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ABSTRACT ARTICLE HISTORY
Introduction: The clinical application of lung cancer detection based on breath test is still chal- Received 11 October 2021
lenging due to lack of predictive molecular markers in exhaled breath. This study explored Revised 10 February 2022
potential lung cancer biomarkers and their related pathways using a typical process for metabo- ~ Accepted 25 February 2022

lomics investigation.
Material and methods: Breath samples from 60 lung cancer patients and 176 healthy people Exhaled metabolic markers:
were analyzed by GC-MS. The original data were GC-MS peak intensity removing background volatile organic compound;;
signal. Differential metabolites were selected after univariate statistical analysis and multivariate pathway enrichment; lung
statistical analysis based on OPLS-DA and Spearman rank correlation analysis. A multivariate cancer; metabolomics
PLS-DA model was established based on differential metabolites for pattern recognition.

Subsequently, pathway enrichment analysis was performed on differential metabolites.

Results: The discriminant capability was assessed by ROC curve of whom the average AUC and

average accuracy in 100-fold cross validations were 0.871 and 0.787, respectively. Eight potential

biomarkers were involved in a total of 18 metabolic pathways. Among them, 11 metabolic path-

ways have p-value smaller than .1.

Discussion: Some pathways among them are related to risk factors or therapies of lung cancer.

However, more of them are dysregulated pathways of lung cancer reported in studies based on

genome or transcriptome data.

Conclusion: We believe that it opens the possibility of using metabolomics methods to analyze

data of exhaled breath and promotes involvement of knowledge dataset to cover more volatile

metabolites.

KEYWORDS

Clinical significance: Although a series of related research reported diagnostic models with
highly sensitive and specific prediction, the clinical application of lung cancer detection based
on breath test is still challenging due to disease heterogeneity and lack of predictive molecular
markers in exhaled breath. This study may promote the clinical application of this technique
which is suitable for large-scale screening thanks to its low-cost and non-invasiveness. As a
result, the mortality of lung cancer may be decreased in future.

KEY MESSAGES

1. In the present study, 11 pathways involving 8 potential biomarkers were discovered to be
dysregulated pathways of lung cancer.

2.  We found that it is possible to apply metabolomics methods in analysis of data from breath
test, which is meaningful to discover convinced volatile markers with definite pathological
and histological significance.

1. Introduction of the population. It contributes the highest morbidity

Lung cancer is one of the malignant pulmonary dis- rate (11.6% of the total cases) and mortality rate
eases that poses a great threat to the health and life (18.4% of the total cancer death) among all cancers
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[1]. Owing to lack of typical symptoms, most lung can-
cer patients are diagnosed at a terminal stage and miss
the best treatment period [2]. Screening by the markers
that are biologically related to tumour progression can
probably provide even more mortality reduction by
finding suspected patients as early as possible.

Exhaled breath test is a promising technique for
large-scale screening of high-risk population of lung
cancer for its convenience, low-cost and non-invasive-
ness. Therefore, detection of lung cancer through
breath test has been thrown into a sharp focus. In
2019, Rudnicka et al. analyzed breath samples from
108 patients with lung cancer and 121 healthy volun-
teers with chromatography-mass spectrometry (GC-
MS) [3]. Cross-validation of the obtained model has
shown the sensitivity of 80% and specificity of 91.23%.
In addition, Huang and Li used selected ion flow tube-
mass spectrometry (SIFT-MS) technique to quantita-
tively analyze 116 volatile organic compounds (VOCs)
in breath samples from 148 patients with histologically
confirmed lung cancers and 168 healthy volunteers. A
diagnostic model based on eXtreme Gradient Boosting
(XGBoost) method was built, showing accuracy of 92%
[4]. Although a series of research reported diagnostic
models with highly sensitive and specific prediction,
far exceeding the performance of currently
available low-dose computed tomography (LDCT)
detection, the clinical application of this technique is
still challenging due to disease heterogeneity and lack
of predictive molecular markers in exhaled breath.

