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A number of key processes in evolution are driven by individuals preferring mates with particular phenotypes. However, despite

long-standing interest, it is difficult to quantify the strength of mate preference from phenotypic observations in nature in a way

that connects directly to key parameters in theoretical models. To bridge the gap betweenmathematical models and empirical data,

we develop a novel maximum likelihood-based method to estimate the strength and form of mate preference, where preference

depends on traits expressed in both males and females. Using simulated data, we demonstrate that our method accurately infers

model parameters, including the strength of mate preference and the optimal offset match between trait values in mated pairs

when model assumptions are satisfied. Applying our method to two previous studies of assortative mating in marine gastropods

and the European common frog, we support previous findings, but also give additional insight into the role of mate preference

in each system. Our method can be generalized to a variety of plant and animal taxa that exhibit mating preferences to facili-

tate the testing of evolutionary hypotheses and link empirical data to theoretical models of assortative mating, sexual selection,

and speciation.
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In many species, individuals prefer and choose mates with par-

ticular characteristics. Mate preference, the propensity for indi-

viduals to select mates on the basis of phenotypes, is a pervasive,

highly complex, and very important driver of evolution. For in-

stance, mate preferences can generate assortative mating, produce

persistent selection on mating success (Lande 1981; Kirkpatrick

and Ravigné 2002), and lead to speciation even in the face of

gene flow (Dieckmann and Doebeli 1999; Kirkpatrick and Ravi-

gné 2002; Pinho and Hey 2010). In general, there are two pre-

dominant types of mate preference rules that can give rise to

assortative mating but may otherwise produce different evo-

lutionary outcomes: (i) preference for a mate with a certain

trait value regardless of the chooser’s own trait value (prefer-

ence/trait), and (ii) preference for a mate on the basis of a match

with their own phenotype (matching) (Kopp et al. 2018). Al-

though both types of mate preference rules can generate sexual

selection and have important evolutionary consequences, match-

ing rules are more commonly assumed in theoretical models of

sympatric speciation and divergence with gene flow than pref-

erence/trait rules (see Kopp et al. 2018). Matching mate prefer-

ences can decrease gene flow between sympatric or parapatric

groups that are phenotypically divergent (Doebeli and Dieck-

mann 2000; Servedio 2004; Otto et al. 2008). Conversely, trait

matching preferences can also act as a strong force of stabilizing

sexual selection that stymies divergence (Kirkpatrick and Nuis-

mer 2004; Servedio and Kopp 2012), or these preferences can

lead to the evolution of sexual dimorphism instead of diversifi-

cation (Bolnick and Doebeli 2003). The evolution of preferences

themselves may also be idiosyncratic or system-specific. For ex-

ample, Heliconius butterflies have mimetic color patterns that are
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under frequency-dependent selection (Chamberlain et al. 2009),

and mate preferences evolve adaptively to produce the most fit

offspring (see Jiang et al. 2013). Similarly, mate preference for

a phenotypically or genetically similar mate may evolve due to

outbreeding depression (Epinat and Lenormand 2009) and may

contribute to population structure in small populations that may

be of conservation interest (e.g., Langin et al. 2015). Henceforth,

we consider the specific case of the trait matching rule and define

mate preference as the preference for a mate conditioned upon

the individual chooser’s own phenotype, which implies that phe-

notypic traits can be measured in both sexes.

Mate preference is fundamental to biological questions link-

ing ecology, phenotypic evolution, and the genetic basis for mat-

ing traits, yet our capacity to measure mate preference and study

its consequences in natural systems is highly limited. Much of

what we know and the predictions we are able to make about

evolutionary processes involving mate preference stem from the-

oretical models, laboratory studies, and simulations, with less

emphasis on field studies (Turelli et al. 2001; Kirkpatrick and

Ravigné 2002; Gavrilets 2004; Carvajal-Rodriguez and Rolán-

Alvarez 2014). This is because in most, if not all cases, it is

impossible to directly measure mate preference in the wild. Ex-

perimentally, mate preferences can be studied using mate-choice

trials, but such trials are accompanied by assumptions and con-

founding effects not found in nature and are not feasible in

many study organisms (Johnson and Marzluff 1990; Dougherty

2020). Simulation studies connect a mathematical framework to

the sampling process and allow us to study the effects of spe-

cific parameters on evolutionary outcomes given a set of assump-

tions. However, mathematical models go notably untested with

field data, leaving a lacuna between theory and the natural world.

One tractable approach in studies of natural populations is to in-

fer mate preference via a Pearson correlation coefficient calcu-

lated between quantitative traits measured within known mated

pairs (Jiang et al. 2013). This is valuable because it has allowed

us to observe presence or absence of assortative mating across

a variety of taxa (de Cara et al. 2008; Jiang et al. 2013). A cor-

relation can be used as evidence that assortative mating may be

occurring in a population, however, it cannot accurately measure

the strength of mate preference directly, nor can correlations help

distinguish between mate preference rules. Furthermore, corre-

lation coefficients do not appear as parameters in analytical or

simulation-based models of sexual selection or divergence with

gene flow (de Cara et al. 2008). To provide a link between theory

and data, the strength of mate preference must be directly esti-

mated as a parameter value.

