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Abstract
Introduction: Targeted therapies are based on specific gene alterations. Various 
specimen types have been used to determine gene alterations, however, no systemic 
comparisons have yet been made. Herein, we assessed alterations in selected cancer‐
associated genes across varying sample sites in lung cancer patients.
Materials and Methods: Targeted deep sequencing for 48 tumor‐related genes 
was applied to 153 samples from 55 lung cancer patients obtained from six sources: 
Formalin‐fixed paraffin‐embedded (FFPE) tumor tissues, pleural effusion superna-
tant (PES) and pleural effusion cell sediments (PEC), white blood cells (WBCs), oral 
epithelial cells (OECs), and plasma.
Results: Mutations were detected in 96% (53/55) of the patients and in 83% (40/48) 
of the selected genes. Each sample type exhibited a characteristic mutational pattern. 
As anticipated, TP53 was the most affected sequence (54.5% patients), however this 
was followed by NOTCH1 (36%, across all sample types). EGFR was altered in pa-
tient samples at a frequency of 32.7% and KRAS 10.9%. This high EGFR/ low KRAS 
frequency is in accordance with other TCGA cohorts of Asian origin but differs from 
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1  |   INTRODUCTION

Lung cancer is one of the commonly diagnosed cancers.1,2 
The principal types of lung cancer are non‐small cell lung 
cancer (NSCLC) and small cell lung cancer (SCLC),3,4 with 
a combined expected incidence of 234 030 and mortality of 
154 050 in the United States in 2018.5 Recurrent malignant 
pleural effusion (PE) is associated with worsening quality of 
life in lung cancer patients; the overall survival time in pa-
tients with PE is estimated to be only 4.3 months.6 Patients 
with PE usually report breathlessness, chest pain and a cough 
which often make thoracentesis or chest tube drainage nec-
essary. As a result, a PE biopsy is less invasive and can thus 
be obtained more frequently. But only traditional techniques 
such as fluorescent in situ hybridization, PCR or amplifica-
tion refractory mutation system, and pyrosequencing have 
been applied in analyzing pleural effusion supernatant (PES) 
and pleural effusion cell (PEC) samples.7-12 New techniques 
with high throughput and sensitivity need to be employed to 
evaluate the clinical value of pleural effusion.

Most of the lung cancer genome studies have been per-
formed on samples of tumor tissue (FFPE or fresh frozen tis-
sue).13-16 These studies did not deliver the overall mutation 
patterns due to the presence of intra‐ and inter‐tumor hetero-
geneities.17,18 In contrast, PE can overcome such limitations 
and reveal the combined mutation pattern representative of 
different tumors in the lung.19 Plasma, due to its whole‐body 
circulation, carries mutations from even more diverse sites, 
such as distant metastasis.20

In addition to single nucleotide variants (SNV), copy num-
ber variation is one of the major chromosome aberrations of 
the cancer genome. The noninvasive extraction of blood has 

previously permitted the evaluation of SNVs in cfDNA.20-22  
However, it is challenging to analyze CNVs from cfDNA 
samples, as this source is usually highly fragmented23 and 
this fragmentation is associated with cell apoptosis and nu-
cleosome occupancy.24 The read depth in sequencing analysis 
may not only reflect copy number alterations in tumor cells 
but also the nucleosome occupancy (a given region of DNA 
that is occupied by a histone octamer). The samples that 
could be  non‐invasively obtained and detect CNVs  would 
greatly benefit precision medicine.

Significant differences are evident in the prevalence of 
mutations in patients of different ancestries. In a comprehen-
sive characterization of the somatic mutations in lung adeno-
carcinoma from 230 Caucasian patients,16 TP53 was mutated 
with the highest frequency (46% of patients), followed by 
KRAS (33%) and EGFR (14%). However, in a cohort of lung 
cancer patients of Chinese ethnicity, the most frequently mu-
tated gene was EGFR (46.7% of patients), followed by TP53 
(21.2%), ALK (12.1%) and KRAS (10.1%).25 These studies 
were based on tumor tissues. It is currently unknown if such 
ethnicity‐related differences are maintained in liquid biopsy 
samples.

