimensional (3D) printing) are installed at the upper
left, lower left, upper right, and lower right corners of the camera to determine the relative
position and attitude of the camera when capturing bridge photographs. Raspberry Pi 4 is
used to collect and control camera and laser ranging modules. For integration, we used
some mechanical constructions, as displayed in Figure 5.
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2.2.1. Synchronization Mechanism for the Operation Time of the Camera and Laser
Ranging Modules

When using UAV photos to measure crack information, it is crucial to ensure that the
photo-shooting and ranging processes are temporally synchronized. To synchronize the
operation times of the camera and laser ranging modules, Raspberry Pi 4 was used as the
control system, and buses such as GPIO, UART, I2C, and SPI were used as the Raspberry Pi
4 pinouts. The system employed in this study mainly used a GPIO as its pinout to receive
the data transmitted by the laser ranging modules through a UART. The laser ranging
modules transmit data to a USB module through the UART, which transmits the data to
Raspberry Pi 4 by connecting four transfer modules to the USB hub.

When the USB hub is connected to Raspberry Pi 4, under the Raspberry Pi 4 Linux
operating system, the Synchronous operation mode, which is programmed in Python and
used to control the camera and laser ranging modules, will create four systematic abstract
files (i.e., ttyUSB0, ttyUSB1, ttyUSB2, and ttyUSB3) stored in the dev folder of the root
directory. The four files each represent the four connected rangefinders, and the baud
rate of UART, which is used to communicate with the rangefinders and Raspberry Pi 4,
is 19,200 bits per second. Raspberry Pi 4 controls the camera by using the camera release
cable as the command transmission cable to take pictures. The downstream end of the
camera release cable uses the micro-USB, which includes a shutter (red wire), a focus (white
wire), and two ground (yellow wires). First, the yellow wire was connected to the ground
of the Raspberry Pi 4. Next, the white and red wires were connected to the GPIO pin of the
Raspberry Pi 4. Then, a low potential was output through the GPIO of the Raspberry Pi 4
to control the camera and take pictures.

The operation process of the system is as follows: Raspberry Pi 4 automatically
executes the system program when it is turned on. Subsequently, the rangefinders and
camera are turned on. The UAV remote control is used to connect to the electronic switches
through the radio to drive Raspberry Pi 4, then simultaneously captures photos and makes
ranging measurements. Once the UAV remote control transmits a command, Raspberry
Pi 4 will execute an action, so that the writing frequency can be adjusted according to
requirements during bridge inspection. When the image is received, the ranging value and
time are recorded in the text file (*.txt) to calculate the projection plane (Figure 6).
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2.2.2. Camera Calibrations

In this study, a general commercial digital camera was used, rather than a metric
camera. Therefore, the camera was not calibrated. Compared with metric cameras, digital
cameras exhibit more serious system errors, such as higher lens distortion and the image
plane not being perpendicular to the main shaft. Thus, the adopted camera had to be
calibrated to enable it to make accurate measurements. After the camera was calibrated,
correction parameters were used to calculate the system error at each “point” and added
to each set of original image coordinates to satisfy measurement-accuracy-related require-
ments. The camera was calibrated using MATLAB Calibrator Toolbox to correct the camera
lens distortion and problems related to the principal point shift, and the upper left of
an image was defined as the original image coordinates. The unit of measurement was
pixels. By contrast, if photogrammetry was used, the unit of measurement was given in
millimeters. This means that a resection would have to be conducted for image positioning
to convert the image coordinates, and the principal point would be set as the image origin.
Calibrator Toolbox is easy to operate and can calibrate the values of inner orientation
parameters. When using the Calibrator Toolbox, users must follow photography principles
such as using specific calibration boards, placing the camera and the surface shot at an
angle between 0◦ and 45◦ in relation to each other, placing the calibration board on a plane,
ensuring that calibration boards are uniformly distributed in the images, and keeping the
cameras in fixed focus. These steps allow for the values of the inner orientation parameters
(e.g., principle point and focal length) and lens distortion difference parameters (e.g., the
radiation distortion difference parameters k1 and k2, as well as the centrifugal distortion
difference parameters p1 and p2) to be obtained after calibrations [27]. The camera elements
of interior orientation and lens distortion calculation results are shown in Table 2.