Here we develop a likelihood-based method adapted from

the mathematical framework given in Kirkpatrick and Nuismer

(2004) to infer the strength of mate preference from observa-

tional data collected in the wild. Our method requires observa-

tions of phenotypes of males and females in mated pairs, as well

as phenotypes of randomly sampled individuals (although not

strictly required in all cases, see the “Likelihood Function” sec-

tion) of reproductive capacity in a population. We know of one

other family of methods to estimate mate preference from sim-

ilar data (Rolán-Alvarez et al. 2015; Fernández-Meirama et al.

2017; Estévez et al. 2018). These approaches are based on fitting

a strength parameter to indices of assortative mating for each pair

that are scaled to approximate probabilities. We take a more direct

statistical approach by estimating all parameters via maximum

likelihood, which also provides for the calculation of standard

errors or profile likelihood functions to gauge the (im)precision

in the estimation, as well as formal inferences such as

statistical tests and confidence intervals. This approach is also

easily extended to generalizations of the model. We also include

a parameter that allows for offset matching, where the pheno-

type of the most preferred partner differs from the chooser’s

own phenotype by a fixed value instead of strict trait match-

ing only, as is common in most mating functions (e.g., Lande

and Arnold 1983; Arnqvist et al. 1996; Dieckmann and Doebeli

1999; Thibert-Plante and Hendry 2009). In the next sections, we

(i) present the mathematical framework from which we build a

likelihood-based method to estimate parameter values. Using the

mathematical framework in (i), we (ii) demonstrate why using a

correlation to measure the strength of mate preference is insuf-

ficient and can generate spurious results. Then, we (iii) evaluate

the performance of the maximum likelihood estimates with sim-

ulated data, and (iv) analyze and interpret data from two previ-

ously published studies on assortative mating using our method-

ology, which we have made publicly available in an package

called matepref (Clancey and Johnson 2021) for R (R Core

Team 2021).

The Statistical Model
MATE PREFERENCE MODEL

Our model is designed to estimate the strength of mate prefer-

ence when individuals prefer a phenotypically similar mate (i.e.,

trait matching) or a mate with a larger or smaller trait value rel-

ative to themselves (i.e., offset matching) on a continuous scale.

We typically rely on having a single quantitative trait that can be

measured in both sexes. In some cases it may also be appropri-

ate to have two quantitative traits, one that is measured in males

and one that is measured in females, where each trait is important

in the context of mating. Specifically, our model is a statistical

application of a theoretical model proposed by Kirkpatrick and

Nuismer (2004), which we adapt for the purpose of estimating
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parameters pertaining to mate preference from observations of

trait values in mated pairs of organisms in the wild.

We assume individuals can move freely in space and come

into contact with potential mates at random. In dioecious species,

male and female traits, or in hermaphroditic species, traits of

donors and recipients, hereafter X and Y , are assumed to be in-

dependently sampled from a homogeneous population. To give

a general formulation of the model, we can decompose the joint

distribution of traits in (X,Y ) mated pairs of organisms into the

unspecified marginal density functions fX (x) and fY (y), a mating

function describing the probability of mating between individuals

with X and Y trait values, and a normalizing constant. Assuming

observations within X , Y , and (X,Y ) mated pairs are indepen-

dent, the joint distribution of X and Y trait values given that the

organisms are in a mated pair can be written using Bayes’ theo-

rem as

M(x, y | S = 1) = fX (x) fY (y)P(S = 1 | x, y)

P(S = 1)
, (1)

where S denotes an indicator variable for a successfully mated

pair and the denominator, P(S = 1), is the marginal probability of

mating. The mating function we propose builds upon a Gaussian

mating function from Lande (1983) and Kirkpatrick and Nuismer

(2004), but we include additional parameters such that

P(S = 1 | x, y) = γe−α(x−y−δ)2
, (2)

where α ≥ 0 is a parameter describing the strength of mate pref-

erence as a function of the difference between the trait values, δ is

the value of x − y that maximizes the mating probability, and γ is

a parameter that equals the probability of mating when x − y = δ

(i.e., the probability of mating with the perfect matching or offset

matching of trait values). Now we assume the distributions fX (x)

and fY (y) to be normal density functions, or approximately nor-

mal, such that X
iid∼ N (μx, σx ) and Y

iid∼ N (μy, σy ). These distri-

butions, combined with the mating function in equation (2), give

us the fully specified conditional distribution of mated pairs as

M(x, y | S = 1) = f
(
x; μx, σ

2
x

)
f
(
y; μy, σ

2
y

)
e−α(x−y−δ)2

∫∫
f
(
x; μx, σ2

x

)
f
(
y; μy, σ2

y

)
e−α(x−y−δ)2 dx dy

. (3)

