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Background. Using a combination of data from routine surveillance, genomic sequencing, and phylogeographic analysis, we
tracked the spread and introduction events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants focusing on
a large university community.

Methods. Here, we sequenced and analyzed 677 high-quality SARS-CoV-2 genomes from positive RNA samples collected from
Purdue University students, faculty, and staff who tested positive for the virus between January 2021 and May 2021, comprising an
average of 32% of weekly cases across the time frame.

Results. Our analysis of circulating SARS-CoV-2 variants over time revealed periods when variants of concern (VOC) Alpha
(B.1.1.7) and Iota (B.1.526) reached rapid dominance and documented that VOC Gamma (P.1) was increasing in frequency as
campus surveillance was ending. Phylodynamic analysis of Gamma genomes from campus alongside a subsampling of .20 000
previously published P.1 genomes revealed 10 independent introductions of this variant into the Purdue community,
predominantly from elsewhere in the United States, with introductions from within the state of Indiana and from Illinois, and
possibly Washington and New York, suggesting a degree of domestic spread.

Conclusions. We conclude that a robust and sustained active and passive surveillance program coupled with genomic
sequencing during a pandemic offers important insights into the dynamics of pathogen arrival and spread in a campus
community and can help guide mitigation measures.
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Since the first severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) cases were identified in Wuhan, Hubei
Province, China, the pandemic has resulted in .404 million
confirmed cases worldwide and .5.7 million deaths, with the
United States surpassing 77 million cases and 912 000 deaths
as of February 10, 2022 (https://coronavirus.jhu.edu/map.
html) [1–3]. The coronavirus disease 2019 (COVID-19) pan-
demic continues to create public health challenges and stress
societies across the globe, which makes sustained research
into viral transmission and the efficacy of community interven-
tions particularly important.

One of the tools that has contributed to rapid progress in
studying SARS-CoV-2 is genomic sequencing. This technology
has led to the examination of SARS-CoV-2 global diversity and
the identification of genome variants that may affect viral trans-
mission, particularly regarding increased transmission efficacy
in humans [4–6]. The Centers for Disease Control and
Prevention (CDC) undertook the task of monitoring emerging
SARS-CoV-2 variants and, together with the SARS-CoV-2
Interagency Group (SIG), established a classification scheme
for new variants—(1) variant of interest (VOI), (2) variant of
concern (VOC), and (3) variant of high consequence
(VOHC)—based on factors such as transmissibility, neutraliza-
tion by antibodies, etc. [7]. As of September 23, 2021, the SIG
has created a new class of variants designated as variants being
monitored (VBM), which includes variants with substitutions
of concern and variants that were previously designated as
VOC or VOI that have decreased in prevalence in the United
States [8]. Even so, reclassified VBMs like Gamma variant war-
rant continued surveillance as their roles in transmission have
not yet been fully understood and thus may play important
roles in the future emergence of SARS-CoV-2 variants of great-
er concern.
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Early epidemiological studies identified that individuals with
increased risk of developing severe illness or dying from
COVID-19 include adults past the age of 65, individuals with
preexisting conditions like cancer, diabetes, and cardiovascular
disease, and pregnant people [9]. As public health efforts to
mitigate the effects of the SARS-CoV-2 pandemic were imple-
mented in the public at large, significant efforts were made to
protect the population of individuals at greatest risk for severe
disease and death in particular. However, only a few months
into the pandemic, during the summer of 2020, SARS-CoV-2
incidence was highest among individuals aged 20–29 years
[10], possibly reflecting the efficacy of earlier interventions to
protect high-risk populations. Concerningly, though the risk
of severe COVID-19 in young adults is relatively low compared
with vulnerable individuals, the increase in cases among the
20–29-year-old cohort coincided with the seasonal return of
students to college campuses. Of particular concern was the po-
tential for colleges and universities to be sites of increased viral
transmission that could contribute to superspreading events
and community transmission into previously protected high-
risk populations through networks of close contacts.

Large universities like Purdue University were inevitably go-
ing to experience SARS-CoV-2 cases and transmission during
the pandemic, as the campus has an enormous student popula-
tion of.46 000 undergraduate, graduate, and professional stu-
dents and.2400 instructional employees, as well as congregate
living (eg, student housing) and hundreds of clubs with social
activities [11]. After the university took immediate action in
suspending international travel in early March 2020 per the
CDC guidelines, remote learning was rapidly implemented to
mitigate viral spread among students and staff [12]. With addi-
tional safe health protocols in place, the Fall 2020 semester of-
fered students the option of transitioning to in-person classes
or continuing remotely until the following Spring, with 88%
of students choosing to return to campus. The large demand
for in-person instruction presented a challenge to institutional
efforts to halt viral spread on campus.

During the summer, the university devised a comprehensive
surveillance program coined the “Protect Purdue Plan,” with
the ultimate goal of monitoring the health of the campus com-
munity and limiting the spread of COVID-19 [13]. This plan
was comprised of multiple components including testing be-
fore arrival on campus, de-densification of academic and living
spaces, and an ongoing passive surveillance testing program for
on-campus students and employees via contact tracing and
testing of symptomatic individuals. The plan also included ac-
tive surveillance with weekly random testing by anterior nasal
swabs and RT-PCR of�10% of the on-campus student and em-
ployee population—a combination of mitigation strategies that
were readily applied in many institutions with some degree of
in-person instruction [14]. Importantly, however, little geno-
mic evidence has been collected to understand campus

transmission in general and the effects of mitigation efforts in
particular [14–17].
While rapid implementation of SARS-CoV-2 genome se-

quencing has proven useful in the investigation of COVID-19
dynamics in other institutional settings like health care, few
studies have been conducted on university campuses [15–23].
Some studies in the university setting have evaluated testing
programs to understand control of SARS-CoV-2 transmission,
while others used modeling approaches to infer SARS-CoV-2
transmission or estimate the introduction and growth rate of
particular variants [17, 24–26]. Limited studies of this scale
so far have investigated the dynamics of variants in a campus
population over the course of a semester of in-person instruc-
tion. Here, we attempt to fill that gap andmonitor SARS-CoV-2
variants and, in particular, the introductions of variant Gamma
(P.1), which emerged outside of the United States, in the uni-
versity population as Purdue has a large international commu-
nity. We also argue that there is need for enhanced genomic
surveillance to monitor virus lineage circulation at the local
scale, especially in campus communities, as the virus popula-
tion will continue to evolve over time [27].