In this study, we compared somatic mutations from six 
sources of samples including PES, PEC, formalin‐fixed 
paraffin‐embedded (FFPE) tumor tissues, white blood cells 
(WBCs), oral epithelial cells (OECs), and plasma, using deep 
sequencing of targeted genome composed of the full length 
of 48 cancer‐related genes. Copy number variants were also 
identified in the PEC samples. This study demonstrated the 
unique values of each sample type for personalized medicine 
of lung cancer, and will benefit the clinical implementation 
of liquid biopsies.
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the Caucasian population where KRAS is the more dominant mutation. Additionally, 
66% (31/47) of PEC samples had copy number variants (CNVs) in at least one gene. 
Unlike the concurrent loss and gain in most genes, herein NOTCH1 loss was iden-
tified in 21% patients, with no gain observed. Based on the relative prevalence of 
mutations and CNVs, we divided lung cancer patients into SNV‐dominated, CNV‐
dominated, and codominated groups.
Conclusions: Our results confirm previous reports that EGFR mutations are more 
prevalent than KRAS in Chinese lung cancer patients. NOTCH1 gene alterations are 
more common than previously reported and reveals a role of NOTCH1 modifications 
in tumor metastasis. Furthermore, genetic material from malignant pleural effusion 
cell sediments may be a noninvasive manner to identify CNV and participate in treat-
ment decisions.
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2  |   MATERIAL AND METHODS

2.1  |  Patient cohort
The study was approved by the Second Affiliated Hospital of 
Dalian Medical University and the protocol conformed to the 
ethical guidelines of the 1975 Declaration of Helsinki. Written 
informed consent was obtained from each patient. Samples 
were collected from 55 Chinese lung cancer patients at Dalian, 
China. All patients were diagnosed at stage IV and resented 
thoracic metastases. In total, PES was sampled from 40 pa-
tients, PEC from 47 patients, plasma from 10 patients. FFPE 
tumor tissues, peripheral blood and OECs were also sampled 
when possible (Figure S1A, Tables S1 and S2).

2.2  |  DNA extraction
The PE and plasma samples were centrifuged, and cell‐free 
supernatant (PES) and cell pellets (PEC) were collected, re-
spectively. Genomic DNA was extracted from OEC, PEC and 
WBC using TIANamp Genomic DNA Kit according to the 
manufacturer's protocols (TIANGEN). Cell free DNA was 
extracted from PES and plasma using QIAamp Circulating 
Nucleic Acid Kit (QIAGEN). Genomic DNA was extracted 
from the paraffin‐embedded tumor tissue samples using the 
QIAamp DNA FFPE Tissue Kit (QIAGEN) according to the 
manufacturer's protocols.

2.3  |  Library preparation
Exonic regions of 48 tumor‐related genes were amplified 
using multiplex PCR (Table S3), which was performed using 
20  ng cfDNA on Veriti 96‐Well Thermal Cycler (Applied 
Biosystems). Reaction was incubated initially at 98°C for 
30 seconds for all samples except WBC sample which took 
three‐minutes incubation. Fifteen cycles of PCR were per-
formed, each cycle was performed at 98°C and 62°C for 
10 seconds and 4 minutes respectively. Then the reaction was 
held at 4°C. For end repair and A‐tailing of DNA fragments, 
the mixture composed  of 37.5  µL DNA, 5  µL Cut smart, 
5 µL ATP, 0.5 µL 100 mmol/L dATP, 1 µL T4 PNK Enzyme 
and 1 µL of 5 units Klenowexo‐DNA Polymerase was incu-
bated for 1 hour at 37°C in thermocycler (GINGKO), then 
the products were purified using Universal DNA Purification 
Kit (TIANGEN) and eluted in 27  µL elution buffer. In 
ligation step, 25 µL A‐tailed DNA was incubated with 1 µL 
50 µmol/L multiplexing adapter, 3 µL 10× T4 DNA ligase 
buffer and 1 µL 400 units/µL NEB T4 DNAligase (M0202L) 
at 16°C for two hours or overnight. For AMPure XP beads 
purification, we added 1× volume of AMPureXP beads 
(30  µL) and incubated it at room temperature for 5  min-
utes. Then we discarded the supernatant which contained 
primer dimers. Beads were washed with 200 µL 80% ethanol 

for 30  seconds at room temperature and the washing was  
repeated twice. The beads were dried at room temperature for 
3 minutes. Then 25 µL Buffer EB was added to the bead tube, 
pipetted for 10 times, incubated for 2 minutes at room tem-
perature, and stay on magnetic stand at room temperature for 
about 5 minutes. Then, 22 µL of supernatant was transferred 
to a new PCR tube. PCR enrichment was conducted by using 
High‐Fidelity 2× PCR Master Mix. The reaction was incu-
bated initially at 98°C for 3 minutes and followed by fifteen 
amplification cycles of 98°C for 20 seconds; 65°C for 15 sec-
onds; 72°C for 3 minutes. Then the reaction was held at 4°C.