Table 2. Camera elements of interior orientation and lens distortion calculation results.

Item Parameter Name Parameter Value

Elements of interior
orientation (mm)

Focal length f 9.346

Principal point xo 6.442
yo 4.506

Lens distortion

Radial distortion
coefficients

k1 0.0120
k2 −0.0229

Tangential distortion
coefficients

p1 0.0044
p2 −0.0021

2.2.3. Overall Structural Calibrations for the Camera and Laser Ranging Modules

The integrated structure was designed after considering the shapes of the camera and
laser ranging modules and ensuring that they could easily be installed on the UAV tripod
head. The structure was manufactured through 3D printing (Figure 7).

The spatial relationships between the laser beam vectors of the ranging modules and
the camera focus have crucial effects on the measurement methods for the developed
system. Therefore, a calibration procedure was designed to investigate the aforementioned
spatial relationships. The steps in this procedure were as follows:

(1) The positions of the ranging modules were adjusted so that the four laser beams were
nearly parallel to each other. Subsequently, the measurement accuracy was increased
by measuring the laser beam vectors after calibration.

(2) As the spatial relationships between the laser beam vectors and the camera focus
could not be directly measured, control points were marked on the wall of a research
room, and relative spatial coordinates were measured using a total station. The room
served as the system calibration site. Photos containing laser light spots and control
points were captured from different distances (Figure 8a), and photogrammetry was
used to calculate the spatial relationships between the laser beam vectors and the
laser light spots, as well as those between the laser beam vectors and the control
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points. The experimental distance was increased from 1 to 3 m in 0.5-m increments.
To demonstrate that the developed system can capture images with different attitudes,
images were captured in five postures (i.e., facing forward, tilted to the left, tilted to
the right, tilted up, and tilted down) in every test, and the ranging modules were used
to measure distances. A total of 25 image sets and ranging data were collected, and
the spatial coordinates of the laser light spots were simultaneously measured using
the total station (Figure 8b).

(3) As the camera was in different locations and at different attitudes when capturing
different images, laser light spots could not be used to calculate the laser beam vectors.
Thus, the control point coordinates of the photos and collinear spatial resections were
used to calculate the outer orientation parameters (XL, YL, ZL, ω, φ, κ) of the images.
The outer orientation was used as a basis to translate and rotate the coordinate system
of each photo to a coordinate system in the same space. The converted laser light
spots were subsequently used to calculate the laser beam vectors and laser launch
point coordinates. The collinearity equations are as follows:

xa = x0 − f
[

m11(XA − XL) + m12(YA − YL) + m13(ZA − ZL)

m31(XA − XL) + m32(YA − YL) + m33(ZA − ZL)

]
(1)

ya = y0 − f
[

m21(XA − XL) + m22(YA − YL) + m23(ZA − ZL)

m31(XA − XL) + m32(YA − YL) + m33(ZA − ZL)

]
(2)

where f is the focal length of the camera, x0 and y0 are coordinates of the prin-
ciple point of a photo, xa and ya are photo coordinates of the corrected control
point, XL and YL and ZL are object spatial coordinates the camera projection center,
XA and YA and ZA are object spatial coordinates of the control point, mij are rotation
matrices composed of the image spatial rotation angles.

Two collinearity equations were derived for each control point using (1) and (2), where
XA, YA, and ZA were known variables. Thus, six collinearity equations were derived
from three control points and used to solve six unknown variables (XL, YL, ZL, ω, φ, κ),
which were the focal points and attitudes of the camera when capturing photos. When the
number of control points exceeded three, the least squares method was used to solve the
six equations. As collinearity equations are not linear, they must be made linear using the
Taylor series and solved using the iteration method.