METHODS

Patient Consent

The Institutional Review Board from the Purdue University
Human Research Protection Program determined that viral ge-
nome sequencing of remnant de-identified COVID-19 samples
included in this study is not research involving human subjects,
so no patient consent was required for this analysis
(IRB-2021-438). All biospecimens and data were de-identified
before sequencing and analysis.

Specimen Collection, RNA Extraction, Testing, and Sampling Strategies

In brief, individuals who were chosen for random campus sur-
veillance, who had COVID-19-like symptoms, or who had been
in contact with a positive case, presented themselves at various
campus locations, and testing occurred by way of anterior nasal
swabs. The anterior nasal swabs were collected in PrimeStore
MTM (molecular transport media; Longhorn Vaccines &
Diagnostics, Bethesda, MD, USA), which safely inactivates in-
fectious agents and stabilizes and preserves the released RNA
for further downstream molecular applications [28].
Nucleic acid was extracted with the MagMAX Viral/

Pathogen Nucleic Acid Isolation Kit (Applied Biosystems,
Thermo Fisher Scientific, Waltham, MA, USA) with a
KingFisher Flex Purification System (Thermo Fisher
Scientific). Individual status (symptomatic vs asymptomatic)
based on individual report and othermetadata, like travel histo-
ry or vaccination status (when applicable), was noted at the time
of sample collection. Collected samples were submitted to the
Animal Disease Diagnostic Lab (ADDL) at Purdue University
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for testing, which performed nucleic acid RT-PCR using the
Thermo Fisher TaqPath COVID-19 Combo Kit (Applied
Biosystems, Thermo Fisher Scientific) on a 7500 Fast
Real-Time PCR System (Applied Biosystems, Thermo Fisher
Scientific). The ADDL is Clinical Laboratory Improvement
Amendments certified to perform high-complexity testing.

Viral whole-genome sequencing was performed in the Carpi
Laboratory on a subset of TaqPath COVID-19 RT-PCR-
positive samples, based on the following 2 sampling strategies:
(1) weekly samples that showed RT-PCR results with SGTF (S-
Gene Target Failure), specifically TaqPath COVID-19
RT-PCR-positive samples with N or ORF1AB Ct ,30 and S
gene undetermined, and randomly selected positive samples
with Ct values of ≤30 and (2) retrospective sampling of ran-
domly chosen positive samples that were not indicative of
SGTF to achieve ≥20% of weekly cases. The overall goal was
to conduct viral whole-genome sequencing of ≥20% of weekly
TaqPath COVID-19 RT-PCR-positive samples from the active
and passive campus surveillance schemes. The selected time
frame was the first week of January 2021, through the first
week of May 2021, for a total of 18 weeks. While earlier sam-
pling could have potentially been done, testing was limited to
the Fall semester of 2020, andmost tests were saliva-based rath-
er than anterior nasal swabs. During the first 14 weeks of this
time frame, we included all identified SGTF samples in addition
to random samples, while for the remaining 4 weeks we only in-
cluded a subset of the identified SGTF samples. Retrospective
sequencing included random sampling for the weeks during
which we had not sequenced ≥20% of weekly cases.

Oxford Nanopore Library Preparation and Sequencing

The quality of a subset of the acquired RNA samples was as-
sessed by examining any presence of RNA degradation using
TapeStation High Sensitivity RNA ScreenTape (Agilent 4200,
Santa Clara, CA, USA). RNA extracts from positive samples
served as an input for an amplicon-based approach for
SARS-CoV-2 whole-genome sequencing on the Oxford
Nanopore Technologies platforms (ONT; Oxford, UK). In
brief, cDNA and amplicon libraries were generated using the
“PCR tiling of SARS-CoV-2 virus” protocol (version:
PTC_9096_v109_revL_06Feb2020; Oxford Nanopore
Technologies, ONT). This protocol employs ARTIC V3 prim-
ers (IDT) for generating 98 amplicons of 400 bp each [29].
Sequencing libraries were prepared using the ONT Ligation
Sequencing Kit (SQK-LSK109) and the Native Barcoding
Expansion 1–12 and 13–24 kits for multiplexing samples, fol-
lowing the remaining protocol outlined in “PCR tiling of
SARS-CoV-2 virus.” DNA yield following PCR amplification
was assessed, with samples of concentration.20 ng/μL, as de-
termined by the Qubit dsDNA HS Assay Kit (Invitrogen,
Carlsbad, CA, USA), included in sequencing runs.
No-template controls were introduced for each run at the

cDNA synthesis and amplicon synthesis steps and were taken
through the entire library preparation and sequencing protocol
to detect any cross-contamination. The first libraries were se-
quenced using theMinIONMk1B platform, after which all oth-
er libraries were loaded and sequenced on the GridIONX5 on
R9.4.1 flow cells (ONT) [38, 39].