Note this distribution is not dependent on the parameter γ. The

denominator of equation (3) is equal to the marginal probabil-

ity of mating and for computational purposes can be written in

closed-form. The double integral here is equal to the expectation

E

[
e−α(X−Y −δ)2

]
= E

[
etZ2

]
, (4)

where t = −α(σ2
x + σ2

y ) and Z = (X − Y − δ)/
√

σ2
x + σ2

y . Be-

cause Z is a normal random variable with mean (μx − μy −
δ)/

√
σ2

x + σ2
y and unit variance, Z2 has a noncentral χ2 distri-

bution with one degree of freedom and noncentrality parame-

ter λ = (μx − μy − δ)2/(σ2
x + σ2

y ), and thus equation (4) is the

moment-generating function of a noncentral χ2 distribution. This

can be written as

E

[
etZ2

]
= eλt/(1−2t )

√
1 − 2t

, (5)

(see Johnson et al. 1995) giving a fully specified statistical model

to formulate the likelihood function in the following section.

LIKELIHOOD FUNCTION

We now consider the problem of the estimation of the parame-

ters of equation (3) with empirical data. We envision a scenario

where field biologists are able to randomly sample individuals of

reproductive capacity to measure a quantitative trait of interest

and observe mated pairs in their study population. The data then

consist of paired observations of trait values within mated pairs,

(xi, yi ), and additional unpaired observations of trait values of fe-

males (xi) and males (yi ) that are not observed as part of a mated

pair. Assuming mutual independence across paired and unpaired

observations, from equations (3) and (5) we have the likelihood

function

L(θ) =
∏
i∈Sp

f (xi;μx, σ
2
x ) f (yi;μy, σ

2
y )e−α(xi−yi−δ)2

eλt/(1−2t )/
√

1 − 2t

×
∏
i∈Sx

f (xi;μx, σ
2
x ) ×

∏
i∈Sy

f (yi;μy, σ
2
y ), (6)

where θ = (α, δ,μx,μy, σx, σy )′, Sp is the set of indices of or-

dered (x, y) mated pairs, and Sx and Sy are the sets of indices of

observations x and y, respectively, that are not observed as mem-

bers of a mated pair. The maximum likelihood estimate of θ can

be obtained numerically by the maximization of equation (6) with

respect to θ. Either or both Sx and Sy can be empty, in which case

the corresponding terms are omitted from the likelihood func-

tion. It should be noted that μx , μy, and δ are not identified if Sx

and/or Sy are empty, so offset matching cannot be distinguished

from differences between the mean trait values in mated pairs.

To unambiguously estimate δ it is necessary to have samples of

mated pairs as well as samples of males and females that are not

observed as members of mated pairs. However, if δ can be as-

sumed to be zero, as is sometimes the case, then it can be fixed

rather than estimated, and then the model is identified even with

using only a sample of mated pairs.

INTERPRETING THE MATING FUNCTION

To interpret an estimated value of α as the strength of mate prefer-

ence, it is helpful to understand the mating function. The mating

function in equation (2) describes the probability of mating as a

function of trait differences and the parameters α, δ, and γ. It is

very unlikely that the probability of mating is equal to one even
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Figure 1. Mating probability as a function of trait differences (x − y), α, δ, and γ. The maximum probability of mating (γ) occurs when

x − y = δ. A reduction of mating probability of p% can be visualized as the interval around this point.

in a perfectly matched pair. Therefore, we use the parameter γ

as the maximum probability of mating when x − y = δ. Figure 1

depicts how the mating function depends on the trait differences

x − y and the parameters α, δ, and γ. The parameter γ can be

viewed as the composite effect of all factors independent of x and

y on the probability of mating such as other independent traits

conferring a mating advantage, availability of resources, or terri-

tories that may affect the probability of mating, or other factors

that are system specific. To facilitate the interpretation of α, we

can use the mating function to express an interval around δ in

terms of x − y where the probability of mating is within p% of

the maximum probability of mating of γ. For any p% we can de-

fine the values of x − y such that P(S = 1|x, y) ≥ (1 − p/100)γ.

The interval δ ± √− log(1 − p/100)/α defines trait differences

x − y leading to a mating probability that is within p% of the

maximum probability of γ. Because α is the “strength” of mate

preference, larger values of α will reduce the interval width, while

the value of δ defines the center of the interval. The value of p is

arbitrary, but can be specified as a biologically meaningful value

in terms of the impact of the trait difference on the reduction in

the mating probability.

Limitations of the Correlation
Coefficient as a Metric of Mate
Preference
The Pearson correlation coefficient is a common metric used

by empiricists to infer the existence and strength of preference-

driven assortative mating in a particular population (Jiang et al.

2013) where mate preference is assumed to be the biological pro-

cess generating a correlation between traits within mated pairs.

