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Abstract

Predictive Processing accounts of autism claim that autistic individuals assign higher

precision to their prediction errors than non-autistic individuals, that is, autistic indi-

viduals update their predictions more readily when faced with unexpected sensory

input. Since setting the level of precision is a fundamental part of perception and learn-

ing, we propose that such differences should be detectable in various domains at a very

early age, before clinical symptomshave fully emerged.We therefore tested3-year-old

younger siblings of autistic children, with a high likelihood of later receiving an autism

diagnosis themselves, and low-likelihood childrenwith an older sibling without autism.

We used a novel implicit learning paradigm to examine the effect of sensory noise on

the predictions participants built. In order to learn a sequence, our participants had to

select which visual information to attend to and disregard low-level prediction errors

caused by the sensory noise, which the theory claims is more difficult for autistic indi-

viduals. Contrary to the proposed higher precision-weighting of prediction errors in

autism, the high-likelihood children did not show signs of updating their predictions

more readily when we added sensory noise compared to the low-likelihood children,

either in their reaction times or in the recurrence and determinism of their response

locations. These results raise challenges for Predictive Processing theories of autism,

specifically for the notion that prediction errors are inflexibly highly weighted by indi-

viduals with autism.

KEYWORDS

autism, implicit learning, multi-level modelling, Predictive Processing, recurrence quantification
analysis, variability

1 INTRODUCTION

Autism is a common neurodevelopmental condition characterized by

social communicative differences and restricted repetitive behaviors

(Diagnostic and Statistical Manual of Mental Disorders, 5th edition;

AmericanPsychiatricAssociation, 2013), andoften co-occurswith sen-
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sory processing difficulties (Baranek et al., 2006; Tomchek & Dunn,

2007). Despite many attempts to identify the cognitive mechanisms

underlying autism, these have not yet been established. Theoretical

accounts of autism are generally directed at either social or perceptual

domains, and have not been successful at explaining the condition as a

whole. Recently, Predictive Processing accounts of autism have been
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developed which claim to explain social communication differences,

restricted repetitive behaviors, and sensory symptoms.

These accounts posit that autistic individuals differ from non-

autistic individuals in their processing of all incoming sensory

information (Lawson et al., 2014; Pellicano & Burr, 2012; van de

Cruys et al., 2014), and that this cascades up the cognitive hierarchy,

explaining symptoms in all domains. These theories are based on

Predictive Processing models of cognition which claim that all sensory

information is actively created as opposed to being passively received.

They posit that the brain is constantly predicting its environment

and that all sensory input is processed as the difference between the

predicted value and the observed value (Clarke, 2013). This difference

is called a prediction error. As well as the error signal indicating

how the observation was different from the prediction, it carries a

precision weighting, which indicates how certain it is that this error

is useful information that should lead to a change in predictions. If

an error has a high precision weighting, the observation is taken as

counter-evidence for the previous prediction: it indicates a change in

the environment and the prediction will be updated. If, however, an

error has a low precision weighting, the environment is assumed to

be unchanged and the prediction is kept as it was. Errors can have low

precision weightings when the observation is consistent with random

fluctuations in sensory input due to chance, or when they are deemed

to represent small details that are not relevant (Kwisthout et al., 2017).

There is some initial evidence that prediction error precision-

weighting may be higher in autistic individuals (e.g., Crawley et al.,

2020; Manning et al., 2015; Van der Hallen et al., 2017; Zaidel et al.,

2015), although other studies find no group differences (e.g., Karaminis

et al., 2016; Manning et al., 2017; Manning et al., 2017; Van de Cruys

et al., 2018).

Although these theories are initially derived from hypotheses about

the brain, there are clear avenues for testing them behaviorally. Van de

Cruys and colleagues (2017) expand upon how higher prediction error

precision would cause autistic individuals to have more difficulty dis-

tinguishing signal from noise than non-autistic individuals. When sen-

sory input is noisy, a high precision on prediction errors would mean

updating predictions evenwhen the underlying signal has not changed.

Since perception is based only on observations with no access to the

true underlying structure (Aggelopoulos, 2015; Clark, 2013), it is left

to the observer to learn about their sensory input to set precision and

decide which elements are signal and which are noise (Van De Cruys

et al., 2014; 2017). This means that there is no fixed optimal level of

prediction error precision, rather, it must be flexibly adjusted to fit the

circumstances. Task demands and contextual information can, there-

fore, reveal thebehavioral effects of settinghighprecisionofprediction

errors.