Bioinformatics Processing

High-accuracy basecalling was performed with Guppy basecal-
ler, version 3.1.5, on MinIT for the sequencing data generated
onMinION and with Guppy, version 4.2.4, for sequencing runs
performed on GridION5X. The resulting FASTQ files were in-
put into the ARTIC Network bioinformatics pipeline, version
1.1.3 (https://github.com/artic-network/artic-ncov2019), to
generate consensus genomes using a customized pipeline on
the Purdue High Performance Computing cluster [30].
Repeatable and reproducible Anaconda-based software envi-
ronments for data processing were created with the
conda-env-mod tool (https://github.com/amaji/conda-env-
mod) [31]. Coverage plots and BAM files were visually screened
as a quality control measure on randomly selected samples, the
latter using Integrative Genomics Viewer (IGV), version 2.8.13
[32]. Customized scripts were used to calculate quality metrics,
such as percentage of the genome sequenced and coverage
depth, and a sequence quality check was performed (using
https://clades.nextstrain.org/) [33]. Viral genome consensus se-
quences were classified, and lineages were assigned using
PANGOLIN, version 3.1.17, on December 10, 2021 [34].
Viral genome sequences were considered adequate for further
analyses and data released to GISAID if they had .94% of
the genome with 50× coverage.

Selection of Other Data for Context Analyses

Data of positive cases for Tippecanoe County, Indiana, where
Purdue University is located, were acquired from https://
www.coronavirus.in.gov/indiana-covid-19-dashboard-and-map/
and summarized to place university cases in local context.
Furthermore, to compare patterns of lineages from sequenced
cases in the Purdue community, we searched on GISAID for
publicly available sequences in another university in the same
state of Indiana and a university in a contiguous state. Our
search was performed using the “Location” identifier on
GISAID for the respective state in the US and North
American continent and simultaneously the “Collection date”
to include the same 18-week period. We selected the sequences
from Notre Dame University (virus names hCoV-19/USA/
IN-UND-), which is in South Bend, Indiana, from the
University of Michigan (virus names hCoV-19/USA/
MI-UM-), and from the overall state of Indiana (virus names
hCoV-19/USA/IN-).
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Phylogeographic Analysis of P.1 and Selection of Context Samples

For this analysis, all samples from January to May 2021 that
were assigned through the bioinformatics pipeline as P.1 vari-
ant from the campus population were used, yielding a total of
18 samples. We then placed these genomes in the context of
all publicly available P.1 variant genomes from the GISAID at
the time this analysis was started (July 2021), or �21 000 ge-
nomes. All downloaded genomes were aligned to the Purdue
P.1 sequences using MAFFT, with genomic data combined
into a single multi-FASTA file using custom scripts [35, 36].
The collection of P.1 genomes from GISAID was then screened
to identify those closest to the 18 Purdue P.1 genomes. A total
of 916 P.1 genomes from GISAID were within 0 to 2 substitu-
tions of the most similar Purdue P.1 genome. After removing
GISAID P.1 genomes that were identical by both sequence
and location or belonging to strongly supported monophyletic
groups identified in preliminary analyses that did not include
Purdue sequences, the resulting data set of 748 P.1 GISAID ge-
nomes from 41 US states, Washington, DC, and 2 other coun-
tries (Brazil and Colombia) was used to contextualize the
Purdue genomes in subsequent phylogeographic analysis.

Bayesian analyses were conducted in BEAST, version 1.10.4,
using discrete phylogeography, HKY+G nucleotide substitu-
tion, constant population size, and strict molecular clock mod-
els [37, 38]. Initial analyses were performed without

biogeographic models to estimate substitution rate parameters,
which, along with the overall substitution rate (8.1× 10−3 sub/
site/year), were fixed in the final phylogeographic inference
[39]. Trees were visualized in FigTree, version 1.4.4 (https://
github.com/rambaut/figtree/releases). Initial analyses of phylo-
geography were performed using the Bayesian Tip association
Significance testing package (BaTS) [40]. The posterior distri-
bution of trees from the initial runs were subjected to parsimo-
ny score calculations in BaTS, with each genome coded as
either “Purdue” or “not-Purdue” to estimate the number of in-
dependent introductions to Purdue and as “Purdue,”
“non-Purdue,” or “state X” to estimate whether sequences
from state X are associated with P.1 sequences from Purdue.
These were complemented by subsequent Bayesian phyloge-
netic analyses performed in BEAST with a discrete phylogeo-
graphic model and Bayesian stochastic search variable
selection to determine migration rates between Purdue and
other geographic areas represented in our final sample of close-
ly related P.1 genomes.

Statistical Analysis

To understand the relationship between sample CT values and
success in sequencing based on our threshold, we compared CT
values for aggregated variants between failed and successful
samples. We also used the Wilcoxon rank-sum test to assess
the relationship between CT and infection status. We corrected
P values across the comparisons using the Benjamini-Hochberg
procedure to decrease the false discovery rate [41]. When look-
ing at the variation by US state in the number of genomes de-
posited in GISAID, we calculated Pearson correlation
coefficients.

Data and Code Availability

All of the genomic data generated from our lab used in this re-
search is available on GISAID (see Supplementary Table 3 for
accession numbers). We also gratefully acknowledge the au-
thors and submitting laboratories that generated and shared
SARS-CoV-2 viral genomes via the GISAID Initiative, on
which this research is based (Supplementary Table 4).
Custom scripts are openly available on GitHub (https://
github.com/drupiter/SARS-CoV-2_Purdue).