Even though mate preference does in fact generate a correlation,

a sample correlation coefficient cannot be used to estimate the

parameter α, which is the strength of mate preference. This is

because the correlation of X and Y in mated pairs is a function

of both α and the variances of X and Y . To observe the mathe-

matical relationship between a correlation (ρ) and α as a func-

tion of a common phenotypic standard deviation, σx = σy = σ,

we numerically computed the correlation between X and Y from

the conditional distribution given in equation (3) as a function of

α and several fixed values of σ (Fig. 2). Whenever mate prefer-

ence generates a nonzero correlation between traits within mated

pairs, we can see that ρ increases monotonically with respect to

α, but the relationship is not linear and varies as a function of σ.

More specifically, as α increases, ρ increases faster with larger

values of σ until leveling off. As the variance of X − Y increases,

more of the distribution of X − Y will fall outside a region of

high probability of mating as defined using Figure 1. Overall,

for the same given value of α, different values of ρ can be gen-

erated depending on the variability of traits in the population,

and therefore, a correlation coefficient is not a direct estimate

of α and will be misleading if used to infer the strength of mate

preference.

Evaluation of Performance with
Simulated Data
To validate our method, we evaluate the performance of the max-

imum likelihood estimates with simulated data. Males and fe-

males composing a breeding population are generated as ran-

dom samples from normal distributions (except in simulations

designed to purposefully violate the normality assumption) with

constant means (female: μx = 10; male: μy = 12) and standard

deviations (σ = 2 for both sexes). Mated pairs are simulated with

equation (2) under different fixed values of α and δ, while hold-

ing γ = 1 constant. Sample sizes np (number of mated pairs)

and ns (total number of single individuals of both sexes, where

the number of males is equal to the number of females) vary to
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Figure 2. The correlation coefficient (ρ) as a function of mate preference (α) and trait standard deviations (σx = σy = σ).

demonstrate their influence on the estimates or are fixed at np =
100 and ns = 100. We simulate 1000 replicate datasets for each

value of α and δ. Parameter estimates are obtained by maximiz-

ing the likelihood function using the R function optim() with the

L-BFGS-B algorthim (R Core Team 2021).

Figure 3 shows the distance between estimated and true val-

ues of α and δ for set values of each parameter under different

sample sizes of mated pairs and single individuals. Note that we

expect the error around the estimates, α̂, to be proportional to the

mean of α̂ (as seen in Fig. 3A), because α has a lower bound

very near zero. This is not the case with δ̂, because δ can be any

real number. At larger values of α and smaller sample sizes, there

is a tendency for estimated values (α̂) to be larger than true val-

ues. The bias and error around α̂, not surprisingly, decreases with

larger samples sizes, particularly when the number of mated pairs

is increased. The estimates of δ have little bias, although sample

sizes of mated pairs also appear to influence the error surrounding

δ̂.

We find that including δ in the model is very important to

estimate α without bias whenever the true value of δ is nonzero.

If the true value of δ is zero and then not estimated in the model,

an accurate estimate of α̂ can still be obtained. If the true value of

δ is not zero and then not included in the model, α̂ becomes less

accurate as α and δ increase (Fig. 4). This is because when δ is

nonzero, males and females within mated pairs differ from each

other, and this difference corresponds to an actual preference. If

δ is incorrectly designated as zero, the phenotypic difference be-

tween mates then incorrectly estimates a low preference.

Last, we test the model’s performance when we violate

two key assumptions: (i) normality and (ii) population homo-

geneity. Very often quantitative traits are normally distributed

or approximately normal, but situations could arise when phe-

notypic distributions are nonnormal. A probable and problem-

atic example would be a skewed distribution. In Figure 5, we

violate the normality assumption by drawing trait values from

a gamma distribution with three different shape parameters to

simulate skewed distributions of varying degrees. Particularly

when the skew is minimal, the parameter estimates for α and δ

are robust to this normality violation. We also investigated other

examples of nonnormal distributions, specifically heavy-tailed

distributions. These are even less problematic than skewed trait

distributions, and therefore the results of these simulations are

not presented here.

Estimates of the two parameters α and δ can also be bi-

ased if mating occurs primarily within unidentified subpopula-

tions, thus violating the assumption that observations are drawn

from a homogeneous population. The effect of population struc-

ture increases as the subpopulation means get further apart or the

variance of each subpopulation distribution decreases. We evalu-

ate the effect of hidden population structure with divergent trait

means on the estimates of α and δ with constant sample sizes and

a constant population standard deviation (values given in Fig. 6).

We simulate three subpopulations with discrete structure (i.e.,

mating takes place only within each subpopulation), where the

value of ε dictates the distance between mean trait values in each

subpopulation. For each value of ε (Fig. 6), population means

for pairs and single individuals are μ − ε, μ, and μ + ε, respec-

tively. Subsequently, all pairs and single males and females are

combined into one dataset to mimic “hidden” population struc-

ture. Then, α is estimated as if the observer were unaware of the

structure. As expected, the estimate of the strength of mate pref-

erence increases as phenotypic divergence among subpopulations
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A

B

Figure 3. The relationship between true and estimated parameter values under different sample sizes of mated pairs, np, and single

individuals, ns (male and female sample size combined). Boxplots show themedian, 1st and 3rd quartiles, and 2.5th and 97.5th percentiles,

and colored dots show means of the difference in estimates versus true values. Panel A shows results for set values of α, the strength of

mate preference, and constant δ = 1. Panel B shows results for set values of δ, the match offset, and constant α = 0.5.