Recently, Chen et al. used GC-MS data from 160
patients with lung cancer, 70 patients with benign
pulmonary disease and 122 healthy subjects to explor-
ing exhaled markers of lung cancer. As a result, they
found that 20 VOCs discriminated lung cancer from
healthy subjects. Additionally, their reported 19 and
20 VOCs related to histological type and lung cancer
stages, respectively [5]. Actually, many efforts have
been made selecting a series of breath markers associ-
ated with lung cancer [6,7] since 1985 [8]. However,
none of them have been used in clinical because the
underlying mechanisms about how those VOCs pro-
duced are still unclear.

Metabolomics works as a multidiscipline crossed
diagnostic tool for exploring differences and dynamic
changes in endogenous micromolecular metabolites,
combining analytical chemistry and bioinformatics to
systematically detect and analyze changes in metabo-
lites in the body. It has been widely used in diverse
metabolic samples including urine [9,10], serum/
plasma [11,12] and tissue [13,14]. Based on those
high-throughput data and online metabolic database,
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e.g. the human metabolome database (HMDB) and
kyoto encyclopaedia of genes and genomes (KEGG),
pathway enrichment analysis can be done, which may
explain the relationship between metabolic data and
pathophysiological state. As a mature technique,
metabolomics provides a scientific and systematic
data mining process for differential metabolites ana-
lysis, ensuring validity, interpretability, and reproduci-
bility of their results. However, few studies analyzed
breath data with metabolic database, even though
there are various software and tools designed for
guiding and performing metabolomics data analysis.
Here, we are going to identify molecular markers of
metabolic dysregulation in lung cancer using the GC-
MS data obtained from a recent study [15]. In the
mentioned study, we reported a method to differenti-
ate subjects with lung cancer from healthy controls,
by means of exhaled breath test with the GC-MS.
Then, breath profiles instead of volatile markers were
analyzed with machine-learning algorithm and an
accuracy of 85% was shown in six-fold cross valida-
tions. Although that study does relatively well in diag-
nosis, there is still necessity to illustrate the
combination of metabolic markers and their relative
pathways before application in clinic. Pathway enrich-
ment analysis is a knowledge-based approach,
depending largely on databases available for bioinfor-
matic analysis such as KEGG and HMDB. Accordingly,
our statistical analysis focussed on those candidate
VOCs which could be annotated to online databases.
This study was performed not only to find potential
markers and relevant pathways for detection of lung
cancer but also to explore the possibility of combin-
ation of metabolomics methods and breath data.

2, Method
2.1. Data acquisition

Data were obtained from a previous case-control
study where 236 subjects were asked to participate
[15]. All cases were confirmed with an incident of lung
cancer histologically or pathologically, while controls
were confirmed with a negative result of LDCT scan.
The detailed inclusion criteria and exclusion criteria of
subjects were listed in Supplementary materials (S1).
Sample collection and analysis were performed as
previously published [15]. Briefly, to collect breath
samples, subjects were asked to breathe tidally into a
self-developed collection device with which VOCs in
1000 mL exhaled breath were captured and concen-
trated into a Tenax TA stainless steel tube
(PerkinElmer, Waltham, MA). Then, each sampling tube
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was shipped to laboratory for chemical analysis which
was performed on GC-MS (QP2010 Plus, Shimadzu,
Tokyo, Japan) coupled with a thermal desorption (TD)
instrument  (TurboMatrix 300 TD, PerkinElmer,
Waltham, MA). Subsequently, spectrum analysis includ-
ing peak identification and background removal was
done. Details of collection, detection and data pre-
treatment are illustrated in Supplementary materials
(S2). Metabolites which can be annotated to HMDB
were then used for following analysis.

2.2, Statistical analysis

Statistical analysis was applied to VOCs present in
more than 70% of samples in at least one group, with
a quality control relative standard deviation smaller
than 25%. A metabolite is described as “putative” fol-
lowing an accurate mass match to the HMDB database
[16].