Manning et al. (2015) used a coherent motion paradigm to do just

that. They showed that autistic children performed similarly to non-

autistic children when they were asked to complete a standard motion

coherence paradigm, that is, to indicate the overall direction of a field

of dots in which most of the dots–the signal dots–moved in the same

direction, while a small number of dots–the noise dots–moved in ran-

domdirections. However, when the childrenwere asked to indicate the

ResearchHighlights

∙ Predictive Processing accounts posit high precision-

weighting of prediction errors as a mechanistic explana-

tion of autism

∙ High precision-weighting of prediction errors would lead

to disproportionate disruption in performance on tasks

with increased sensory noise

∙ Three-year-olds with increased likelihood of receiving an

autism diagnosis did not differ from low-likelihood peers

on an implicit learning paradigmwith added noise

∙ Predictive Processing accounts of autism have found little

empirical support in thewider literature so far, and as such

these accounts are not currently suited to explain autism

mechanistically

average direction of the dots, a task in which every dot is a signal dot

and, therefore, high precision of prediction errors would be beneficial,

the autistic group outperformed the non-autistic children. This elegant

test of the theoretical predictions is some of the first evidence that

autistic children may indeed set their prediction error precision higher

than non-autistic children, and that this is observable in their behavior.

Since Predictive Processing accounts of autism posit fundamental

differences between autistic and non-autistic individuals that should

be present from a very early age, we propose that testing these the-

ories can best be done when participants are young. This minimizes

the chances that observed behaviors are a mixture of primary autism

symptoms and compensatory strategies, and increases the chances of

identifying cognitive mechanisms. Longitudinal prospective studies of

younger siblings of autistic children are a useful vehicle to study the

early development of autism. Autism cannot reliably be diagnosed until

around 3 years of age (Charman & Baird, 2002), but around 20% of

younger siblings of children with an autism diagnosis will later receive

a diagnosis themselves (Ozonoff et al., 2011), and a further 30% will

show sub-clinical autism characteristics (the Broader Autism Pheno-

type; Ozonoff et al., 2014). These siblings can, therefore, be followed

longitudinally from a young age to provide a rich dataset describing

their development and the emergence of autistic characteristics.

To assess the theoretical prediction about precision weighting of

prediction errors in autism in a young sample, we therefore tested two

groups of 3-year-olds: younger siblings of childrenwith an autism diag-

nosis (high-likelihood siblings) and younger siblings of childrenwithout

autism (low-likelihood siblings). Using an implicit learning paradigm,we

asked whether the high-likelihood siblings already show higher preci-

sion of their prediction errors than the low-likelihood siblings. There is

evidence that children with and without autism do not differ in their

implicit learning under standard task conditions (e.g., Brown et al.,

2010; Mayo & Eigsti, 2012, although see Gidley Larson & Mostofsky,

2008), suggesting that such a task is well-suited to isolate differences

in the groups’ responses to our novel manipulation.
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F IGURE 1 Task structure with example stimuli. In blocks 1 and 3, the frogmoved from leaf to leaf in a deterministic pattern. In block 2, there
was no pattern and the frog appeared 20 times in a pseudorandom series of locations

2 THE CURRENT STUDY

Our novel serial response time task was implemented on a touch-

screen and was specifically designed to test the influence of precision

of prediction errors. We adapted the traditional serial response time

task, in which stimuli are shown in a repeating sequence in order to

invoke implicit learning, by adding a condition in which the stimuli con-

tained sensorynoise. Theparticipantswerenot aware that therewould

be a pattern in the stimulus sequences, and were simply instructed

to touch a frog that appeared on one of four lilypads on the screen

(see Figure 1).

The task was self-paced, so as soon as a lilypadwas pressed the frog

appeared in a new location. The first block consisted of the frog mov-

ing between the locations on the screen in a fixed, repeating sequence.

The secondblock served as abaseline inwhich the frogmovedbetween

lilypads in a pseudorandom order such that the frog did not appear

in the same location consecutively. The third block consisted of a new

fixed, repeating sequence, with the addition of randomly-generated jit-

ter to the frog’s position on the lilypad. This meant that participants

could learnwhich lilypad the frogwould next appear on, but the precise

upcoming location of the frog on that lilypad was both unpredictable

and unpredictive of any upcoming events, and should therefore have

been ignored for optimal sequence learning. This addition of jitter in

the added-noise block produces a sequence which is exactly as easy

to learn as the sequence without jitter from the no-noise block if par-

ticipants can identify the jitter as noise and form their expectations

based only on which leaf the frog appears on. However, higher preci-

sion of prediction errors would trigger expectation updates about the

precise location of the frog on every trial, whichwould prevent forming

of expectations based on the underlying sequence.