Figure 4. The strength of mate preference, α, is misestimated when the offset parameter, δ, is excluded from the model. This figure

shows simulation results comparing true values of α to the model estimates when the parameter δ is not included as a term in equation

(2) but is, in fact, nonzero. Boxplots show the median, 1st and 3rd quartiles, and 2.5th and 97.5th percentiles, and black dots showmeans

of the difference in estimates versus true values.
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A

B

Figure 5. The effect of a skewed phenotypic trait distribution on estimates of α (Panel A) and δ (Panel B). The value of k specifies the

shape parameter for generating realizations from a gamma distribution with a scale parameter equal to 4 in all simulations. Boxplots

show the median, 1st and 3rd quartiles, and 2.5th and 97.5th percentiles, and black dots showmeans of the difference in estimates versus

true values.

increases (Fig. 6A), but the estimates are surprisingly robust, es-

pecially at the lower values of ε. The estimate of the offset match

is similarly affected by hidden population structure, as the value

of δ̂ underestimates the true parameter with increasing values of

ε (Fig. 6B). At lower values of ε, this bias is minimal.

Application to Real Data
Many empirical studies demonstrate the existence of assortative

mating by measuring phenotypes and observing mated pairs in

the wild. In this section, we apply our likelihood-based approach

to real data from two published studies of size-assortative mat-

ing in three species of marine gastropods from the genus Echi-

nolittorina (Ng et al. 2019) and two populations of the European

common frog (Rana temporaria) (Dittrich et al. 2018). Datasets

from both studies are publicly available on Dryad (see Dittrich

et al. 2018; Ng et al. 2019). Each study measured body size (shell

length in Echinolittorina and snout-vent length (SVL) in R. tem-

poraria, both in millimeters), a trait easily observable in males

and females in a sample of mated pairs and unmated individuals

in each population.

Periwinkles, or marine gastropod molluscs in the family Lit-

torinidae, occur worldwide in the rocky intertidal and have been

the subject of numerous evolutionary studies including many

studies of sexual selection and mate choice (Ng et al. 2019; Perini

et al. 2020). In the genus Echinolittorina, courtship is initiated by

a male following a female’s mucus trail; if this female is deemed

an acceptable mate, courtship ends with the male mounting and

copulating (Ng et al. 2013). Males are suspected to exhibit size-

dependent mate preference because larger females likely have

higher fecundity, but physically copulating with a very large fe-

male may not be possible for a smaller male or the risk of sperm

competition may be very high and jeopardize paternity if multiple

males target the largest females (see Ng et al. 2019).

We analyzed data from Ng et al. (2019) using our method.

Their study followed individuals throughout the entire mating

process in E. malaccana, E. radiata, and E. vidua at Cape

d’Aguilar Marine Reserve, Hong Kong in June and July 2012.

Our resulting parameter and interval estimates from shell length
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A

B

Figure 6. The effect of weak to moderate hidden population structure with phenotypic divergence on estimates of α (Panel A) and

δ (Panel B). The value of ε specifies the divergence among phenotypic means for unidentified subpopulations within a single dataset.

Boxplots show the median, 1st and 3rd quartiles, and 2.5th and 97.5th percentiles, and black dots show means of the difference in

estimates versus true values.

Table 1. Parameter and 95% Wald confidence interval estimates

from shell length (mm)measurements in three species in the genus

Echinolittorina.

Species
Parameter E. malaccana E. radiata E. vidua

α 0.41 ± 0.24 0.16 ± 0.09 0.58 ± 0.31
δ 0.41 ± 0.39 1.39 ± 0.61 0.57 ± 0.35
μx 8.59 ± 0.18 7.53 ± 0.27 6.88 ± 0.29
μy 8.33 ± 0.17 6.22 ± 0.31 6.91 ± 0.27
σx 1.18 ± 0.13 1.89 ± 0.20 1.40 ± 0.22
σy 1.02 ± 0.12 1.71 ± 0.22 1.18 ± 0.02

(millimeters) measurements for the three species of Echinolitto-

rina are shown in Table 1. We used likelihood ratio tests to de-

termine if α > 0 and δ �= 0, which is mate preference with offset

matching, significantly differs from α = δ = 0, the null expecta-

tion of random mating. Results of the likelihood ratio tests are E.

malaccana: χ2
2 = 20.56, p = 0.000034, E. radiata: χ2

2 = 22.10,

p = 0.000016, and E. vidua: χ2
2 = 31.53, p = 0.00000014 and

support the hypothesis that these three species exhibit mate pref-

erence with offset matching, albeit to different degrees. To visu-

alize the impact of the estimated values of α and δ on the joint

distribution of (X,Y ) mated pairs, we show contour plots de-

picting the joint distribution of male and female phenotypes un-

der the null expectation of random mating compared to the es-

timated distribution under our model with maximum-likelihood

estimates of α̂ and δ̂ (Fig. 7). We also calculate the interval

δ ± √− log(1 − p/100)/α (“Interpreting the Mating Function”

section) that defines the range of trait differences (shell length

measured in millimeters) where the mating probability is within

p = 10% of the maximum probability of γ using the estimates

for α and δ for each species, E. malaccana: (−0.097, 0.92), E.

radiata: (0.58, 2.20), and E. vidua: (0.14, 1.00).