1 
 

 
Figure 7. Structural dimensions of the camera and laser ranging modules: (a) three-dimensional
image; (b) top view; (c) front view; (d) left view.
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After calibrating the camera and laser ranging modules, photo coordinate systems
were constructed with the focal points as origins. The laser ranging modules provided the
spatial plane equations of the captured target surfaces, which could be used to calculate
the spatial coordinates of object points (E) in subsequent measurements when combined
with the plane equations and projection vectors of image points (e) (Figure 9).
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Laser range finders could be used to calculate spatial projection plane equations, such
as Equation (3).

Ax + By + Cz + 1 = 0 (3)

The relationship between the focal point, image point, and object point can be de-
scribed as follows:

⇀
oe = (xe, ye,− f ) =

⇀
oE
n

=
(xE, yE, zE)

n
(4)

where o is the focal point, e is the image point, E is the object point,
⇀
oe is the vector from the

focal point to the image plane, (xe, ye,− f ) are the photo coordinates, f is the focal length,
⇀
oE

is the spatial vector from the focal point to the object point, (xE, yE, zE) are the object point

coordinates, and n is the ratio of
⇀
oe to

⇀
oE. By substituting (4) into (3), n can be calculated.

The object point’s spatial coordinates can be expressed as follows:

E = o +
⇀
oE = (0, 0, 0) + (xE, yE, zE) = n(xe, ye,− f ) (5)
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By substituting the object point’s spatial coordinates into the object plane’s spatial
equation, the following equation can be calculated:

A(n × xe) + B(n × ye) + C(n ×− f ) + 1 = 0 (6)

Moreover, n = −1
A×xe+B×ye+C×− f can be used to calculate the object point’s spatial

coordinates (xE, yE, zE).

2.2.4. Indoor Measurement Accuracy Tests for the Camera and Laser Ranging Modules

Control points were marked on an indoor wall (Figure 10) to determine the measure-
ment accuracy of the camera and laser ranging modules after calibrations. The horizontal
from 1 to 7 and vertical from A to G mark the location of the control points. The location
description rule is A1, A2, A3, A4, A5, and the other five points in the horizontal direction
of A. The horizontal direction of B has seven points: B1, B2, B6, B3, B7, B4, B5, etc. There
are 41 control points in total. The coordinates of the 41 points are measured by total station
(measurement accuracy of ±1 mm; this also means that the credibility of the value in
Tables 3 and 4 is 1 mm) and used as the true value when analyzing the accuracy of the
image projection measurements of this system. The results of the related experimental test
and data analysis are as follows.
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Table 3. Range size and error analyses at measurement distances of 1, 2, and 3 m.

Photo-Shooting
Distance

Side Length
Lo-Cation True Value (m) Projection

Measurement Value (m) Error (m) Relative Error

1.0 m

F2~G2 0.500 0.499 0.001 0.2%
G2~G7 0.741 0.737 0.004 0.5%
G7~F7 0.500 0.499 0.001 0.2%
F7~F2 0.739 0.738 0.001 0.1%

2.0 m

F6~G6 0.500 0.503 0.003 0.6%
G6~G4 0.760 0.760 0.000 0.0%
G4~F4 0.500 0.502 0.002 0.4%
F4~F6 0.759 0.760 0.001 0.1%

3.0 m

F6~G6 0.500 0.499 0.001 0.2%
G6~G4 0.760 0.758 0.002 0.3%
G4~F4 0.500 0.499 0.001 0.2%
F4~F6 0.759 0.753 0.006 0.8%
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Table 4. Error analyses for different dimensions of the rectangular box.