If the high-likelihood children weight their prediction errors more

than the low-likelihood children, they should update their predictions

about the frog’s location more often. This would mean that in the jit-

tered sequence in block 3, the high-likelihood children would be more

influenced by the frog’s exact location than the low-likelihood chil-

dren, which would make it more difficult to generalize over repetitions

to extract the sequence. This would lead to the high-likelihood chil-

dren responding inmore varied locations on each trial and learning the

sequence more slowly than low-likelihood children only in the jittered

condition, seen in less recurrence in response locations and a slower

rate of response time reduction.

3 METHODS

3.1 Participants

In total, fifty-three 3-year-olds took part in the study: 28 high-

likelihood and 25 low-likelihood. The two groups did not differ in age

(t(44.06) = −1.17, p = 0.25), but the high-likelihood group did have a

lower developmental level as assessed by the Mullen Scales of Early

Learning (t(48.20), = −3.06, p = 0.004) and more autism symptoms as

assessed by the Autism Diagnostic Observation Scale (ADOS-2; Lord,

Luyster, et al., 2012; Lord, Rutter et al., 2012) (t(38.88)= 2.42, p= 0.02;
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TABLE 1 Participant characteristics

Age in

years

Mullen

composite ADOSCSa

N (M:F) Mean (SD) Mean (SD) Mean (SD)

High-likelihood 28 (16:12) 3.18 (0.15) 98 (20) 3.5 (2.7)

Low-likelihood 25 (15:10) 3.24 (0.19) 112 (14) 2.2 (1.1)

Total 53 (31:22) 3.21 (0.17) 104 (18) 3.0 (2.3)

aADOS Comparison Scores allow for comparison of scores from different

ADOS modules. See Gotham and colleagues (2009) for raw score conver-

sion tables.

see Table 1 for descriptive statistics). One low-likelihood participant

did not contribute a Mullen composite score due to missing scores for

one subscale, and seven low-likelihood participants did not contribute

ADOS scores due to limited resources during testing.

We report ADOS comparison scores in order to facilitate interpre-

tation of scores fromdifferentADOSmodules (Gotham, Pickles& Lord,

2009). Comparison scores range from 1 to 10, and scores of 1–3 are

considered to indicate no suggestions that the child is autistic. Scores

of 4 and 5 indicate that the child shows signs which maymean they are

on the autism spectrum, while scores of 6–10 indicate that it is likely

the child is autistic. Three of the low-likelihood childrenwhohadADOS

scores available and three of the high-likelihood children scored in the

middle category, indicating some signs theymay be on the autism spec-

trum. Additionally, seven high-likelihood children scored in the highest

category indicating that theymaywell be autistic.

This study was approved by the medical ethics committee (Com-

missie Mensgebonden Onderzoek Arnhem-Nijmegen, protocol

NL42726.091.13). Recruitment was done via the Baby and Child

Research Center participant database and through Karakter, a child,

and youth psychiatry clinic. Participants received a reimbursement

of their travel costs and a small amount of money as a thank you for

taking part.

3.2 Materials

3.2.1 Stimuli

Stimuli consisted of an image of a frog taken from Wikimedia images

(https://en.wikipedia.org/wiki/File:Brown_Tree_Frog_2.jpg; CC BY-SA

3.0 license) and four circular leaves created by the authors in Adobe

Photoshop, all presented on a black screen (see Figure 1). The frog

measured 4.5 cm by 3 cm (201.6 × 136 pixels) and the leaves mea-

sured 8 cm (442.2 pixels) in diameter. The leaves were arranged in a

squarewith6.75 cmbetween themhorizontally and vertically (600pix-

els between the centers of the circles). To introduce the game, and in

between blocks, photographs of frogs in natural environments were

shown. These images were 13.5 by 9 cm.

Sequences were generated at the beginning of the session such that

each participant had different sequences for the first and third blocks,

and that the sequences containedno immediate repetitions anddid not

begin and end on the same leaf, since this would appear as an immedi-

ate repetition when the sequence repeated. In the second block which

served as a baseline, the frog was presented in pseudorandom loca-

tions, with the constraint that there were no immediate repetitions of

the same location.

The noise introduced in the third block was implemented by adding

jitter to the position of the frog randomly on each trial. The center of

the frog was placed at a coordinate drawn randomly from a uniform

distribution up to 60 pixels in the x direction and up to 60 pixels in the y

direction from the center of the lilypadonwhich the frog should appear

according to the sequence. This resulted in the frog stimulus appearing

anywhere on the given lilypad but always completely within the lilypad

area. This ensured that the global image formed by the background and

lilypad configuration was the same for every trial, and visual informa-

tion only changedwithin the lilypads.