2.4  |  Mutation calling
All fastq data were trimmed for primer sequence using an 
in‐house pipeline. Then fastq files were mapped to human 
genome 38 (hg38) using bwa‐0.7.12.26 One hundred and fifty 
three samples passed quality control. Mutations were iden-
tified using Plasma Mutation Detector‐1.6.627 which used 
WBC as control to correct the base‐position error rate (Figure 
S3). The program of Plasma Mutations Detector needs two 
input files, one for mutation hotspots, and the other for single 
nucleotide polymorphisms. The hotspot file was generated 
according to COSMIC high frequency mutations and tar-
get drug positions (Table S4). The single nucleotide poly-
morphism file was based on 1000G phase1 high confidence 
single nucleotide polymorphisms dataset downloaded from 
ANNOVAR.28 Mutations were annotated by ANNOVAR.28 
We took into account the synonymous mutation when cal-
culating total mutations as synonymous mutations may alter 
the transcript splicing or gene regulation.29 However, only 
nonsilent mutations were used for comparing mutation fre-
quencies of EGFR and KRAS with other data sets. Several 
patients were sampled multiple times (Figure S2), however 
only the first extracted sample was used for comparison with 
other datasets.

2.5  |  Mutation load analysis
Tumor mutation load was defined as the number of non-
silent mutations divided by target region size expressed in 
megabase.30 When assessing the association of mutations of 
a specific gene with patient mutation load, we corrected pa-
tient mutation load by subtracting the mutations in the gene 
of interest from overall mutation load. P values between the 
two groups of patients with or without the mutation of the 
gene of interest were calculated using t test, with significance 
set as a P < .05.

2.6  |  CNV calling
Copy numbers were detected in PEC by multi normalization 
tool ONCONCV‐6.631 using WBC as control. Four types of 
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copy number variants were defined as following: amplifi-
cation (copy number ≥4), gain (copy number >2), deletion 
(copy number 0) and loss (copy number between 0 and 2). 
Co‐occurrence of copy number variants and mutations were 
determined using Apriori algorithm.32

3  |   RESULTS

3.1  |  Targeted deep sequencing to detect the 
mutational landscape
In total, 153 samples from 55 patients were available for 
analysis by the 48‐tumor gene panel. Different types of sam-
ples were analyzed, including WBC (n = 16), PES (n = 50), 
PEC (n = 57), OEC (n = 14), plasma (n = 10) and FFPE 
(n  =  6). In many patients samples from differing sources 
were obtained and some patients had PEC, and PES ana-
lyzed at multiple time points during the course of their cancer 
treatment (Table S1; Figure S1A). Mutation calling was per-
formed using Plasma Mutation Detector, a mutation analysis 
software with high sensitivity and low error rate.27 A total of 
595 mutations were detected throughout the samples (Table 
S5). Mutations were detected in 96% (53/55) of patients and 
in 83% (40/48) of the genes sequenced. Although nonsyn-
onymous SNV was the most prominent mutation type, some 
genes exhibited distinct mutational signatures. A high pro-
portion of stop gain mutations was observed in TP53 gene 
(26% patients) and KDR gene (18%; Figure 1). Notable for 
the high proportion of synonymous and intronic alterations 
were AKT1 (100% patients) and NOTCH1 (79%) (Figure 1), 
indicating that these two genes may participate in the process 
of tumorigenesis via altering pathways that do not rely on 
changes in amino acid sequence.

3.2  |  Alteration Frequency, hotspots and 
mutation load
The frequencies of nonsilent mutations are shown in Figure 
2A. The top eight mutated genes were TP53 (in 54.5% pa-
tients), NOTCH1 (36.4%), EGFR (32.7%), KDR (27.3%), 
PDGFRA (20.0%), ERBB2 (14.5%), JAK2 (14.5%), and ALK 
(12.7%) Furthermore, 45% (25/55) of patients were found to 
have known hotspot mutations defined by the COSMIC da-
tabase (Figure 2B).

Mutations (n = 31) in actionable drug target genes were re-
currently detected (Figure 2C), among which nine patients had 
EGFR p.G719A mutations, six patients had EGFR p.R776H 
mutations, and five patients possessed EGFR p.I646L. The 
Plasma Mutation Detector software not only detects muta-
tions in PES, PEC, plasma, or tumor tissue samples, but it 
can also detect somatic mutations carried by normal tissues, 
the WBCs in this study (see Material and Methods). When 
applying Plasma Mutation Detector software to the WBC 

samples of 16 patients, we found four somatic mutations in 
three patients, two in TP53 gene and two in JAK3 gene (Table 
S6). However, these mutations were confined to WBC and 
were not found in other samples types used in this study. As 
previously reported,33 these mutations probably arose during 
clonal hematopoiesis.