Similar to the situation in marine gastropods, Dittrich et al.

(2018) hypothesize the pattern of assortative mating in R. tem-

poriana to be driven by larger males preferring larger and more

fecund females. However, under closer investigation this pattern

is much more complex and dynamic. Larger individuals of both

sexes arrive at breeding sites earlier than smaller individuals, and
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Figure 7. Contour plots show the joint distributions of (X,Y )mated pairs under the null expectation of random mating (grey contours)

compared to the joint distribution after assortative mating (colored contours) for the three species of Echinolittorina. Sample data from

shell length measurements (mm) in mated pairs are represented by the scatter plot.

larger males can out-compete smaller males for preferred mates.

In the face of competition from larger males, the alternative tac-

tic of smaller males is to quickly and indiscriminately mate with

any available female, even a small one. Thus, the complex mech-

anisms leading to size-assortative mating in R. temporiana can

generate different outcomes across time and space (Dittrich et al.

2018).

Dittrich et al. (2018) studied two populations of R. tempo-

raria from southern and central Germany. The first population,

Fabrikschleichach (FS), consisted of a network of 140 ponds

where R. temporaria typically used between 35 and 40 ponds

for reproduction. In contrast, the second population at the local-

ity Kleiwiesen (KW) also contained a network of ponds, but ac-

cording to the authors, almost the entire population bred within

one pond, creating strong male-male competition for larger fe-

male mates. FS population males tended to be smaller than their

female mates, whereas the KW population showed the opposite

trend, likely due to differences in male densities, in the KW pop-

ulation.

In light of the dynamics of the R. temporaria mating system,

the authors assessed whether mate preference was adaptive and

varied between populations due to mate availability during mi-

gration to breeding sites and competition for mates. A summary

of the parameter and interval estimates for SVL measurements

(millimeters) in each population can be seen in Table 2. Here,

after reanalyzing the published dataset in our model, we found

no statistical difference in strength of mate preference across the

two populations (a 95% Wald confidence interval for the differ-

ence in αFS − αKW is 0.0022 ± 0.0024), but similar to the au-

thors’ hypothesis, the direction of the offset changed under differ-

ent conditions (a 95% Wald confidence interval for the difference

in δFS − δKW is 20.21 ± 10.90) (see Appendix for the 95% Wald

CI calculation and alternatives to analyzing data from multiple

Table 2. Parameter and 95% Wald confidence interval estimates

from SVLmeasurements (mm) for R. temporaria in the Fabrikschle-

ichach (FS) and Kleiwiesen (KW) populations.

Population
Parameter FS KW

α 0.0048 ± 0.0011 0.0027 ± 0.0021
δ 6.07 ± 1.62 −14.15 ± 10.78
μx 70.61 ± 0.94 70.40 ± 2.00
μy 69.24 ± 0.43 68.95 ± 0.65
σx 8.70 ± 0.59 7.20 ± 1.04
σy 6.65 ± 0.27 5.81 ± 0.39

populations). Note that the values of α̂ are small. To compen-

sate for numerical instability occurring when α is close to zero,

we converted all observations of SVL from millimeters to cen-

timeters. This enlarged the value of α̂, and likewise decreased the

value of δ̂, ensuring mathematical stability during optimization.

These values were converted back to millimeters after the esti-

mates were obtained. Like the analyses in Echinolittorina, results

of likelihood ratio tests comparing the model of α and δ held con-

stant at zero to the model allowing these parameters to vary are

FS: χ2
2 = 115.22, p ≈ 0 and KW: χ2

2 = 21.12, p = 0.000026.

The strength of mate preference and the difference in the direc-

tion of the phenotypic offset between male and female mates can

be visualized in Figure 8 for the FS and KW populations. Again,

we also calculate the interval δ ± √− log(1 − p/100)/α (“In-

terpreting the Mating Function” section) that defines the range

of trait differences (SVL (mm)) where the mating probability is

within p = 10% of the maximum probability of γ using the esti-

mates for α and δ for each population, FS: (1.38, 10.76) and KW:

(−20.40, −7.9).
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Figure 8. Contour plots show the joint distributions of (X,Y )mated pairs under the null expectation of random mating (gray contours)

compared to the joint distribution after assortative mating (colored contours) for the two populations of R. temporaria. Sample data of

SVL measurements (mm) in mated pairs are represented by the scatter plot.