3.2.2 Apparatus

Stimuli were presented with Matlab (version 2013a; MathWorks)

together with Psychtoolbox (versions 3.0.11; Brainard, 1997; Kleiner

et al., 2007) running on a MacBook Pro (OS X version 10.8.5). Stim-

uli were shown, and participants’ touch responses recorded, on an

ELO 2244L 22″ LCD touchscreen. The location of participants’ touch

responses aswell as their latency after trial onsetwere recordedby the

Matlab scripts. The session was filmedwith a Noldus IT camera system

from two angles simultaneously, to monitor the child’s behavior and to

capture any parent or experimenter interference.

3.2.3 Procedure

The touchscreen was newly calibrated each session with the stan-

dard4-point ELOcalibrationprocedure in theUniversal PointerDevice

Driver (version 05.01.1482B; Touch-Base Ltd.). At the beginning of the

session, the experimenter instructed the parent that only the child

should touch the screen, and asked the parent if the child was famil-

iarwith playing games on a touchscreen device. All children had chance

to touch the screen and see that it reacted to their presses before the

game began.

The task began with an image of a frog in a natural scene on the

screen and the experimenter giving the child a short introduction. The

experimenter told the child, “Can you see the frog? It’s sitting on a leaf,

see? It’s about to jump from one leaf to another, do you want to see?

Tap the frog then.” Once the child touched the frog on the introduc-

tion screen, the array of leaves appeared and the experimenter told

the child, “These are the leaves, see? The frog is going to jump, are you

ready? Tap one of the leaves.” Once the child touched a leaf, the frog

appeared on the first leaf of the sequence. The frog stayed on-screen

until the child pressed within the bounding box of one of the leaves. In

the frame immediately after this touch response, the frog appeared on

the next leaf in the sequence, with no inter-trial interval. The experi-

menter spoke to the child throughout as necessary, repeating phrases

https://en.wikipedia.org/wiki/File:Brown_Tree_Frog_2.jpg;
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such as “Where is the frog now?” and “Catch the frog!”. Since some chil-

dren were distracted by this while others were encouraged, the pro-

tocol was flexible and some children heard more experimenter speech

than others. Between blocks, a new image of a frog in a natural scene

was presented and the children were given the opportunity for a short

break if they wanted one. The child tapped the frog in this image to

move on to the next block.

The task lasted approximately 3 min and consisted of 100 tri-

als in total. Blocks 1 and 3 each consisted of 40 individual frog

appearances: eight repetitions of a 5-item sequence presented con-

tinuously with no breaks. Block 2 served as the baseline and

consisted of 20 individual frog appearances with no underlying

sequence.

3.3 Data analysis

3.3.1 Data inclusion

Of the 53 children tested, five did not produce a full dataset because

they did not complete the task (three high-likelihood and two low-

likelihood). Furthermore, during data collection the experimenter

codedwhether the child appeared to understand the task, for example,

bymonitoring whether the child was looking at the screenwhile press-

ing, and on this basis datasets from four children (one high-likelihood

and three low-likelihood) were excluded from further analysis, leaving

data from 44 children (23 high-likelihood and 21 low-likelihood) in the

final sample.

3.3.2 Data processing

Only responses provided while the frog was on-screen were analyzed.

Touch responses made anywhere within the bounding box of the leaf

where the frog appeared were marked as correct, and touches made

within the bounding box of any other leaf were marked as incor-

rect. Accuracy scores were calculated for each child, but only correct

responses were further analyzed in the model. Finally, response times

were log transformed in order to allow fitting of linear predictors.

3.3.3 Statistical analysis

Data were plotted in R (version 3.5.1; R Core Team, 2018) using RStu-

dio (version 1.1.456; Allaire, 2012) with ggplot2 (Wickham, 2016) and

ggpubr (Kassambara, 2020), and analyzed using multi-level modelling

with lme4 (Bates et al., 2015). Variance explained by the models (R2)

was calculated using the method explained by Snijders and Bosker

(2012), in themitml package (Grund et al., 2019). RecurrenceQuantifi-

cation Analysis was carried out with codemade available by Kingstone

and colleagues (retrieved from https://psych-barlab.sites.olt.ubc.ca/

files/2018/10/RqaMatlab.zip). Predictors in multi-level models were

considered as significant if the t-value exceeded±1.96.