Patients of the same cancer type usually carry a differ-
ent number of mutations,14 and such variabilities (mutational 
load) have been shown to be closely associated with the ef-
ficacy of immunotherapy.34 Mutational load was calculated 
by dividing the mutation number of each patient by the tar-
get regions length (179 950 bp), and then normalizing this 
value to one million base pairs (mb). Mutation load ranged 
from 5.8 to 132 mutations/mb, with the mean value being 
47 mutations/mb (Figure S4). The standard deviation reached 
34.7 mutations/mb, almost 0.74 times that of the mean value 
(Figure S4). To examine whether patient mutation load var-
ied with the presence of alterations in a specific gene, we 
divided patients into two groups according to the presence 
or absence of alterations in a specific gene (Figure 2D). As 
can be observed, the presence of alterations in the gene MET, 
NOTCH1, KDR, KRAS, APC, or BRAF, had a significant 
impact on total mutational load in the given patient (P < .05) 
(Figure 2D). This association was not observed for the gene 
TP53 or EGFR (Figure 2E). The patients (n = 5) with KRAS 
mutations had 61  mutations/mb, much higher than the pa-
tients (n = 47) without KRAS mutations (45 mutations/mb, 
P = .0042). Even more significant differences were observed 
with the KDR gene, which presented 68 mutations/mb in 
the patients with KDR mutations vs 34 mutations/mb in the 
patients without KDR mutations (P = 2.0 × 10−4). Pathway 
analysis indicates that these six genes are related to the endo-
thelial cell chemotaxis and regulation of cell death pathways.

3.3  |  Comparison of OEC, tumor, 
pleural and plasma mutations
Samples of different sources may reveal cancer mutations in 
different ways. PE is closer to the lung and thus may reflect 
the mutations of primary tumor and proximal metastasis. The 
plasma may contain gene mutations of primary tumor, proxi-
mal metastasis, and distant metastasis, due to the whole body 
circulation of peripheral blood. Herein, we analyzed the fre-
quency of mutations within the 48 cancer gene panels in each 
sample type (Figure 3A). Although some level of mutational 
sharing was found among the samples, each sample source 
presented a high number of unshared mutations (Figure 
S5A‐D), suggesting the unique value of each sample type in 
revealing cancer genome alterations. OECs were sampled as 
a noncancerous source in 14 patients, with somatic mutations 
being found in seven patients. The most frequently altered 
gene in OEC was TP53 (Figure 3A). Interestingly, although 
still anecdotal due to low patient numbers, it was observed 
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that in patients where tobacco consuming information was 
available, four of the five patients with OEC mutations were 
smokers, while only one of the five patients without OEC mu-
tations smoked (Table S7). In the heat map (Figure 3A), the 
non‐cancerous samples of OEC and WBC clustered together 
and exhibited the lowest mutation frequency (Figure 3A). 
A majority of the genes (n = 19) showed the highest muta-
tion frequency in tumor tissue, followed by PE (n = 14), and 
plasma (n = 9) (Figure 3B), which was consistent with the 
observation that tumor tissue had the highest number of muta-
tions per patient (Figure S6). However, some genes, including 

NOTCH1, EGFR, KDR, MET and BRAF, displayed distinct 
behaviors; they reached their zenith of mutational frequency 
in plasma (Figure 3A,C). Especially NOTCH1, where 70% 
plasma samples exhibited at least one mutation, highlighting 
the unique values of plasma in detecting cancer mutations. 
This frequency is much higher than the frequency of 20% 
observed in our tumor samples and the 8% reported in the 
Cancer Genome Atlas.16 However, the NOTCH1 mutation 
frequency reported here is consistent with other cancer cohort 
studies, in terms of both lower mutation frequency in tumor 
tissues14,16 and higher mutation frequency in cfDNAs.21,35