Discussion
A hurdle to testing evolutionary theory surrounding mate pref-

erence is the lack of methods allowing theoretical models to in-

terface with observational data (Gavrilets 2014; Servedio et al.

2014). To fill this gap, we have developed a maximum likeli-

hood based approach to estimate parameters in a Gaussian mating

function from empirical data. Extensive testing of our model us-

ing simulated data demonstrates accurate estimation of the key

parameter, the strength of mate preference, α. In addition, we

can estimate the optimal offset match in mated pairs, the param-

eter δ, and the population means and variances in males and fe-

males from maximizing a single likelihood function. We discov-

ered that estimating the offset parameter δ is highly necessary to

obtain a nonbiased estimate of α, and this parameter also provides

valuable information about mate choice mechanisms operating

in many mating systems. Best estimation results for both param-

eters, α and δ, are achieved with larger sample sizes in a well-

mixed population. We also addressed the issue of hidden popula-

tion structure. Not surprisingly, hidden population structure can

skew results, and therefore spatial scale should be carefully con-

sidered when using this method (see Rolán-Alvarez et al. 2015;

Estévez et al. 2018). We anticipate empiricists will be aware of

strong population structure and be able to use corrected pheno-

types (e.g., Langin et al. 2015) in most circumstances, or else we

urge consideration of the possibility of hidden structure. If dis-

crete subpopulations can be identified and are believed to share

a common α and δ, the likelihood function in equation (A.2) can

be used to accommodate structured populations (see Appendix).

Even so, parameter estimates appear very robust to undetected

weak population structure. As long as the population is mixing so

that local distributions of potential mates are similar to the over-

all population, and this will occur especially as trait variances in-

crease, parameter estimates will have minimal bias and can still

be applied to a variety of biological systems.

Applying our method to two published datasets on size-

assortative mating (Dittrich et al. 2018; Ng et al. 2019), we

support previous findings and gain additional insight into each

mating system. In species of marine gastropods, sexual size di-

morphism, with females being the larger sex, is common but

not ubiquitous (Ng et al. 2019). However, the mechanism by

which males choose mates—preferring females slightly larger

than themselves—appears widespread even in species with lit-

tle to no dimorphism (Saltin et al. 2013; Ng et al. 2019). Ng

et al. (2019) investigated the relationship between directional sex-

ual selection on female size and sexual size dimorphism in ma-

rine gastropods by studying the mechanisms of male mate choice

and patterns of sexual dimorphism in seven different species of

marine gastropods. They uncovered a negative correlation be-

tween sexual selection intensity on female body size and sex-

ual size dimorphism, and speculate this relationship is caused

by the existence of a “similarity-like” mate choice mechanism

(Fernández-Meirama et al. 2017), where males preferentially

mate with females of the same size plus a specific value (Ng

et al. 2019). Our likelihood-based method directly addresses both

components of this mate choice mechanism by estimating the pa-

rameters α and δ. In our reanalysis of data on three species of

Echinolittorina included in the Ng et al. (2019) study, we also

found strong size-assortative mating and males preferring larger

females respective to their own size, confirming the existence of

a “similarity-like” mate choice mechanism. With parameter esti-

mates in hand, our model could be used to further investigate the
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relationship between mate preferences generating sexual selec-

tion on female size and sexual size dimorphism in these species

with simulation.

In the European common frog, mate preferences may be

highly labile so that individuals choose mates adaptively. Dittrich

et al. (2018) believe multiple mechanisms, such as conditions

during migration to breeding ponds and the amount of male-male

competition over mates, all generate the observed patterns of as-

sortative mating and make interpretation difficult. These authors

found that the correlation between traits in mated pairs fluctuates

across populations. Our reanalysis shows that the strength of mate

preference is not statistically different across populations, but the

direction of the offset match differs, where males preferred fe-

males smaller than themselves in one population, but in the other

population, males preferred females larger than themselves. This

information is not apparent from the correlations, but is obtained

by estimating the parameters separately in our model. Thus, it

appears that preference for a particular body size is consistently

operating in this species, but local conditions may dictate the op-

timally sized partner with respect to oneself.

Although our model follows many previous studies that have

collectively developed a rigorous theoretical framework to un-

derstand mate preference and its evolutionary consequences, we

rely on key assumptions that can limit application to all situa-

tions. First, we assume phenotypic traits are normally distributed

in a homogeneous population. In reality, not all phenotypic trait

measurements are independent (e.g., spatial structure would vi-

olate this assumption) and normally distributed. Parameter es-

timates are robust to weak violations of these assumptions as

long as the trait is continuous. For example, a skewed distribu-

tion such as flowering date (Schmitt 1983; Blionis et al. 2001)

can be analyzed with our method, as can populations with weak

structure. On the other hand, the model cannot handle categorical

phenotypic measurements, which are often important in mating,

such as song type in red crossbills (Loxia curvirostra) (Snow-

berg and Benkman 2007), discrete color polymorphisms in straw-

berry poison frogs (Oophaga pumilio) (Yang et al. 2016), alter-

native male tactics in Trinidadian guppies (Poecilia reticulata)

(Reynolds et al. 1993), or polymorhic structures in diving beetles

(Graphoderus zonatus) (Iversen et al. 2019).