RESULTS

SARS-CoV-2 Molecular Testing and Sequencing

A total of 96 819 RT-PCR tests of in-person students and em-
ployees were performed by the ADDL facility between
January 2021 and the first week of May 2021, with a positivity
rate of 2.5% (2436 positive cases identified) (Table 1).
Collection week 1 was defined as January 3–9, 2021, and this
weekly enumeration continued until the last week of sample
collection and sequencing, which was week 18, with

Table 1. Weekly Breakdown of Samples Tested by RT-PCR and
Respective Results and Number of Positive Samples Successfully
Sequenced From January 3, 2021, to May 8, 2021, at Purdue University

Week
Starting
Date

Collection
Week No.

No. of
Individuals
Tested by
RT-PCR

No. of Samples
Positive by
RT-PCR/(%
Positive
Samples)

No. of Positive
Samples

Sequenced/(%
Positive
Samples

Sequenced)

1/3/21 1 4243 192 (4.53) 44 (22.92)

1/10/21 2 2969 145 (4.88) 33 (22.76)

1/17/21 3 1982 144 (7.27) 35 (24.31)

1/24/21 4 1809 197 (10.89) 42 (21.32)

1/31/21 5 6471 234 (3.62) 51 (21.79)

2/7/21 6 7796 198 (2.54) 44 (22.22)

2/14/21 7 6372 174 (2.73) 41 (23.56)

2/21/21 8 6857 154 (2.25) 29 (18.83)

2/28/21 9 7443 165 (2.22) 40 (24.24)

3/7/21 10 7463 106 (1.42) 27 (25.47)

3/14/21 11 6370 66 (1.04) 19 (28.79)

3/21/21 12 7488 146 (1.95) 39 (26.71)

3/28/21 13 7150 117 (1.64) 53 (45.30)

4/4/21 14 6546 122 (1.87) 46 (37.70)

4/11/21 15 6157 133 (2.16) 49 (36.84)

4/18/21 16 5830 69 (1.18) 44 (63.77)

4/25/21 17 2052 44 (2.14) 25 (56.82)

5/2/21 18 1821 30 (1.65) 16 (53.33)

Total 96 819 2436 (2.52) 677 (27.79)

Abbreviation: RT-PCR, reverse transcription polymerase chain reaction.
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corresponding dates of May 2–8, 2021. There was a median
(range) of 6371 (1809–7796) RT-PCR tests performed per
week. As a result, the number of positive cases fluctuated per
week, from a high of 234 during week 5 to a low of 30 positive
cases in week 18 (the last week of campus active testing), as the
semester ended and campus vaccination rates were picking up,
although routine surveillance continued through the summer
and fall for unvaccinated individuals (Table 1).

The positive SARS-CoV-2 cases by RT-PCR in the campus
community were placed in local context with Tippecanoe
County, and it was found that Purdue accounted for roughly
35% of all positive cases during the selected time frame, with
a range from a low of 15.5% in the first week to a high of
69.0% during week 9 (Figure 1A).

We performed whole-genome sequencing on 735 samples, of
which 677 (92.1%) generated high-quality whole-genome se-
quences (≥94% of the genome with 50×). Of the 677 samples,
431 samples were sequenced in real time on a weekly basis to
provide Protect Purdue with variant classification, and 246
were sequenced retrospectively to achieve the goal of ≥20%
weekly cases. The successfully sequenced samples were submit-
ted to GISAID and accounted for a total of 27.8% of all samples
characterized as positive by RT-PCR tested by ADDL during
the 18-week period (Table 1).

We aimed to contribute to the sequencing efforts of the state
of Indiana, especially in the early weeks of this study when few
laboratories were conducting weekly SARS-CoV-2 whole-
genome sequencing (Figure 1B). Specifically, in the first 3
weeks, we conducted about 32% of the sequencing in the state,
though there were notably fewer positive SARS-CoV-2 cases
during this time (Figure 1B). As the rate of sequencing picked
up in the state, we still contributed �10% of the sequencing
weekly, until the last 2 weeks when campus cases decreased
(Figure 1B). During this time frame, there were no other pub-
licly available sequences in the GISAID database from this area,
so we concluded that we performed the only sequencing of
samples from Tippecanoe County, where the university is lo-
cated. Accounting for all weeks included in this study, we se-
quenced an average (range) of 32% (19%–64%) positive cases
per week (Figure 1C).

Although we successfully sequenced .90% of the samples
we attempted, we performed a closer analysis to understand po-
tential reasons for failure. Here, we analyzed CT values of the
ORF1ab and N genes (S target values were not included here
due to SGTF, and thus some RT-PCR results from variants
like Alpha presented with values of 0) and identified 2 trends.
First, when comparing the failed and successful samples, we
found that the unsuccessful samples had higher median CT val-
ues (27.5) of the ORF1ab genes than the samples that generated
high-quality (17.6) genomes (P, .05), which translates to the
presence of a lower viral load (Supplementary Figure 1A).
Second, we analyzed the median N gene CT values and made

a similar observation that the overall median was higher
(P, .05) for samples that failed (27.8) to generate what we con-
sidered high-quality sequences on a threshold designated as
≥94% of the genome with 50× coverage when compared
with successful sequences (18.2) (Supplementary Figure 1B).

Asymptomatic vs Symptomatic Infection Status

To further understand campus transmission of SARS-CoV-2,
we compared asymptomatic vs symptomatic patient status as
it relates to the proportion of positive tests. Among the success-
fully sequenced samples, there were 41% (278) asymptomatic
cases and 57% (389) symptomatic cases, with 10 cases that
had unreported patient status. This pattern held true for
most weeks of the study, with only 3 weeks (2, 11, and 15) hav-
ing a greater percentage of asymptomatic cases than sympto-
matic cases (Supplementary Figure 2A). We also compared
the prevalence of asymptomatic and symptomatic cases among
lineages identified by the World Health Organization (WHO)
as variants of concern, variants of interest, or variants being
monitored (Supplementary Figure 2B). For all of the identified
lineages, there were more observed symptomatic cases than
asymptomatic cases, although the differences in each respective
variant were not significant (Supplementary Figure 2B). We as-
sumed an equal probability of an infected individual displaying
symptoms (or not) and examined a binomial distribution with
a success rate of 0.5 to analyze the distribution of cases that
were asymptomatic vs symptomatic. We noted that there was
an observed deviation (P, .05), indicating that there was
asymmetry in the distribution and more symptomatic cases.
This is likely due to more symptomatic cases being identified
through individuals presenting themselves at the testing facility
and further undercounting asymptomatic cases as these indi-
viduals are not routinely screened. It is of note that here we ag-
gregated all data from both sampling efforts of the active and
passive surveillance.