F I G U R E  1   Landscape of lung cancer patient mutations. The column and row represent patients and genes, respectively, and are sorted 
decreasingly by the number of mutated genes carried by each patient carries (barplot at the top) or the number of patients in which a gene is 
mutated (barplot at the right). Mutation types are differentiated by colors. Multiple colors are shown in cases where one patient has multiple 
mutation types in a single gene. Gray denotes no mutations
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F I G U R E  2   The top eight genes displaying mutational frequency. Mutation frequency refers to the percentage of patients in which mutations 
in gene were detected. B, The number of patients with hotspot mutations. C, The number of patients with mutations in common drug target gene in 
all sample types. D, Genes whose mutations affected overall mutation load. E, Exemplary genes whose mutations did not affect overall mutation 
load. Mutation load was corrected by subtracting the mutations in the gene of interest from overall mutation load. The student t test was used to 
calculate P values between patients with (Mutated) or without (Wildtype) the mutation in the gene of interest
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We conducted further analysis on NOTCH1 mutations 
across the different sample types (Figure 4 and Table S8). 
In total, 68 mutations were detected among 23 patients in PE 
(n = 28), plasma (n = 17), FFPE (n = 16), and OEC (n = 7). 
In FFPE and OEC, mutation distribution was stochastic; no 
one mutation occurred in more than one patient (Figure 4 and 
Table S8). In contrast, the tendency of clustering was obvious 
in PE and plasma. In PE, five mutations occurred in more 
than two patients. Mutations of plasma basically focused on 
three sites, NOTCH1 P480P, D1815D, and A2331T (Figure 
4). Interestingly, each of the five mutations in plasma were 
also mutated in PE, but were not mutated in FFPE or OEC, 
indicating the close origination of these two fluid‐derived 
DNAs (Figure 4 and Table S8). Some mutations occurred 
in the important functional domains of NOTCH1, such as 
Calcium‐binding EGF domain, EGF‐like domain, LNR do-
main, Ankyrin repeats, and PEST domain (Figure 4), and 
thus may impair the NOTCH1 activity.

3.4  |  Copy number variants detected in the 
sediment of pleural effusions (PEC)
Gene function can be impaired by mutations and/or copy 
number variants (CNVs), both of which have been recurrently 

reported in lung cancer patients.15,36-38 Although gene muta-
tions have been extensively studied in target sequencing of 
various body fluids, CNVs have seldom been addressed.39 
This may be due to body fluid‐derived cfDNA being inher-
ently fragmented and its abundance affected by multiple fac-
tors, such as apoptosis, histone occupancy, as well as gene 
gain/loss.24 CNVs called from cfDNA‐based sequencing data 
are unstable and not biological relevant, which was the case 
when we tried to interpret cfDNA‐derived CNVs in this study 
(data not shown). In contrast, we obtained interesting find-
ings in analyzing the CNVs from the sediment fraction of the 
PE samples. We speculated that PE cells contain intact ge-
nomes and thus the sequencing depth should more faithfully 
reflect copy number gain or loss of the tumor cells. In total, 
we found copy number variants in 66% (31/47) of PEC sam-
ples (Figure 5A). Among these 31 patients, 17 patients had 
copy number variants in drug target genes (Figure S7A). The 
top twelve genes with copy number alterations were SMAD4 
(in 32% patients), SRC (32%), FGFR1 (30%), CDKN2A 
(30%), FGFR2 (28%), RB1 (28%), STK11 (28%), EGFR 
(26%), JAK2 (26%), RET (26%), PTEN (26%), and GNAS 
(26%) (Figure 5A). Copy number loss was much more prev-
alent than copy number gain (Figure 5A). The two “gain” 
CNV types, represented in Figure 5 as AMPL (amplified) 

F I G U R E  3   Heat map and Mutational 
frequency. A, Heat map of mutation 
frequencies for all genes that were mutated 
in at least one of the five sampling types. 
Mutation frequency refers to the percentage 
of mutated samples in each sample type. 
PE refers to the combination of PES and 
PEC. The FFPE (lymph node) and FFPE 
(tissue) of the same patient were merged 
into one. B, The number of genes that had 
the highest mutation frequency in a sample 
type. C, The mutation frequencies of genes 
that were most altered in plasma
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and GAIN were identified in 17% and 34% patients respec-
tively, while the two “loss” CNV types, LOSS and DEL (de-
leted), were identified in 57% and 4.3% patients respectively 
(Figure 5A). However, some genes, such as NPM1, EGFR, 
MET, SMO, BRAF, PI3KCA, CSF1R and ERBB2, princi-
pally exhibited copy number gain (Figure 5A). Of note was 
the EGFR gene which exclusively exhibited copy number 
gains (Figure 5A). A comparison with the Tumor Suppressor 

Gene Database (TSGene 2.0) indicated that these eight genes 
are known oncogenes40 (Figure S7B), and thus in our patient 
sample there is a significant enrichment of copy number gain 
in oncogenes (P = .0426, Fisher exact test). Highly amplified 
alleles (copy number greater than or equal to 441) and repre-
sented as AMPL in Figure 5A, were rare in our lung cancer 
patients (3%). Eight genes, EGFR, FGFR1, GNAS, PI3KCA, 
MET, SMARCB1, KRAS and CSF1R, were identified as 