Univariate statistical analysis was performed on fil-
tered data using the Mann-Whitney test. VOCs with
fold change larger than 2 and FDR p<.1 were
selected as candidate differential metabolic bio-
markers. Due to the confounding effects of smoking
and gender, stratification by smoking status and gen-
der were applied in univariate statistical analysis. In
five times of group-wise Mann-Whitney tests, VOCs
selected as differential metabolic biomarkers at least
once were employed in following analysis.

Before multivariate analysis, data of all significantly
altered metabolites were cube root-transformed, mean-
centred and divided by the standard deviation of each
variable. Orthogonal projections to latent structures dis-
criminant analysis (OPLS-DA) and spearman rank correl-
ation analysis were performed on scaled data.

Those confirmed metabolites were imported into
MBRole 2.0 for pathway enrichment analysis.

Statistical analysis and data visualization are imple-
mented by Metaboanalyst (www.metaboanalyst.ca/)
and GraphPad-Prism 7.0 software (GraphPad Software,
La Jolla, CA), except for Upset plot (https://www.omic-
studio.cn/tool) and enrichment analysis (http://csbg.cnb.
csic.es/mbrole2/). The sample size per group was con-
firmed to be effective through power analysis on
Metaboanalyst before any other statistical analysis (S3).

3. Results
3.1. Subjects

Two hundred thirty-six participants including 60 lung
cancer patients and 176 healthy subjects were recruited
in the study (Table 1). There were no significant

Table 1. Clinical characteristics between case and con-
trol groups.

Lung cancer Health
(N=160) (N=176) p-value
Gender
Male 37 135 024*
Female 23 41
Smoking history
Smoker 32 112 096"
Non-smoker 28 64
Age (mean, SD) 62.4, 10.514  64.53, 13.252 .158%*
Adenocarcinoma/ 32,20
squamous cell carcinoma
Stage I/I/II/IV 14, 6, 19, 21
Comorbidities
Type 2 diabetes mellitus 4 8 .507
Systemic arterial 6 11 386

hypertension

#Chi-square tests.
*Independent-samples Mann-Whitney U tests.

differences of smoking history and age between two
groups. Unfortunately, the moderate imbalance of gen-
ders existed when the significance level was set as
0.05. Considering univariate statistical analysis were
conducted for males and females, respectively, the dif-
ferences with p-value of .024 were acceptable.

3.2. Univariate statistical analysis

A total of 308 VOCs were obtained after data pre-treat-
ment, of whom 81 had confirmed HMDB annotations,
namely the putative metabolites. Volcano plots display-
ing log-fold-change of signal against p-value from non-
parametric test were employed to show the results of
univariate statistical analysis [17] (Figure 1). According to
the selection criteria ((fold change) > 2, (FDR p) < .1),
several differential metabolites were selected in each
group, respectively. The fold change data and the corre-
sponding FDR p-values of group-wise differential metab-
olites were listed in Supplementary materials (S4).

In addition to comparison stratified by genders and
smoking status, the univariate statistical analysis was
also performed on all subjects. Twenty-four VOCs were
found to be differential metabolites (Figure 1 and
Figure S4), of whom 10 upregulated in patients, while
others downregulated. As shown in Figure 2, there were
8, 10, 7, 22 and 24 kinds of metabolites selected in
males, females, smokers, non-smokers and all subjects,
respectively. A total of 31 VOCs presenting at least once
among group-wise differential metabolites were deter-
mined as candidate differential metabolites (Table 2).

3.3. Multivariate statistical analysis

Correlation analyses were performed for all candidate
differential metabolites with each other using
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Figure 1. Volcano plots of Mann-Whitney test data. Black circles (UP) represent metabolites upregulated in patients with lung
cancer; black points (DOWN) represent metabolites downregulated in patients with lung cancer; gray triangles (NS) represent

metabolites has no statistical significance in Mann-Whitney test.