Temporal Trends of Lineages in the Campus Community and in Context

Among the 677 samples successfully sequenced from campus,
we observed a total of 36 lineages as identified by Pangolin, in-
cluding some singleton lineages [42]. Overall, the most com-
mon lineage identified on campus was B.1.2, which
accounted for 35.4% (240) of all sequenced infections, followed
by B.1.1.7 at 16.1% (109). There were 8 lineages (B.1.2, B.1.1.7,
B.1.526, B.1.623, B.1.429, B.1.1.519, P.1, and B.1.234), which ac-
counted for 90% (610) of the sequenced cases on campus. The
remaining 28 identified lineages each presented in the popula-
tion with a prevalence of ,10 cases during the study period.
To understand transmission patterns over time, we assessed

the prevalence of lineages each week (Supplementary Figure 3).
These results should be interpreted taking into account that
B.1.1.7 was prioritized for sequencing until week 14 (as men-
tioned in the “Methods”), and then random sampling was
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prioritized. The most common lineage over the study period,
B.1.2, accounted for .50% of sequenced cases in the first
8 weeks of this study, after which its prevalence drastically de-
creased (Supplementary Figure 3). Similarly, lineages B.1.1.7
and B.1.526 accounted for the majority of cases in the last
7 weeks of the study period (Supplementary Figure 3). Some lin-
eages like B.1.623 maintained low prevalence throughout the

population over the course of the 18 weeks and did not increase
to levels of high prevalence or ≥50% of weekly sequenced cases
(Supplementary Figure 3). Week 4 showed the presence of
12 distinct SARS-CoV-2 lineages, which was the greatest num-
ber observed in a single week (Supplementary Figure 3).
The role of less prevalent lineages in overall virus transmis-

sion and spread is not well understood, so we took a closer look
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Figure 1. Positive cases and whole-genome-sequenced samples in the laboratory in the context of county positive cases, campus positive cases, and cases sequenced in
the state of Indiana. A, Distribution of positive SARS-CoV-2 cases from the laboratory placed in the context of all positive cases in the same area as the university, Tippecanoe
County, during the 18-week time frame. B, Number of whole-genome-sequenced SARS-CoV-2 cases from the laboratory placed in the context of all sequenced cases in the
state of Indiana during the 18-week time frame. C, Proportion of campus RT-PCR-positive SARS-CoV-2 samples among students and employees on campus from the first week
of January through the first week of May 2021 that were successfully whole-genome sequenced. Abbreviations: RT-PCR, reverse transcription polymerase chain reaction;
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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at variants that have previously been characterized as VOC and
VOI, and some that have transitioned to VBM (Figure 2). The
early weeks of the study presented with limited cases of VOC or

VBM, but beginning with week 12, VOC and VBM variants ac-
counted for most of the sequenced cases. Specifically, variants
Alpha and Iota were the overwhelming majority of cases in

A B

C D

Figure 2. Distribution of SARS-CoV-2 WHO lineages classified as VOC and VBM (previously VOI or VOC) identified weekly from the first week of January through the first
week of May 2021 in 4 different locations. Each color and shade represent a distinct variant. The asterisk denotes week 14, when our sampling changed from a focus on SGTF
cases to all random sampling. Gamma variant is highlighted in the key as subsequent phylogeographic analyses focused on this variant. A, Number of cases of variants
classified as VOC and VBM (previously VOI or VOC) per week in sequenced samples from Purdue University. Each distinct color represents 1 variant, while the brown color
represents all “other” variants that do not fall in the category of VOC or VBM as of September 23, 2021, per the CDC. B, Number of cases of variants classified as VOC and
VBM in sequenced samples from the rest of the state of Indiana as available on GISAID from the same time period. C, Number of cases of variants classified as VOC and VBM
in sequenced samples from the University of Michigan as available on GISAID from the same time period. D, Number of cases of variants classified as VOC and VBM in
sequenced samples from the University of Notre Dame as available on GISAID from the same time period. Note that y-axis scales are different due to varying weekly testing
numbers, and samples identified as “None” by GISAID are likely due to lower quality in sequencing. Abbreviations: CDC, Centers for Disease Control and Prevention; RT-PCR,
reverse transcription polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SGTF, S-gene target failure; VBM, variants being monitored;
VOC, variants of concern; VOI, variants of interest; WHO, World Health Organization.
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these weeks (we focused on B.1.1.7 sequencing until week 14).
While Figure 2A may be interpreted as showing a decrease in
Alpha variant in the last weeks of sequencing, our results are
consistent with those of the rest of the state of Indiana, as
SGTF cases (and hence, Alpha) continued to increase during
this time, but we did not continue sequencing with a focus
on B.1.1.7 cases. Lastly, Gamma variant started to make an ap-
pearance in the last weeks of surveillance.