F I G U R E  4   Schematic representation of NOTCH1 mutations among different sources of sample. Functional domains are marked by blocks of 
differing color along the NOTCH1 protein. Mutation types of missense (green), truncated (blue), and other (purple) are shown by lollipop symbols. 
The label, P877L/P, denotes two distinct mutations were identified at the 877 amino acid, the missense mutation from Proline (P) to Leucine (L) 
and the synonymous mutation from Proline to Proline. PE refers to the combination of PES and PEC
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F I G U R E  5   Landscape of copy number variants and associated biological pathways. A, Landscape of copy number variants in PEC samples. 
Copy number variants are shown for AMPL (dark red), Gain (light red), LOSS (light blue), and DEL (dark blue) across patients by columns and 
genes by rows. The top and right barplots show the number of CNVs in one patient or the number of patients who have CNVs in one gene and 
were sorted decreasingly. AMPL (amplification) means copy number is greater than or equal to 4, GAIN means copy number is between 2 and 4, 
loss means copy number is between 0 and 2 and DEL (deletion) means copy number is equal to 0. B‐D, Frequent and co‐concurrent copy number 
variants. The biological pathways shown in titles were inferred using GSEA. E, Concurrent analysis by combining mutations and CNVs. CNVs are 
shown as large color blocks in each grid, upon which gene mutations are overlaid as small color blocks
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AMPL in at least one patient (Figure 5A). Pathway analy-
sis using the Gene Set Enrichment Analysis (GSEA) from 
the Broad Institute42 indicates that these genes are related to 
protein tyrosine kinase activities or epithelium development 
(Figure S7C). In contrast to the overrepresentation of copy 
number gain in oncogenes, copy number loss was highly 
enriched in tumor suppressor genes (TSG) (Figure S7B). 
Among the 12 TSGs that exhibited copy number alterations 
in this study, eleven (91.7%) were copy number loss (Figure 
S7). Interestingly, CNV of some genes displayed a tendency 
of co‐occurrence (Figure 5B). The three genes involved in 
“negative regulation of cell death,” MET, SMO, and BRAF, 
concurrently exhibited the gain of copy number in seven 
patients (Figure 5B). In contrast, the three genes identified 
by GSEA to be involved in “Positive regulation of extrin-
sic apoptotic signaling pathway,” FGFR2, RET, and PTEN, 
simultaneously exhibited the loss of copy number in seven 
patients (Figure 5C). The simultaneous loss of these genes 
may increase the resistance of tumor cells to apoptosis. We 
also observed the consistent presence of copy number altera-
tions in eight genes involved in “negative regulation of cell 
proliferation” (Figure 5D).

By combining CNVs and mutations, we identified a dis-
tinct gene set that potentially cooperates to protect tumor 
cells from cell cycle arrest (Figure 5E). Copy number loss 
of TP53, NOTCH1, CDKN2A, RB1, FLT3, and ABL1 was 
identified in 17%, 21%, 30%, 28%, 21%, and 19% patients 
respectively. Simultaneously, activity‐altering mutations, ie 
all the mutations except synonymous SNV (Figure 5E), were 
identified in TP53 (64%), NOTCH1 (38%), CDKN2A (4%), 
RB1 (4%), FLT (34%), and ABL1 (2%) of patients. Except 
for CDKN2A, all the other five genes exhibited some levels 
of coexistence of CNV and mutations, especially TP53 and 
NOTCH1, for which coexistence was identified in 17% and 
11% patients, respectively (Figure 5E). We then thoroughly 
examined the coexistence of CNV and mutation for 48 genes 
in 47 patients (Figure 6). CNV aberration dominated in genes 
such as SRC and STK11, while mutational aberration domi-
nated in KDR and PDGFRA. Coexistence of CNV and mu-
tations were identified for most genes, most commonly for 
TP53, EGFR, and NOTCH1 (Figure 6A). Based on the rela-
tive number of CNVs or mutations, the patients can be divided 
into the three groups of CNV‐dominated, SNV‐dominated, 
or codominated (Figure 6B). These altogether indicate that 
copy number aberrations could be an important component 
of lung cancer progression, alone or together with SNVs.