Spearman’s correlation (Figure 3 and Figures S5 and
S6). N-Nonanal and n-Octanal has the strongest correl-
ation among all metabolites (r=0.67426, p <.001).
Besides them, there were seven pairs of metabolites
having correlation coefficients larger than 0.5 (S7). The
rests of correlation coefficients were smaller than 0.5. It
could be concluded that there is no strong correlation
among all VOCs based on reference [18]. Thus, it is not
necessary to remove any one from these 31 VOCs.
Multivariate statistical modelling was performed
using OPLS-DA on the 31 confirmed metabolites. This
model showed moderately significant group separ-
ation (Q*=0.331, R*Y=0.357, Figure 4(a)). Permutation
tests confirmed the robustness of the model (100

permutations, Q°=0.353, R?Y =0.439, Figure 4(b)). PLS-
DA was also performed, and the score plots are shown
in Supplementary materials (S8).

As subjects from case and control groups cannot
be separated completely in OPLS-DA, ROC analysis
was performed on output values of PLS-DA (Figure 5).
Areas under the curve (AUCs) ranged from 0.822 to
0.92 in 100 cross validations, and the average predict-
ive accuracy was 0.787.

Scaled peak intensity of 31 differential metabolites
from 60 cases and 176 controls were displayed in a
heatmap (Figure 6), showing that each group had its
specific metabolic profiles. In detail, for metabolites
lying in upper rows, patients have relatively lower
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Figure 2. Upset plot of the candidate differential metabolites.

levels than those of controls. For metabolites lying in
lower rows, the situation was opposite.

3.4. Pathway enrichment

To further explore the relationship between the above
31 differential metabolites and the pathogenesis of
lung cancer, these small molecular metabolites were
introduced into MBRole 2.0 (http://csbg.cnb.csic.es/
mbrole2/) to obtain the key metabolic pathways
involved. As shown in Figure 7 and Table 3, 8 potential
biomarkers (Table 4) were involved in a total of 18
metabolic pathways. Among them, 11 metabolic path-
ways have p-value smaller than .1, indicating that they
have significant contribution to the lung cancer meta-
bolic pathway, namely monterpenoid biosynthesis, tolu-
ene and xylene degradation, glycosaminoglycan
biosynthesis-heparan sulphate, reductive carboxylate
cycle (CO, fixation), biphenyl degradation, glycolysis/
gluconeogenesis, C5-branched dibasic acid metabolism,
pyruvate metabolism, selenoamino acid metabolism,

all subjects

non-smoke

females smokers

taurine and hypotaurine metabolism and sulphur
metabolism. Wherein, glycosaminoglycan biosynthesis -
heparan sulphate has the greatest rich factor of 0.3333.