Next, we assume that the probability of mating decays in a

Gaussian fashion as a function of differences in continuous trait

values that can be measured in males and females (eq. 2). This

assumption limits the model to matching rules of mate choice

and cannot easily be extended to preference/trait rules, unless

preference for a particular trait in the opposite sex can be mea-

sured as an independent psychological trait on a continuous scale.

The preference function we use is unimodal and symmetric, and

therefore cannot be ascribed to, for example, a situation where

females in a population prefer the largest males. Even in cases

where mate choice is made via a matching rule, other types of

mating functions that are not unimodal or symmetric, may be bet-

ter suited to specific systems (Lande 1981; Carvajal-Rodriguez

and Rolán-Alvarez 2014; Neelon et al. 2019). Models compara-

ble to ours could potentially be built on alternative preference

functions, but it may not be possible to write the likelihood func-

tion (eq. 6) in closed form as we were able to do here, and

numerical approximations would need be used in these cases.

Nonetheless, our method also provides the basis for a statistical

framework for testing hypotheses about mate preference func-

tions in future studies.

Last, estimation of the strength of mate preference is based

on measuring one focal trait. When the data are collected, we as-

sume we have correctly identified and measured this key trait.

Mate preference in reality could be very strong but we under-

estimate it by measuring the wrong trait. Alternatively, we may

conclude mate preference is based on the focal trait, but we have

merely measured a correlated or indicator trait (Candolin 2003).

Measuring an indicator trait may not be a problem if the goal is

to understand a process that relies on assortative mating, but this

will be misleading if the goal is to unlock key traits involved in

mate choice to understand a mating system. Overall, investigators

using this method should carefully consider the assumptions in

relation to their research objectives, and prior evidence for mate

preference based on candidate traits.

Even in the face of limitations, our method has broad impli-

cations for the study of mate preference in wild animal and plant

populations. Many theoretical models have been constructed to

explain phenotypic evolution and divergence that were motivated

by observations of mating patterns in nature (Lande 1981). With

this foundation firmly in place, it is time for empirical assess-

ment of the role of mate preference in evolutionary dynamics as

predicted by models of divergence with gene flow (Dieckmann

and Doebeli 1999; Räsänen and Hendry 2008), sexual selection

(Servedio and Bürger 2014; Servedio 2016), and the evolution of

sexual dimporphism (Bolnick and Doebeli 2003). Our method-

ology is unique in the use of a likelihood-based approach to es-

timate mate preference directly from observational data, thereby

allowing an extensive range of systems in which we can study

these processes. To help facilitate future studies in this area, we

have made our method publicly available and easy to implement

in a package called matepref (Clancey and Johnson 2021) for R

(R Core Team 2021) that includes functions to estimate the model

described in this article, and to simulate data for simulation stud-

ies. It is our hope that our method answers previous questions and

raises new questions about the role of mate preference in evolu-

tionary dynamics, and does so efficiently to provide a seamless

connection between theory and data.
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Appendix
This Appendix elaborates on the problem of estimating model

parameters across multiple populations. As demonstrated in the

Fabrikschleichach (FS) and Kleiwiesen (KW) populations of R.

temporiana, parameter estimates can be made for each popula-

tion independently and then compared using interval estimates.

A 95% Wald confidence interval for the difference in estimates

of α in two populations is

(α̂1 − α̂2) ± 1.96 ×
√
V̂ (α̂1) + V̂ (α̂2), (A.1a)

and a 95% Wald confidence interval for the difference in esti-

mates of δ in two populations is

(δ̂1 − δ̂2) ± 1.96 ×
√
V̂ (δ̂1) + V̂ (δ̂2). (A.1b)

Here V̂ indicates the estimated variance of each estimator, which

is obtained from the diagonal elements of the inverse Hessian

matrix after the last iteration of the L-BFGS-B algorithm. How-

ever, in certain circumstances an investigator may have reason to

believe the means and variances across populations are unique,

but the populations share a common strength of mate preference,

α, and degree of offset match, δ. To make this accommodation,

we can expand the likelihood function in equation (6) to accom-

modate k distinct populations that share α and δ. The likelihood

function for multiple populations becomes

L(θ) =
K∏

k=1

Lk (θ), (A.2)

where

Lk (θ) =
∏

i∈Spk

f
(
xik;μxk, σ

2
xk

)
f
(

yik;μyk, σ
2
yk

)
e−α(xik−yik−δ)2

eλktk/(1−2tk )/
√

1 − 2tk

×
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i∈Sxk

f
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2
xk

) ×
∏
i∈Syk

f
(
yik;μyk, σ
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)
,

θ = (α, δ,μx1,μy1, σx1, σy1, . . . ,μxk,μyk, σxk, σyk )′,

tk = −α
(
σ2

xk + σ2
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)
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(
σ2
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) .
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