3.3.4 Response latency

We used multi-level modelling to examine sequence learning as

indexed by response times over sequence repetitions and blocks. The

maximal model was pre-specified as follows:

maximalRTModel ≤ - lmer (RTlog ∼ Block * Repetition *

Group± Item± (1±Block | P:Group)

We expected that the high-likelihood children and low-likelihood

children would learn at the same rate in the sequence with no added

noise, but that if the high-likelihood children assigned higher precision

to their prediction errors, theywould showa slower learning ratewhen

noise was added. That is, we expected an interaction between Block,

Repetition, and Group if the learning rate of the children at high like-

lihood of autism was affected more by the noise manipulation than

the learning rate of the children at low likelihood. The maximal model

allowed for these interactions as well as all main effect terms, and

included random intercept of participant nestedwithin group, and ran-

dom slopes of block by participant nested within group. To investigate

whether thismaximalmodel explained the data better than amore par-

simonious solution, the maximal model was compared to two simpler

models as follows:

simpleRTModel1 ≤ - lmer (RTlog ∼ Block * Repetition * Group ± (1 |

P))

simpleRTModel2 ≤ - lmer (RTlog ∼ Block * Repetition *

Group± Item± (1 | P))

3.3.5 Response location

We used Recurrence Quantification Analysis in order to examine the

spread of touch response locations. Recurrence Quantification Analy-

sis is a dynamical systems analysis which allows comparisons of non-

linear process-level information about a changing system such as a

learner moving through cognitive states (Coco & Dale, 2014; Richard-

son et al., 2014).We applied this analysis to the current study to quan-

tify recurrence, or howoften the children revisited a previous state and

gave responses in the same location as previous responses, and deter-

minism, or how often these revisitations followed each other consecu-

tively.

We expected to see recurrence and determinism at similar levels

in the two groups in the first block, when they were presented with

a sequence with no noise, and both less recurrence and less deter-

minism in the high-likelihood group in the added-noise block if they

indeed showed higher precision of their prediction errors. We there-

fore expected to see an interaction between Block and Condition in

both recurrence and determinism.

For Recurrence Quantification Analysis calculations, we set the

radius for neighbor selection at 100, meaning that the Euclidean dis-

tance between every pair of responses was calculated, and those pairs

within 100 pixels of each other were counted as recurrent. We chose

100 pixels as the value for this parameter after exploring the data

https://psych-barlab.sites.olt.ubc.ca/files/2018/10/RqaMatlab.zip
https://psych-barlab.sites.olt.ubc.ca/files/2018/10/RqaMatlab.zip


6 of 11 WARD ET AL.

F IGURE 2 Median response times per child plotted as a function of repetition number. Each repetition of the sequence consisted of five frog
appearances, and themedian reaction time from each child over these five presentations is shown. Note that models were run on raw response
times and individual medians are used for visualization only, to enable comparison to previous results

without block andgroup information, because this valuemaximized the

information available for the models; lower values led to a floor effect

and higher values led to a ceiling effect. Themodels to compare the lev-

els of recurrence and determinism in each group and each block were

specified as follows:

recModel≤ - lmer (recurrence ∼Block * Group± (1 | P:Group))

detModel≤ - lmer (determinism ∼Block * Group± (1 | P:Group))

With an expected interaction between block and group on both

measures if the high-likelihood group indeed showed higher precision,

since this would be more noticeable during the noise-added block.

Again, to investigate whether the pre-specified models explained the

databetter thanaparsimonious solution, the recurrenceanddetermin-

ismmodels were also compared to null models as follows:

nullrec≤ - lmer (rec ∼ 1± (1 | P:Group))

nulldet≤ - lmer (det ∼ 1± (1 | P:Group))

4 RESULTS

4.1 Response latency

Visual inspection of the data showed that log-transformed reaction

times decreased with repetitions of the sequence, suggesting that par-

ticipants did learn, in the first block with no noise, but not in the third

block inwhich the frog’s positionwas jittered (see Figure 2)1. Addition-

ally, comparison of the response times during block 2, in which the frog

appeared in pseudorandom locations showed that the high-likelihood

1 Pilot data with adults (N = 9) showed that participants learnt the sequences in both condi-

tions, confirming the sequence is learnable with added jitter.

and low-likelihood children did not differ in their baseline response

times (β= 0.58, SE= 0.64, t= 0.91).