Dimensions of the
Rectangular Box

Side Length
Location True Value (m) Projection

Measurement (m) Error (m) Relative Error

0.50 m × 0.75 m

F6~G6 0.500 0.499 0.001 0.2%
G6~G4 0.760 0.758 0.002 0.3%
G4~F4 0.500 0.499 0.001 0.2%
F4~F6 0.759 0.753 0.006 0.8%

1.0 m × 1.0 m

B2~D2 0.999 0.996 0.003 0.3%
D2~D4 1.003 1.000 0.003 0.3%
D4~B4 1.001 0.998 0.003 0.3%
B4~B2 0.997 0.990 0.007 0.7%

2.0 m × 2.0 m

A1~E1 2.001 1.996 0.005 0.2%
E1~E5 1.997 2.001 0.004 0.2%
E5~A5 2.004 1.996 0.007 0.4%
A5~A1 1.999 1.980 0.019 1.0%

By maintaining constant dimensions of the four sides of a rectangular box (i.e.,
0.50 m × 0.75 m, Figure 10a) and increasing the photo-shooting distance from 1 to 3 m in
1-m increments, this study found that the higher the photo-shooting distance, the higher the
measurement error (error is projection measurement value minus true value). At a distance
of 3 m, the maximum and relative errors were 6 mm and 0.8%, respectively (Table 3).

By maintaining a constant distance (i.e., 3 m) and increasing the dimensions of the
rectangular box (i.e., from 0.50 m × 0.75 m to 1.0 m × 1.0 m and 2.0 m × 2.0 m, Figure 10b),
this study found that the larger the rectangular box, the higher the measurement errors.
With dimensions of 1.0 m × 1.0 m, the maximum and relative errors were 7 mm and 0.7%,
respectively. Moreover, with dimensions of 2.0 m × 2.0 m, the maximum and relative errors
were 19 mm and 1.0%, respectively (Table 4).

Summarizing the experimental results using the developed detection camera, the
indoor accuracy tests conducted in this study revealed that when the dimensions of the
rectangular box were kept constant, the inspection camera exhibited higher measurement
errors as the measurement distance increased. At a measurement distance of 3 m, the error
and relative error were <6 mm and 0.8%, respectively. By contrast, when the measurement
distance was kept constant at 3 m, the inspection camera exhibited a higher measurement
error as the dimensions of the rectangular box increased. For example, when the dimensions
of the rectangular box were 1.0 m × 1.0 m, the error and relative error were <7 mm and 0.7%,
respectively. When the dimensions of the rectangular box increased to 2.0 m × 2.0 m, the
error and relative error were 19 mm and 9%, respectively. Thus, when using the developed
UAV to perform bridge inspections, users should ensure that the measurement distance
does not exceed 3 m and that the target range does not exceed 1.0 m × 1.0 m. During tests
in the lab environment, we used homemade control points and pasted them on the wall;
they were designed to be 20 mm by 20 mm and checkered with black and white, so that
we could explicitly recognize the central position of the control point. Additionally, we
aimed to improve the accuracy of measuring the center position of the control point. To
explore the measurement accuracy of the camera and laser ranging module, we separately
executed far and close distances and different measurement ranges in the image to find
their influence on the measuring error, so that we could understand the best working
distance. However, the fly in the ointment is the fact that we did not execute the visual test
using a UAV. Thus, we recommended that follow-up researchers create some homemade
crack images on the wall, so they can explore the pros and cons of the visual and UAV
means and provide further research.