4  |   DISCUSSION

Lung cancer has one of the highest levels of morbidity and 
mortality among malignancies, being responsible for approx-
imately 1.38 million deaths worldwide every year.43 Targeted 
deep sequencing is a low cost and highly sensitive method 
for mutation detection. Gene mutation assessment in tumor 
biopsies is restrictive in accurately reflecting the genome of 
cancer cells that have escaped the primary tumor, which are 
often the population of cancer cells to which the drug therapy 
is directed. Furthermore, tumor biopsies are invasive, may 
have non‐ideal tissue locations and may lack adequate tissue 
acquisition.44,45 Liquid biopsy, specifically cfDNA, has been 
proposed as a promising way to improve cancer diagnosis 
and prognosis.46

Our results are in general concordance with other deep se-
quencing studies in lung cancer patients, particularly within 
the Asiatic population.25 In total, in our study 153 samples 
were taken from 55 patients and analyzed on a 48 tumor gene 
panel. The presence of an FFPE, OECs, metastasis and blood 
cfDNA for every patient would have greatly enriched our 
analysis. However, our approach is still valid as the cancer 
cell genome is known to vary with the location of the tumor 
(eg primary tumor or metastasis) and even within the same 
tumor (ie multiply genome subsets with the primary tumor). 
Thus, mutation analysis from multiple sampling sources be-
tween patients still provides a valid picture of the genome 
alterations that occur between sampling locations.

Genomic alterations within our patients show consis-
tency with the Catalogue Of Somatic Mutations In Cancer 
(COSMIC)14 and the comprehensive molecular profiling of 
lung adenocarcinoma (TCGA).16 Our study showed that TP53 
was altered in 54.5% of patients, followed by EGFR (32.7%) 
and KRAS (10.9), which is consistent with the TCGA results 
that showed that TP53 was most frequently mutated (46% pa-
tients), with KRAS (33%) and EGFR (14%) among the most 
recurrent genes.16 A major difference between this study and 
the TCGA is that we analyzed samples from multiple sources 
and thus presumably detected mutations in both primary and 
metastatic tumors. Our TP53 mutation frequency of 54.5% 
dropped to 40% when analyses were confined exclusively to 
primary tumor samples (FFPE), close to the frequency (TP53, 
46%; KRAS 25%) in a Finnish study of 425 FFPE samples.47

Our study used patients of Asian ancestry and demon-
strated a higher mutation frequency among patients in EGFR 

F I G U R E  6   Scatter plots and landscape of copy number variants. A, Landscape of the concurrence of copy number variants and gene 
mutations. CNVs are shown as large color blocks in each grid, upon which gene mutations are overlaid as small color blocks. The right barplot 
shows the number of patients with only CNVs (green), mutations (red), or both CNVs and mutations (gray) in one gene. The top barplot shows the 
number of genes with only CNVs (green), mutations (red), or both CNVs and mutations (gray) in one patient. B, Scatter plot between SNV number 
and CNV number of patients. Patients were divided into CNV‐dominated, SNV‐dominated, and CNV and SNV codominated according to the 
relative amount of CNV and SNV in one patient
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than in KRAS. Discordance has been repeatedly noticed in 
the mutation frequency of EGFR and KRAS in the Asian vs 
Caucasian population. In Caucasian patients the mutation 
frequency is 14% for EGFR and 33% for KRAS.16 However, 
in a cohort of 306 lung cancer patients of Chinese ethnicity, 
the most frequently mutated gene was EGFR (46.7% of pa-
tients) and KRAS had a mutation frequency of only 10.1%.25 
This Asian patient‐specific mutation pattern was confirmed 
by other studies that investigated 33548 and 11249 Chinese 
lung cancer patients, in which EGFR and KRAS were mu-
tated in 39% (335 patient study), 51.79% (112 Patient study), 
and 11% (335 patient study), 8.93% (112 patient study),  
respectively. Thus our results clearly confirm the observation 
from previous studies that EGFR mutations are more preva-
lent than KRAS in Chinese lung cancer patients.

Patients with high mutation loads, ie, the number of mu-
tations per million bases (mb) in target regions, are more 
susceptible to immune checkpoint inhibitors (eg PD‐1 or 
PD‐L1‐mediated immunotherapy) than the patients with low 
mutation loads in lung and other cancers.34,50,51 Some muta-
tions in mismatch repair genes, homologous recombination 
genes, or POLE have been associated with high mutation 
load.30,52 As previously reported, we found that mutation 
load varied among lung cancer patients and we identified six 
genes that could significantly affect patient mutation load34 
(Figure 2D‐E). Interestingly NOTCH1 was significantly as-
sociated with mutational burden, as was MET, KDR, BRAF, 
APC and KAS, yet no association was observed with TP53 
or EGFR.