The pre-specified maximal model was fitted successfully, and two

more parsimonious models with simpler random effects structures

were run in order to perform model comparisons. The maximal model

and two simpler models were then compared using the Akaike Infor-

mation Criterion. The maximal model explained the data best, with an

AIC of 5648, compared to 5686 for the first simplemodel and 5673 for

the second simple model. We also ran an additional exploratory model

to investigate contributions of developmental level and the continuous

measure of autism symptoms. Thismodel showed that including ADOS

andMullen scores as predictors improvedoverallmodel fit, with anAIC

of 4983, but these predictors did not reach the significance threshold.

We therefore report the pre-specifiedmodel here.

There was a significant main effect of block (β = 0.07, SE = 0.03,

t= 2.28) and repetition (β=−0.02, SE= 0.005, t=−3.82), and nomain

effect of group (β = 0.009, SE = 0.06, t = 0.15) or item (β = −0.005,

SE = 0.008, t = −0.61). There was a significant interaction effect

between block and repetition (β = −0.01, SE = 0.005, t = −2.34) con-

firming that the participants overall learnt more slowly in the added-

noise block than the no-noise block. The interaction between repe-

tition and group was marginally significant (β = −0.01, SE = 0.005,

t = −1.97) indicating that the groups may differ in their learning rates

when their response times were averaged over blocks. In order to

explore this interaction effect, we ran two linear regression models

with repetition as the only predictor, separately for each group. These

post-hoc models showed that, if anything, the high-likelihood group

learnt faster (β=−0.02, SE= 0.008, t=−3.02) than the low-likelihood

group (β = −0.006, SE = 0.007, t = −0.83), with a larger absolute beta

value indicating a steeper slope. Most importantly, there was no inter-

action between Block, Repetition and Group (β = −0.003, SE = 0.005,
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TABLE 2 Summary of best-fit response latencymodel

Response latencymodel

maximalRTModel ≤ - lmer (RTlog ∼Block * Repetition

*Group± Item± (1±Block | P:Group)

Fixed effects Estimate Std. error t value

Block 0.07 0.03 2.28

Repetition −0.02 0.005 −3.82

Group 0.009 0.06 0.15

Item −0.005 0.008 −0.61

Block * Repetition −0.01 0.005 −2.34

Block * Group 0.001 0.03 0.04

Repetition * Group −0.01 0.005 −1.97

Block * Repetition * Group −0.003 0.005 −0.59

Random effects Variance Std. Error

Intercept 0.12 0.35

Block 0.009 0.10

Residual 0.36 0.60

t = −0.59), showing that the noise manipulation did not affect the

learning rate differently in the high- and low-likelihood children (see

Table 2 for full model output). The effect sizes are rather small, with

this model explaining approximately 2.8% of the total variance in the

response times. We expected that our manipulation would induce a

subtle effect, especially given the other factors influencing response

times, such as hand-eye co-ordination and motor planning and execu-

tion, which are still quite immature in 3-year-olds (Schneiberg et al.,

2002).

4.2 Response location

Visual inspection shows levels of recurrence consistent with previous

work (e.g., López-Pérez et al., 2018). Levels of both recurrence and

determinism were lower for block 2, which was expected since there

was no sequence to learn, and block 3, which was expected since there

was jitter added to the sequence, compared to block 1 (see Figure 3).

This was reflected in a significant main effect of block in the recur-

rence model (β = −2.07, SE = 0.50, t = −4.15), but not in the deter-

minism model (β = −4.18, SE = 2.25, t = −1.86). Crucially, there was

no significant main effect of group on either recurrence (β = 0.42,

SE = 2.00, t = 0.21) or determinism (β = 0.79, SE = 7.37, t = 0.11), and

no significant interaction between block and group on either measure

(see Table 3 for full model output). Both models outperformed the null

models, and the recurrence model explained approximately 7% of the

total variance in the response locations, while the determinism model

explained approximately 2%of the total variance in response locations.

5 DISCUSSION

The current study tested whether young children with high likeli-

hood of autism weight their prediction errors more highly than low-

likelihood children, using a novel implicit learning task. During the

game, 3-year-olds with both high and low likelihood learnt while inter-

acting with a sequence without noise, but did not learn with a simi-

lar sequence when noise was added in the form of jitter in the stimu-

lus location. While the model confirms that the high-likelihood group

learnt faster overall than the low-likelihood group, and the noise

manipulation did in fact influence learning rate, it did not influence

F IGURE 3 Recurrence and determinism (as percentage of recurrent points) by group and block. In blocks 1, the frogmoved from leaf to leaf in
a deterministic pattern with no noise added. In block 2, there was no pattern and the frog appeared 20 times in a pseudorandom series of locations.
In block 3, the frogmoved from leaf to leaf in a deterministic pattern with noise added in the form of jitter
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TABLE 3 Summary of best-fit recurrencemodel (above) and
determinismmodel (below)