2.3. Crack Identification and Measurement Methods

In order to effectively extract the surface cracks in concrete bridge components, the
Sauvola local thresholding method and two optimal parameter sets were used to produce
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binary images of cracks according to the recommendations of Kim et al. [21]. After the
binary images were produced, due to stains or potholes in the concrete surface, in addition
to the linear objects (cracks), there were also dot-like and plane-like objects in the image
(the stains or potholes are regarded as noise). A rectangular frame was drawn for each
object in the image according to the maximum range of the shape and the length–width
ratio of the rectangle and density of the object in the rectangle were calculated. The “trial-
and-error method” was used to determine the threshold of the two to remove the dot-like
and plane-like noise in the image (Figure 11). The main crack skeleton and crack outline
were calculated with the Zhang–Suen skeletonization algorithm and the erosion algorithm
in morphology. Then, we could confirm the crack location in the image (Figure 12).
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In this study, we used an 8-bit color image for testing and calculations, and we directly
read the value of the pixel (0–255) in the image, and all the image pixels (x, y) that contained
the data of matrices R(x, y), G(x, y), and B(x, y). Although the color images could easily
be identified by the human eye, they could not be identified by machines because the
various matrices increased the image processing time and image complexity. Therefore,
prior to image processing, RGB images were converted into grayscale [I(x, y)] images to
facilitate image processing. The weighted grayscaling formula of Dorafshan [10] was used
to produce grayscaling results similar to the sensitivity of the human eye.

I(x, y) = 0.2989R(x, y) + 0.5870G(x, y) + 0.1140B(x, y) (7)

Image thresholding entails dividing the grayscale intensity of image pixels according
to selected threshold values. All the pixels in an image are divided into foreground
pixels (necessary pixels) and background pixels (unnecessary pixels). The quality of this
thresholding process depends on the selected threshold values. Thresholding algorithms
can be classified as single-thresholding algorithms and global thresholding algorithms (or
fixed thresholding algorithms). The most representative global thresholding algorithm is
Otsu’s method. Local thresholding algorithms (or dynamic thresholding algorithms), such
as the Sauvola local thresholding algorithm, change when changes occur in local pixels. In
general, local thresholding algorithms outperform global thresholding algorithms when an
image has uneven illumination. In crack image processing, the Sauvola local thresholding
method outperforms Otsu’s method [28]. The equation for the Sauvola local thresholding
method is as follows [29]:
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T(x, y) = m(x, y)
[

1 + k
(

s(x, y)
R

− 1
)]

(8)

where T(x, y) is the threshold value obtained through calculation, m(x, y) is the mean
grayscale intensity of a pixel in the thresholding window whose dimensions are set by the
user, s(x, y) is the standard deviation in the grayscale intensity inside the window, R is the
dynamic range for normalizing s(x, y), k is the sensitivity when controlling the contribution
of the statistical parameters.

The threshold value T(x, y) is determined by users, using the window sizes and
sensitivities set. Thus, selecting appropriate window sizes and sensitivities can produce
accurate thresholding results. Kim et al. used a set of optimal detection parameters that
included the minimum crack length and crack width identification errors. The optimal
detection parameters for crack length were a window size of 180 by 180 pixels and a
sensitivity (k) of 0.18, whereas those for crack width were a window size of 70 by 70 pixels
and a sensitivity of 0.42. Accordingly, these two parameter sets were used in this study to
produce binary images of the crack length and width.

2.3.1. Extracting the Length of the Main Crack Skeleton

In this study, binary crack images were skeletonized, and unnecessary skeleton
branches were removed to extract the main cracks and calculate crack lengths. The skele-
tonization of cracks enables images to be refined, the central axes in images to be accentu-
ated, and image directions to be retained. In the present study, the Zhang–Suen algorithm
was adopted for skeletonization [30]. This algorithm is a sub-iteration algorithm comprising
two steps. Each iteration continues until all pixels are filtered out. When an odd number
of iterations is performed, pixels in the right, bottom, and upper left corners of images
are removed. When an even number of iterations is performed, pixels in the left, top, and
bottom right corners of images are removed. The pixel removal conditions are identical for
odd and even iteration numbers.