A comparison of lineage prevalence was conducted to place
Purdue patterns in context with the broader state of Indiana,
with another university in the state of Indiana (Notre Dame),

and with another university in a contiguous Midwestern state
(University of Michigan) from publicly available sequences
onGISAID (Figure 2B andD). The overall pattern of sequenced
cases was similar with that of the University of Michigan, espe-
cially during weeks 12–18, as cases reached a low peak during
the middle weeks of the testing period (Figure 2D).

Phylogenetic Analysis of Gamma Variant of Purdue Sequences and in
Migration Context

Bayesian phylogenetic analysis using BEAST, version 1.10, was
performed to place the Purdue P.1 genomes in context with

Figure 3. Multiple introductions, domestic spread of P.1 SARS-CoV-2 in the campus community. Time-informed Maximum Clade Credibility tree of Gamma variant (P.1)
from Purdue genomes and circulating P.1 genomes from the United States and parts of South America. Included samples outside Purdue campus were downloaded from
GISAID. The 5 colors shown (red, purple, blue, green, and yellow-green) are indicative of samples from Purdue, Indiana, Illinois, Washington, and New York, respectively, with
gray denoting samples from all other locations included in analysis. The 5 colors represent the locations that had strongly supported migration rates connecting Purdue from
the full model-based symmetrical discrete phylogeographic analysis. Abbreviation: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2. A color version of this
figure appears in the online version of this article.
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circulating P.1 genomes from the wider community, specifi-
cally the United States and parts of South America (Figure 3).
Initial analysis was used to estimate substitution model param-
eters for Bayesian phylogeographic analysis. Parsimony score–
based analysis, performed on the posterior distribution of trees
from the initial BEAST analyses in BaTS, was used to estimate
the number of introductions to Purdue. The parsimony score
(PS) is the number of character changes in a tree, and thus it
is useful for identifying the number of transitions between geo-
graphic states. Coding the sequences as either non-Purdue or
Purdue, the PS calculated was 10.0 (95% highest probability
density= 10–10), suggesting 10 introductions of P.1 to the
Purdue community.

We also performed pairwise estimates of PS scores to assess
the association of Purdue sequences with sequences from other
states as potential sources. The difference between parsimony
scores estimated when Purdue and state X sequences are con-
sidered independently (ie, coded separately as “Purdue” and
“state X” categories) and when they are considered jointly (ie,
merged into 1 hybrid “Purdue-state X” category) is an indicator
of their association and evidence that state X may be a source
for Purdue P.1 sequences. These values were calculated for
each discrete geographic state assigned to the final sequence
alignment (Table 2). The only states with large deviations
from 0 of PS values calculated independently and jointly were
Illinois (4.48) and Indiana (2.78), though Washington (0.83)
and New York (0.80) also had elevated PS differences; the PS
differences of all other states were in the range of 0.0–0.25
(Table 3; Supplementary Table 1).

To complement the parsimony analysis of migration, we
conducted full model-based symmetrical discrete phylogeo-
graphic analysis in BEAST, version 1.10.4. We coded all
sequences as “Purdue,” “US,” “non-US,” or “state X” to calcu-
late migration rates between Purdue and specific geographic
states in a pairwise fashion without the computationally costly
overhead of estimating a full 41× 41 migration matrix. Using
Bayesian stochastic search variable selection and Bayes factors
(BFs), we were able to identify migration rates between Purdue
and particular states that had the strongest support (Table 4)
[38]. The only strongly supported migration rates connecting

Purdue to individual geographic states were Purdue–Illinois
(BF= 1165.01) and Purdue–Indiana (BF= 1165.01) [43]. All
other migration rates between Purdue and individual states
were associated with BF scores ,1.00, including Purdue–
New York and Purdue–Washington, indicating no support
for migration between Purdue and these regions in our data set.

DISCUSSION

Genomic sequencing has been vital for SARS-CoV-2 surveil-
lance and monitoring of virus spread and evolution [44]. Our

Table 2. BaTS Parsimony Score

Two State

Three StateIndiana (State) Purdue Indiana/Purdue

Replicate 1 22.51 (21–24) 10.00 (10–10) 27.41 (26–29) 30.19 (28–32)

Replicate 2 22.49 (21–24) 10.00 (10–10) 27.38 (26–29) 30.17 (28–32)

Replicate 3 22.51 (21–24) 10.00 (10–10) 27.40 (26–29) 30.19 (28–32)

Replicate 4 22.50 (21–24) 10.00 (10–10) 27.39 (26–29) 30.18 (28–32)

Replicate 5 22.51 (21–24) 10.00 (10–10) 27.40 (26–29) 30.18 (28–32)

Abbreviation: BaTS, Bayesian Tip association Significance testing package.

Table 3. BEAST Discrete Phylogeography 4 Rate Analysis

State No.