Recurrencemodel

recModel ≤ - lmer (recurrence∼Block *Group± (1 | P:Group))

Fixed effects Estimate Std. error t value

Block −2.07 0.50 −4.15

Group 0.42 2.00 0.21

Block * Group 0.08 0.74 0.11

Random effects Variance Std. error

Intercept 15.65 4.00

Residual 11.93 3.45

Determinismmodel

detModel ≤ - lmer (determinism ∼Block *Group± (1 | P:Group))

Fixed effects Estimate Std. error t value

Block −4.18 2.25 −1.86

Group 0.79 7.37 0.11

Block * Group 1.34 3.33 0.40

Random effects Variance Std. error

Intercept 26.75 5.17

Residual 242.18 15.56

the high-likelihood and low-likelihood groups differentially. In an addi-

tional exploratory model, we also saw no significant effect of devel-

opmental level as measured by the Mullen Scales of Early Learning,

or autism symptoms as measured by the ADOS-2 (Lord et al., 2012;

Lord, Rutter et al., 2012) on the learning rates. Further, the recurrence

quantification analysis showed that the groups did not differ in either

the recurrence or determinism of their response locations. The results

as a whole suggest that the high-likelihood children did learn differ-

ently than the low-likelihood children, but not in a manner consistent

with over-adjusting their expectations based on high-precision predic-

tion errors. These results challenge the Predictive Processing theory

of autism that claims that autistic individuals assign higher precision to

their prediction errors than non-autistic individuals.

The lack of a group difference in the added-noise block is surprising,

but is qualified by the fact that neither group appears to learn while

interacting with the sequence in the block with added noise, as evi-

denced by a relatively flat response time profile over sequence repeti-

tions. It is unclearwhy theparticipants didnot learn the sequence in the

added-noise condition. It is possible that participants either became

fatigued since the game required sustained attention or so practiced

that the learning effect would be masked. However, the data do not

appear to support a practice or fatigue effect upon visual inspection:

if there were a strong practice effect, we would expect to see faster

response times and less variance, and vice versa for a strong fatigue

effect, but the mean response times and the variance in the added-

noise condition are not remarkably different than in block 1. The pat-

ternof responses also appears relatively symmetrical around themean,

which suggests that the participants have not reached a floor or ceiling

in response times. We conclude therefore that the learning profile in

the added-noise condition is likely due to the jitter itself, and therefore

informs us about how difficult it is for 3-year-olds to learn from noisy

input. It seems unlikely that the jitter entirely obscures the sequences,

since adult pilot participants did learn the sequence in both conditions,

but the 3-year-olds may have found it harder than older participants

to inhibit their responses to the jitter, leading to difficulty abstracting

away from individual noisy events and attending to the underlying pat-

tern.

The fact that the high-likelihood group showed faster learning over-

all but that their response locations were not affected differently than

those of the low-likelihood group by the noise manipulation does not

support the theory of higher precision of prediction errors in autism

(Van De Cruys et al., 2014; 2017). This result adds to a body of con-

verging evidence using different task modalities, methodologies, and

age groups showing that predictions of Predictive Processing theories

have not been confirmed (e.g., Manning et al., 2017; Utzerath et al.,

2018; Van der Hallen et al., 2017; Ward et al., 2020). While there is

some existing evidence consistent with altered precision weighting in

autism (e.g., Crawley et al., 2020; Manning et al., 2015; Manning et al.,

2017; Van der Hallen et al., 2017; Zaidel et al., 2015), it is not currently

strong enough to constitute a convincing unifying theory of autism.

Despite these challenges, Predictive Processing theories of autism

have benefits that other existing autism theories do not: they posit a

singular cause of all symptoms and experiences, with relatively well-

specified underlying mechanisms, based on neural dynamics that are

well-understood in the non-autistic population. Refinement or revision

may therefore render its claims more generalizable and allow further

insight into autism and its development. One of the most appealing

aspect of Predictive Processing theories of autism is their simplicity:

the available parameters that can be implicated are limited to expec-

tations, prediction errors, and their relative weighting. This simplicity

could serve to make the theories falsifiable, but can also be a disad-

vantage, as there is little flexibility to make adjustments when the data

consist of a larger number of latent dimensions,meaning that observed

differences could not be modelled by a simple shift in those param-

eters. Adding nuance to the broad claims of the existing accounts of

autismmayhelp accommodate thus far conflicting results. For example,

recent work on Predictive Processing accounts of schizophrenia posit

different precision-weighting strategies for low-level sensory predic-

tion errors compared to higher cognitive prediction errors (Sterzer

et al., 2018). If this model proves to account well for data from par-

ticipants with schizophrenia in the future, it would be one example of

a direction for further development of autism accounts. The Predic-

tive Processing theoretical framework may not be currently suited to

explain all of the mechanisms underlying autism, but it should not yet

be dismissed.