After skeletonizing the cracks, the skeletons comprise nodes and line segments, and
the structures of the skeletons resemble those of tree diagrams. However, because cracks
are small gaps, the skeletons form closed loops that tree diagrams do not contain. The
main crack axes are generally the paths connecting the two end points that are the far-
thest apart. Such paths have the same definition as the diameters in tree structures, in
which diameters are the paths between the two end points that are farthest from each
other [31]. The diameters in such structures are determined by first finding the shortest
paths between end points and then identifying the longest paths. In the present study,
the aforementioned method was adopted to extract the main crack axes and use them
to calculate crack lengths. Crack “skeletons” were disassembled into line segments from
connection points to connection points or from connection points to end points, and the
length of each line segment was recorded. Dijkstra’s shortest path algorithm [32] was then
used to calculate the shortest paths among all end points to select the main crack axes. This
algorithm searches for the shortest path between two points, beginning from the starting
point to the perimeter vertices and finally reaching the end points. The paths between
different points can be assigned different weights to indicate their different lengths. Finally,
the longest path among all the main crack skeleton paths was selected as the main crack
skeleton (Figure 13), and the length of this skeleton was calculated. A conversion was
conducted using aspect ratios to calculate the actual crack length.
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2.3.2. Extraction of Crack Widths

Edge detection algorithms can be used to extract crack outlines. These algorithms
extract crack outlines using the erosion method, which is explained in the following text.
First, the foreground pixels of an image are eroded using appropriate structural elements.
Next, the eroded pixels are subtracted from the pre-erosion foreground pixels to calculate
the crack outline. After extracting the crack outline, the user searches for the outline pixel
whose two sides are closest to a pixel of the main crack skeleton to measure the width of the
crack at this pixel. Subsequently, a conversion is performed according to the spatial resolution
of the image to calculate the actual crack width. This conversion is expressed as follows:

w = wp × SR (9)

where w is the real crack width in metric units (mm), wp is the calculated crack width in
pixels, and SR is the image’s spatial resolution.

3. Crack Inspection Efficiency and Accuracy of the Developed UAV System
3.1. Outdoor Bridge Inspection Tests

Outdoor bridge inspections were performed at Wuling Bridge, which is a highway
bridge that runs across a river in Taoyuan, Taiwan. The developed UAV, which contains
a camera and laser ranging modules, has a double-lens design. The control lens of the
UAV is a fisheye lens that creates wide views to control the flight of the UAV. By contrast,
the ranging camera, which was developed in this study and can be controlled by a user,
is used to perform bridge structure inspections. To monitor the UAV flight situations in
real time, a wireless numerical transmission system is used to send flight information to a
ground monitoring station. The flight information is monitored at all times to ensure flight
safety. The self-assembled UAV is equipped with a photo-shooting and ranging system to
capture photos of bridge cracks and damages. The bridge inspection camera installed on
the tripod head can rotate vertically and horizontally, enabling the UAV to complete all
inspections of the sides and bottom of bridges in a single attempt, which results in a high
bridge inspection efficiency. The outdoor bridge inspection operations of the developed
UAV are illustrated in Figure 14a,b.
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Wuling Bridge; (b) operation at the bottom of the Wuling Bridge.

3.2. Outdoor Bridge Inspection Tests

(1) Case 1

According to the captured images of the Wuling Bridge (file name: DSC00123), it
contained two areas of severe damage on the side of the main beam (Figure 15). The
photo-shooting times for the top left, bottom left, bottom right, and top right rangefinder
data were 4.694, 4.659, 4.637, and 4.676 m, respectively. The captured images were used to
detect cracks, after which aspect ratios were used to convert the data into crack lengths and
widths. As cracks have lower grayscale values than their backgrounds and are distorted,
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shape and grayscale value were used to set crack identification rules and remove non-crack
regions. The crack identification results are shown in Figure 16.
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Ranging data were used to project the calculated images onto actual object planes
to enable the measurement of crack dimensions. Table 5 presents the measured data.
The connected concrete cracks had a length and width of approximately 0.738 m and
0.355 m, respectively, whereas the unconnected concrete cracks had a length and width of
approximately 0.412 m and 3.9 mm, respectively. To analyze the measurement accuracy,
comparisons were conducted between the left- and right-side lengths and between the
bottom- and top-side lengths of the connected concrete cracks. The corresponding errors
were 11 and −23 mm, respectively, and the corresponding relative errors were 1.5% and
6.1%, respectively. The errors increased considerably because the photo-shooting distance
was 4.6 m (Table 6).