Purdue State Indicator

PS3–PS2Posterior Bayes Factor

Alabama 1 0.289 0.47 0.00

Alaska 4 0.272 0.44 0.00

Arizona 3 0.263 0.42 0.00

Arkansas 1 0.287 0.47 0.00

California 82 0.188 0.27 0.00

Colorado 3 0.270 0.43 0.00

Connecticut 3 0.270 0.43 0.00

Delaware 1 0.304 0.51 0.00

Florida 78 0.156 0.22 0.03

Georgia 11 0.255 0.40 0.02

Hawaii 3 0.283 0.46 0.00

Idaho 4 0.288 0.47 0.00

Illinois 212 0.999 1165.01 4.48

Indiana 36 0.999 1165.01 2.78

Iowa 2 0.285 0.46 0.00

Kansas 5 0.269 0.43 0.00

Kentucky 1 0.288 0.47 0.00

Maryland 3 0.279 0.45 0.02

Massachusetts 29 0.230 0.35 0.00

Michigan 14 0.214 0.32 0.00

Minnesota 23 0.226 0.34 0.02

Nebraska 4 0.276 0.44 0.07

Nevada 2 0.284 0.46 0.00

New Hampshire 1 0.282 0.46 0.00

New Jersey 7 0.254 0.40 0.05

New Mexico 1 0.291 0.48 0.00

New York 27 0.270 0.43 0.80

North Carolina 4 0.261 0.41 0.00

Ohio 23 0.249 0.39 0.00

Oregon 2 0.270 0.43 0.00

Pennsylvania 11 0.237 0.36 0.00

Rhode Island 4 0.255 0.40 0.00

South Carolina 10 0.262 0.41 0.00

Tennessee 7 0.261 0.41 0.00

Texas 27 0.214 0.32 0.17

Vermont 1 0.284 0.47 0.00

Virginia 1 0.286 0.47 0.00

Washington 68 0.325 0.56 0.83

Wisconsin 25 0.209 0.31 0.18

Washington, DC 2 0.277 0.45 0.00

Bolded rows represent the only two individual geographic states which had strongly
supported migration rates connecting Purdue to them.
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university-based SARS-CoV-2 genomic study helps inform a
better understanding of community transmission at a public
university with a huge population amid a pandemic. This
work provides an important baseline of a SARS-CoV-2 com-
munity surveillance study following the first US COVID-19
outbreak and before mass vaccination was implemented.
Overall, we were able to successfully achieve viral genomic se-
quencing of an average of 32% of weekly cases confirmed
SARS-CoV-2 positive by RT-PCR throughout the study period.
This percentage is consistent with other studies conducted in a
university setting, and higher than other studies done in simi-
larly localized population- or state-level sequencing efforts in
states like New York, which aims to sequence 15% of weekly
samples to pick up trends over time, although it is important
to keep in mind the large difference in population and thus
overall positive case counts in the latter setting [16, 19, 20, 45].
A total of 677 whole genomes were successfully sequenced
from the Purdue campus over the course of the 18-week study
period, taking into account differences in actual case number
positivity and testing per week in the community.

Our study undoubtedly provided situational awareness of vi-
rus lineages that circulated on campus during the study period.
In addition, we believe it provided more guidance with respect
to some transmission mitigation measures that were imple-
mented; for instance, generally within 72 hours of receiving
the samples, we shared the findings of variant detection with
the CDC and concurrently with local authorities and the
Protect Purdue task force, which then conducted contact trac-
ing. As many students live in congregate housing and universi-
ty residences, this is essential to limit transmission. Moreover,
due to its increased transmissibility, the Alpha variant prompt-
ed the actionable measure of extending the isolation time for
individuals located on campus with the aim of further prevent-
ing transmission.

We then compared our observedWHO-denoted lineage pat-
terns with those of other communities during the same
18 weeks based on publicly available sequences on GISAID:
first, to the state of Indiana; second, to the University of
Notre Dame in South Bend, Indiana; and third, to the
University of Michigan in Ann Arbor, Michigan. We selected

these 3 scenarios to place the Purdue lineage patterns in a
broader picture and to draw comparisons with 2 other univer-
sities that have performed some campus sequencing. This study
sequenced 677 samples from the university from the first week
of January through the first week ofMay 2021, the University of
Notre Dame provided 448 samples, the University of Michigan
had 2381 sequences, and the rest of the state of Indiana had
6467. The number of sequenced cases for Purdue University,
the University of Notre Dame, and the University of
Michigan decreased greatly in the last 2 weeks as the semester
was ending in all 3 locations, while the state of Indiana contin-
ued to increase the number of sequenced weekly cases. While
we cannot directly compare due to a lack of details regarding
specific sampling strategies used in the sequencing of the sam-
ples found in GISAID, we can observe patterns based on the
publicly available data. For instance, the overall picture of lin-
eage patterns is similar among all 4 settings in that during the
early weeks of the study period, the most dominant variants
were non-VOC or VBM as characterized by the CDC. The
University of Notre Dame saw the earliest shift from this pat-
tern, with the sequenced samples showing a high percentage
of VBM (namely Epsilon) in week 6. In contrast, both the state
of Indiana and the University of Michigan started showing the
majority presence of VBM Alpha in week 10, while Purdue
University followed suit in week 12. While the overall picture
of Purdue University’s lineage distribution was like that of
the university of Michigan, much of the latter’s distribution
was dominated by Alpha variant and other non-VBM or
-VOC variants, while Purdue had a great proportion of multi-
ple VBM variants such as Iota, especially in weeks 12–18.
Purdue University saw the earliest case of Alpha variant due
to increased surveillance and a focus on sequencing SGTF sam-
ples, followed by the University ofMichigan, which saw the first
sequenced Alpha case during the third week of the study peri-
od. It is possible, however, that these observed patterns are
driven by individual study group sampling schemes (eg, if 1 co-
hort focused only on sequencing specific samples rather than
random selection).
Additionally, based on the sequenced samples, Purdue

University saw a greater prevalence of VOC when compared
with the rest of the state of Indiana.While we cannot say with cer-
titude why this was observed, we can provide a few suppositions:
(1) as VOCs were muchmore transmissible, it is possible that the
congregate anddorm-style living on campus contributed to trans-
mission on campus once the variants were introduced; (2) the se-
quencing facilities had different sample selection strategies, which
led to detection of other variants; and (3) the campus population
experienced more travel in the community than the individuals
who tested positive from the state.
Variant Gamma, first documented in Brazil in November

2020, was recognized as a VOC by the US CDC and WHO
and has been associated with increased transmissibility and