PredictiveProcessing accounts of autismmaynot findmuch support

in these data, but Predictive Processing has barely been tested in par-

ticipants other than neurotypical adults. It does seem that predictions

and prediction errors are already observable in infancy (Emberson

et al., 2015; Kayhan et al., 2019 ; Zhang, Jaffe-Dax, Wilson & Ember-

son, 2019), but the framework has yet to incorporate an account of
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how infants ever come to start making predictions and computing pre-

diction errors, and how these capacities change over time (Kayhan &

Kwisthout, 2017).Whereas there is still muchwork to be done tomake

thePredictive Processing framework fully developmental, it does allow

us to make predictions about development: a noisier system, which is

still being finetuned, leads to less reliable estimates of incoming sen-

sory information and therefore requiresmoreweighting of predictions

based on prior knowledge. We would expect then that the noise in the

senses of infants and young children would lead to less weighting of

prediction errors in infants than in adults. This change in weighting

can be seen, for example, in a study in which children of different ages

performed a temporal estimation task (Karaminis et al., 2016). Here

younger children, whose temporal discrimination was still quite noisy,

weighted their prediction errors less and therefore their prior experi-

ences more heavily, compared to older children, who had more finely

tuned temporal discrimination abilities and consequently weighted

their prediction errors more and their prior experience less. This con-

cept applies equally to noise in themotor system, such that an infant or

young child making a certain action plan will perform that action with

more variance than an adult with fine-tuned dexterity (von Hofsten,

1991). In fact, it seems that children reaching to grasp an object do not

show adult-like kinematics until 8–10 years of age (Schneiberg et al.,

2002). Therefore, in order to make inference about the consequences

of anaction, for example, a causal inferenceover a light comingonwhen

abutton is pressed, children shouldoptimally down-weight errors if the

light does not come on, to allow for the possibility that the inference is

correct but the action was planned or performed imperfectly.

Any interpretation of the current results must then take into

account the fact that young participants necessarily have noisier esti-

mates than adults, and compare participantswith similar levels of noise

in their sensory and motor systems. We attempted to achieve this in

the current study bymeasuring the participants’ perceptual andmotor

abilities as part of the Mullen Scales of Early Learning, and accounting

for these scores in one of themodels. Since themodel includingMullen

scores did not explain the data better than the model without this pre-

dictor, we do not see evidence that differences in noise in the sensory

and motor systems between the two groups influenced their perfor-

mance on the task. This could bemore directly analyzed in future stud-

ies by recording motion tracking during the task, a method which has

recently shown interesting insights into the development of autismand

neurodevelopmental disorders (Achermann et al., 2020; Caruso et al.,

2020).

The fact that 3-year-old participants still have rather noisy motor

planning and execution (Schneiberg et al., 2002) certainly exerts a

large influence on our current findings. The variability in reaction times

explained only by the noisy motor system is likely very large, and may

have drowned out the small effect of our experimental manipulation.

Previous studies on the influence of stimulus variability on learning in

infants have shown effects of around Cohen’s d = 0.8 (Tummeltsham-

mer & Kirkham, 2013; Tummeltshammer et al., 2014 ; Tummeltsham-

mer & Amso, 2018), but these studies used eye movements as their

dependentmeasure. Eyemovementsbecomeadult-like alreadyaround

6 months of age (Hunnius, 2007) and are therefore much less vari-

able in the early years than limb movements (Schneiberg et al., 2002).

It may therefore be necessary to limit future studies to less variable

measures such as eye-tracking, to characterize motor responses more

finely using motion tracking, or to collect more data to allow statistical

inference despite large variability between trials.

In conclusion, we observed no evidence in the current task that 3-

year-olds with high-likelihood of a later autism diagnosis assign higher

precision weighting to prediction errors than 3-year-olds with a low-

likelihood, in either response latency or location, although this should

be interpreted with caution due to the lack of learning by either group

in the added-noise condition. Future studies should take advantage of

the richness of reaching data by using motion tracking technology, or

otherwise reduce variability in responses in order to detect small true

effects.
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