Table 5. Analyses of the damage at the bottom of the main beam.

Rectangular Box Location Coordinates (x, y, z) (m) Side Location Length (m) Damage Situation

C01 (−0.141, −0.264, −4.700) Left 0.738
Connected concrete

crack
C02 (−0.108, −0.912, −4.348) Bottom 0.355
C03 (0.245, −0.880, −4.324) Right 0.727
C04 (0.236, −0.240, −4.669) Top 0.378

Location Coordinates (x, y, z) (m) Crack Length (m) Crack Width (mm) Damage Situation

Starting point (D01) (0.477, −0.996, −4.233)
0.421 3.9 Unconnected concrete

cracksEnd point (D02) (0.615, −0.904, −4.266)
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Table 6. Accuracy analysis for side length measurement at a photo-shooting distance of approximately
4.6 m.

Side Location Length (m) Error (m) Relative Error Damage Situation

Left 0.738
0.011 1.5%

Connected concrete crack
Right 0.727

Bottom 0.355
0.023 6.1%Top 0.378

(2) Case 2

According to the images captured of the Wuling Bridge, the bridge (file name: DSC00358)
contained two areas of severe damage at the bottom of the main beam (Figure 17). The
photo-shooting times for the top left, bottom left, bottom right, and top right rangefinder
data were 2.930, 2.969, 2.927, and 2.888 m, respectively.
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Figure 17. Damage at the bottom of the main beam at the test site: Refilled concrete.

Ranging data were used to project the images onto actual target planes to allow the
measurement of the dimensions of the cracks. Table 7 presents the measured data that were
calculated for Case 2. The part of the bridge with refilled concrete had a length and width
of 0.638 m × 0.910 m. To analyze measurement accuracy, comparisons were conducted
between the left- and right-side lengths and between the bottom- and top-side lengths of
the refilled concrete. The corresponding errors were 19 and 17 mm, respectively, and the
corresponding relative errors were 3.0% and 1.8%, respectively. The errors became smaller
because the photo-shooting distance was shortened to 2.9 m (Table 8).

Table 7. Damage analysis at the bottom of the main beam.

Location Coordinates (x, y, z) (m) Side Location Length (m) Damage Situation

E01 (−1.408, −1.217, −4.163) Left 0.638

Refilled concrete
E02 (−1.140, −1.744, −4.403) Bottom 0.910
E03 (−0.338, −1.528, −4.031) Right 0.619
E04 (−0.584, −1.013, −3.791) Top 0.927

Table 8. Accuracy analysis for side length measurement at a photo-shooting distance of approximately
2.9 m.

Side Length Location Length (m) Error (m) Relative Error Damage Situation

Left 0.638
0.019 3.0%

Refilled concrete
Right 0.619

Bottom 0.910
0.017 1.8%Top 0.927
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(3) Case 3

According to the images of the Wuling Bridge, the bridge (file name: DSC00451)
contained two areas of severe damage at the bottom of the main beam (Figure 18). The
photo-shooting times for the top left, bottom left, bottom right, and top right rangefinder
data were 2.506, 2.515, 2.515, and 2.508 m, respectively.
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(hive phenomenon); (b) refilled concrete.

Ranging data were used to project the images onto actual target planes to allow for
measurement of the crack dimensions. Table 9 presents the measured data that were
calculated for Case 2. The part of the bridge with an incomplete concrete grouting had a
length and width of approximately 0.23 and 0.383 m, respectively, whereas the part of the
bridge with refilled concrete had a length and width of 0.638 m × 0.319 m, respectively.
To analyze measurement accuracy, comparisons were conducted between the left- and
right-side lengths and between the bottom- and top-side lengths of the refilled concrete.
The corresponding errors were −5 and 0 mm, respectively, and the corresponding relative
errors were 0.8% and 0.0%, respectively. The errors were less than 5 mm because the
photo-shooting distance was 2.5 m (Table 10).