Table 4. BaTS Maximum Clade Size

Two State

Three StateIndiana (State) Purdue Indiana/Purdue

Replicate 1 6.09 (6–7) 3.25 (3–5) 11.00 (11–11) Not independent

Replicate 2 6.09 (6–7) 3.24 (3–5) 11.00 (11–11) Not independent

Replicate 3 6.09 (6–7) 3.25 (3–5) 11.00 (11–11) Not independent

Replicate 4 6.08 (6–7) 3.25 (3–5) 11.00 (11–11) Not independent

Replicate 5 6.09 (6–7) 3.24 (3–5) 11.00 (11–11) Not independent

Abbreviation: BaTS, Bayesian Tip association Significance testing package.
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reinfection [46–48]. We chose to conduct an in-depth phylo-
geographic analysis of Gamma because we wanted to investi-
gate a VOC that emerged internationally as Purdue has a
large international population. We recognize that other vari-
ants like Iota reached higher prevalence in our study commu-
nity and further investigation of such variants could be
conducted, but we decided to focus on Gamma, which was ris-
ing in prevalence toward the end of the 18-week study. In this
study, it was observed that Gamma started to appear on campus
in greater prevalence toward the last weeks of the surveillance
period, and we sought to understand source and introduction
events. Parsimony score–based phylogenetic analysis indicated
that there were 10 independent introductions of Gamma vari-
ant into the Purdue community during this period. Further
analysis looking at other states as potential sources for
Purdue Gamma variant sequences showed that the sole sup-
ported sources of introductions to the Purdue community
were Illinois, Indiana, Washington, and New York. These re-
sults were also supported by a complimentary discrete phylo-
geographic analysis, with the highest levels of support in
migration rates for Illinois and Indiana, with lower levels of
support for New York and Washington. Moreover, these re-
sults are consistent with an epidemiological link, with 3 of these
cases having confirmed travel history in Illinois. However, due
to the limited travel history provided by the tested individuals,
we are unable to correlate all the multiple introductions as de-
termined by the phylogeographic analysis with epidemiological
and travel data. Domestic spread and multiple introductions of
Gamma variant are also consistent with results from another
study investigating transmission of P.1 in New England [49].
Overall, our finding reflects the fact that Purdue University
has a high rate of in-state and Midwestern students who likely
traveled home immediately before or during the sampling
period.

This study had some limitations, including the fact that we
used 2 sampling schemes, as our first goal was to ensure that
we were tracking active cases of SGTF for proper case and con-
tact isolation, and the second was to sequence more cases to
gain a better understanding of transmission. Moreover, it was
not possible to compare our results with other sequencing
data within the county or neighboring counties as no data
were available on GISAID. Due to inadequacies of
SARS-CoV-2 genomic surveillance in many places across the
United States, our estimates of introductions of Gamma variant
to the campus may be biased toward states that had higher se-
quencing efforts and enhanced genomic surveillance.

Indeed, there is substantial variation by US state in the num-
ber of genomes deposited in the GISAID database (total n=
714 368 through June 2021 with assigned US state origin)
(Supplementary Table 2). Through June 2021, the median
number of total genome sequences deposited for US states
was 6910.5, with a mean of 14 287 and a range of 732 (South

Dakota) to 102 988 (California). The collection of GISAID
P.1/Gamma genomes available as of July 2021 was also skewed
by US state, with a median of 60 P.1 sequences (range of 3
[South Dakota] to 2035 [Illinois]). However, the correlation be-
tween the total number of SARS-CoV-2 sequences with state of
origins data through June 2021 in GISAID and state population
sizes (US Census Bureau; https://data.census.gov) is substantial
(Pearson’s r= 0.91); this may indicate that variation in se-
quenced genomes per state is the direct product of proportional
differences in state population or that proportional differences
in state population size drove differences in sample collection
and sequencing. The correlation with state population also
holds for the total number of P.1 genomes in GISAID through
June 2021 (Pearson’s r= 0.58). Interestingly, the number of
samples from each state in our contextual P.1 genome data
set is also highly correlated with the number of samples from
each state in the data set of all P.1 genomes (Pearson’s r=
0.90); this is so despite the exclusion of all genomes not closely
related to the sampled genomes from Purdue, which constitut-
ed only �4% of all P.1 sequences in GISAID. This may reflect
the rapid spread of P.1 through the United States by the sum-
mer of 2021, during which the P.1 lineage accumulated diver-
sity at a pace (0.0008 sub/site/year or �2 sub/month) relative
to its geographic diffusion that precluded the establishment
of sublineages associated with particularly narrow geographic
distributions. Despite this, we were able to identify clear geo-
graphic patterns of relatedness between viral genomes indica-
tive of geographic sources for P.1 genomes sampled from the
Purdue community.

CONCLUSIONS

By implementing SARS-CoV-2 genomic sequencing nested
within passive and active surveillance over the course of 1 se-
mester at Purdue University, we were able to investigate
SARS-CoV-2 transmission dynamics in a university setting.
We identified variants of differing levels of concern in the
677 newly sequenced viral genomes and compared variant tem-
poral trends with other similar university settings and in a
broader context using publicly available data. Further phylody-
namic analysis of Gamma (P.1) genomes from campus revealed
multiple introductions into the Purdue community, predomi-
nantly from states within the United States. We show that ro-
bust surveillance programs coupled with viral genomic
sequencing and phylogenetic analysis can provide critical in-
sights into SARS-CoV-2 transmission dynamics and variant ar-
rival and spread in universities and can help inform mitigation
strategies for future waves, especially as SARS-CoV-2 continues
to circulate and evolve.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases

online (http://jpids.oxfordjournals.org). Supplementary materials consist
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of data provided by the author that are published to benefit the reader. The
postedmaterials are not copyedited. The contents of all supplementary data
are the sole responsibility of the authors. Questions or messages regarding
errors should be addressed to the author.
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