Somewhat unexpectedly, we observed genetic alterations 
in non‐cancerous OECs. However, the vast majority of our 
patients in this study were smokers. Previous studies have 
shown that smokers possess more micronucleated oral mucosa 
cells than nonsmokers53 and the prevalence of aneuploidly 
has also been reported in apparently normal oral mucosa of 
heavy smokers.54 Moreover, the mutations present in the oral 
epithelial cells were also observed in the cancer samples, in-
dicating these mutations could be cancerous. This is similar 
to a skin cell study that found that skin cells can carry can-
cer‐causing mutations while maintaining the physiological 
appearance and functions of the epidermis.55 Thus, although 
preliminary, our observations suggest that early genetic alter-
ations can be detected in the oral mucosa of smokers and may 
in the future help screen smokers at risk for tobacco‐related 
cancers.

The discrepancy of NOTCH1 mutations in primary tumor 
and plasma has been previously reported.16,21,35 In the litera-
ture, the mutational frequency of NOTCH1 is reported to be 
8% in the primary tumor16; however in a survey using cfDNA 
obtained from blood draws of small cell lung cancer patients, 
inactivating mutations in the NOTCH family of genes were ob-
served in 52% of the patients.35 In another cfDNA study where 

NOTCH1 was analyzed, the authors reported that this gene was 
mutated with a frequency of 52.9%.19 In accordance, we ob-
served a high NOTCH1 mutation in plasma (70%) and a low 
mutation in tumor tissue (20%) (Figure 3A). A further meta‐
analysis of NSCLC patients indicated that elevated expression 
of NOTCH1 was associated with greater lymph node metasta-
sis and higher TNM stage. Moreover, patients with NOTCH1 
overexpression showed significantly poorer overall survival.56 
From a clinical perspective, if only the primary tumor was bi-
opsied, the presence of NOTCH1 mutations may be overlooked 
and therefore these subset of patients may not be considered as 
a target for precision medicine.

Targeting the NOTCH signaling pathway may benefit a 
subpopulation of NSCLC patients with NOTCH1 mutations. 
NOTCH1 is a receptor for the ligands Jagged1, Jagged2 and 
Delta1 that regulate cell‐fate determination.57 Upon ligand 
binding and activation, the notch intracellular domain is 
released and forms a transcriptional activator complex that 
subsequently activates genes of the enhancer of split locus 
to regulate cellular differentiation and development.58 As a 
well‐studied pathway it is not surprising that there already 
exists a therapy designed to inhibit this process. The human-
ized antibody brontictuzumab (OMP‐52M51) is designed to 
block the NOTCH1 receptor and has been shown in preclin-
ical models to inhibit cancer stem cell growth and angio-
genesis.59 Unfortunately, a combination of brontictuzumab 
together with chemotherapy was not tolerable in an initial 
trial in colon cancer patients.60 However, its safety and pre-
liminary efficacy were encouragingly reported from a phase 
I study that administered this antibody intravenously to pa-
tients with hematologic malignancies.61 This, together with 
other methods to inhibit this signaling pathway, may find 
clinical use in patients who have been identified to carry 
alterations in the NOTCH1 gene by either mutations or 
CNVs. Depending on whether the drug target is the over-
all cancer burden or the remaining metastasis after primary 
tumor removal, we feel that mutations identified from mul-
tiple sampling sources will provide an accurate picture of 
the relevant cancer genome alterations and thus will deliver 
more tailored treatment regimens.

5  |   CONCLUSIONS

Our results confirm previous studies showing that EGFR mu-
tations are more prevalent than KRAS in Chinese lung cancer 
patients, in contrast to previously reported Caucasian popula-
tions. We observed a high NOTCH1 mutation rate in plasma 
in comparison to tumor tissue, which may reveal a role of 
NOTCH1 modifications in tumor metastasis and highlight 
the clinical advantage of the plasma in detecting mutation 
biopsy.
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CLINICAL PRACTICE POINTS

Most of the lung cancer genome studies were performed on 
samples of tumor tissue (FFPE or fresh frozen tissue). However, 
the genomic spectrum varies across lesion sites for most solid 
tumors; thus, a single specimen typically underestimates the 
number of mutations, and target therapy may be challenged by 
intratumoral heterogeneity. In this study, we compared somatic 
mutations from six sources of samples including PES, PEC, 
plasma, tumor tissues, WBC, and OEC using deep sequencing 
of targeted genome composed of the full length of 48 cancer‐
related genes. Copy number variants were also identified in 
PEC samples. This study brings attention to demonstrate the 
unique values of each sample type for the future personaliza-
tion of lung cancer, treatment and will benefit the clinical de-
sign and implementation of liquid biopsies.
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