Table 9. Damage analysis at the bottom of the main beam.

Location Coordinates (x, y, z) (m) Side Location Length (m) Damage Situation

A01 (−0.601, 0.211, −2.487) Left 0.230
Incomplete concrete grouting

(hive phenomenon)
A02 (−0.627, −0.016, −2.514) Bottom 0.383
A03 (−0.245, −0.049, −2.523) Right 0.264
A04 (−0.232, 0.213, −2.492) Top 0.369

B01 (0.303, 0.271, −2.491) Left 0.638

Refilled concrete
B02 (0.204, −0.355, −2.566) Bottom 0.319
B03 (0.518, −0.408, −2.576) Right 0.643
B04 (0.618, 0.223, −2.501) Top 0.319

Table 10. Accuracy analysis for side length measurement at a photo-shooting distance of approxi-
mately 2.5 m.

Side Length Location Length (m) Error (m) Relative Error Damage Situation

Left 0.638
0.005 0.8%

Refilled concrete
Right 0.643

Bottom 0.319
0.000 0.0%Top 0.319
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Summarizing the experimental results, Case 1 of the outdoor bridge inspection tests
indicated that the developed UAV can automatically conduct crack identification and crack
size measurements. Although a photo-shooting distance of 4.6 m produced a relatively
large measurement error of 6.1%, the UAV could still identify cracks and calculate the crack
length (0.412 m) and width (3.9 mm; 1.3 mm/pixel). Case 2 of the outdoor inspection tests
revealed the refilled concrete at the bottom of the main beam. The UAV could directly
mark the range of this grouting and calculate its size. The errors became smaller because
the photo-shooting distance was shortened to 2.9 m. Case 3 of the outdoor inspection
tests revealed the existence of incomplete concrete grouting at the bottom of the main
beam. The UAV could directly mark the range of this grouting and calculate its size. At a
photo-shooting distance of 2.5 m, the relative error was <0.8%.

4. Conclusions

In this study, a UAV was developed for omnidirectional bridge inspection. This UAV
can be used to inspect all types of bridges. It can reach bridge sides and low bridge areas,
stay near bridge components, and capture complete and clear images of all bridge parts.
The camera of the developed UAV has a dual-lens design, where one lens is used for bridge
inspections and another lens is used for flight control. The flight control lens was fixed to the
body of the UAV to inform users about the dynamic conditions of the aircraft, thereby
ensuring bridge inspection safety. By contrast, the inspection lens is operated by inspection
personnel to inspect bridge cracks. As the camera is placed on a tripod head that can rotate
horizontally and vertically, the developed UAV can complete inspections for all side and
bottom surfaces of a bridge in a single attempt, which helps overcome the problems involved
in traditional bridge inspection techniques and increases the bridge inspection efficiency.

We designed and developed an inspection camera that integrates the camera and
the laser ranging module. Then, four sets of laser ranging modules were installed next
to the camera to measure the working distance from the camera to the object and the
projection plane equation of the object’s surface was calculated. Moreover, we accurately
calculated the position of the UAV inspection camera relative to the bridge and overcame
the limitations of vertical photography. Finally, great results were obtained in terms of
crack recognition and measurements during the indoor and outdoor verification tests.

The aforementioned results indicate that the developed UAV system, which includes
laser ranging modules, can effectively be used to conduct accurate bridge crack inspections.
The results verified the measurement accuracy and inspection efficiency of the UAV. In
the future, the effectiveness and accuracy of the UAV-based bridge inspection method
adopted in this study can be improved with advances in relevant equipment, such as UAVs,
cameras, ranging modules, and embedded systems.
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