4. Discussion

Although 308 kinds of VOCs were detected, the num-
ber of putative metabolites used to analysis is only 81.
Many volatile metabolites were not able to be anno-
tated in HMDB or KEGG database likely account for
this remarkable difference between the number of
detected VOCs and the number of putative metabo-
lites. As a knowledgebase of human metabolome,
HMDB involves a series recording of metabolites
derived from human serum, urine, saliva and so on.
Although HMDB has been continuously improving in
the past decades, the exhaled breath as one of meta-
bolic products of human body has not been included.
It reflects metabolomic studies on breath test are still
in its infancy. Although VOCs in breath has been
detected since 1971, there are still lots of mystery
compounds in exhaled breath, especially those
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Table 2. Candidate differential metabolites.
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HMDB Match PubChem CAS KEGG
HMDB0031447 n-Heptane 8900 142-82-5 NA
HMDB0033182 2,5-Dimethylfuran 12266 625-86-5 NA
HMDB0034237 Propyl acetate 7997 109-60-4 NA
HMDB0031653 3-(Methylthio)-1-propene 66282 10152-76-8 NA
HMDB0005879 Dimethyldisulfide 12232 624-92-0 08371
HMDBO0031583 3-Methylheptane 11519 589-81-1 NA
HMDB0005994 Hexanal 6184 66-25-1 C02373
HMDB0031325 n-Butylacetate 31272 123-86-4 C12304
HMDB0059851 o-Xylene 7237 95-47-6 C07212
HMDB0000042 Acetic acid 176 64-19-7 C00033
HMDB0029595 n-Nonane 8141 111-84-2 02445
HMDB0034029 Isopropylbenzene 7406 98-82-8 C14396
HMDB0059839 Camphene 6616 79-92-5 C06076
HMDB0059848 3-Ethyltoluene 12100 620-14-4 C14522
HMDB0001140 n-Octanal 454 124-13-0 C01545
HMDB0035619 3-Carene 26049 13466-78-9 NA
HMDB0005805 p-Cymene 7463 99-87-6 C06575
HMDB0032473 Limonene 22311 138-86-3 C06078
HMDB0031445 n-Undecane 14257 1120-21-4 NA
HMDBO0059835 n-Nonanal 31289 124-19-6 NA
HMDB0003352 I-Menthol 16666 2216-51-5 C00400
HMDB0002019 Phytol 5280435 150-86-7 C01389
HMDB0032860 1-Methylnaphthalene 7002 90-12-0 C14082
HMDB0006007 3-Methylbutanol 31260 123-51-3 07328
HMDB0032449 1-Octene 8125 111-66-0 NA
HMDB0031231 2-Ethylhexanol 7720 104-76-7 €02498
HMDB0004472 Eucalyptol 2758 470-82-6 C09844
HMDB0037050 o0-Cymene 10703 527-84-4 NA
HMDB0031418 3,3-Dimethylhexane 11233 563-16-6 NA
HMDB0001183 n-Octanol 957 111-87-5 C00756
HMDB0031327 2-Butoxyethanol 8133 111-76-2 C19355

enzymatically and non-enzymatically transformed
products derived from well-known endogenous or
exogenous compounds. As consequent, HMIDB are not
providing the necessary metabolite coverage to allow
researchers to identify these VOCs in breath.

Totally, 31 kinds of differential metabolites were
selected from 81 putative metabolites, through the
Mann-Whitney test, Spearman rank correlation ana-
lysis and OPLS-DA. In cross-validation, the average
accuracy of the multivariate model based on these 31
VOCs is 78.7%, while that of the previously reported
model selecting VOCs by machine learning algorithm
was 85% [15]. In our opinion, these differences were
derived from that some VOCs which may be valuable
for pattern recognition were removed unexpectedly
during the process of HMDB annotations. Obviously,
those removal were related to the lack of available
data and knowledge on breath research in HMDB
database. However, the main intention of this study is
to explore several volatile biomarkers and related
pathways instead of overemphasizing the pursuit of
accuracy. As we mentioned before, diagnostic models
separated from biomedical meanings are always not
robust enough. So, it is significantly meaningful to
obtain several kinds of confident markers, even
though that is not the entire set of lung cancer
markers in breath.

Eleven pathways involving eight potential bio-
markers were discovered in enrichment analysis.
Among them, monoterpenoid biosynthesis pathway
has the lowest p-value, indicating the statistical signifi-
cance. Menthol, camphene and eucalyptol were anno-
tated in this pathway. First, monoterpenoid chemicals
were sometimes used in treatment [19-21]. For
instance, camphene was reported to be a main com-
ponent of essential oils of lemongrass which induces
apoptosis and cell cycle arrest in A549 lung cancer
cells [22]. In addition, eucalyptol shows several
pharmacologic activities that may be used in treat-
ment of some pulmonary disease including rhinosinu-
sitis, bronchitis, asthma and chronic obstructive
pulmonary disorder (COPD) [23]. Likewise, camphene
could be beneficial in battling respiratory illnesses,
and could act as a cough suppressant and anti-con-
gestive tool [24]. Indeed, patients who received treat-
ment after the diagnosis of LC or had a history of
airway inflammatory in the past 3 months were
excluded. However, inclusion or exclusion of subjects
were based on medical record in our hospital and
guestionnaire survey. Questionnaire survey, the criteria
of every patient are obviously subjective. Generally
speaking, lung cancer always comes with pulmonary
symptoms. Therefore, a large number patient may
dose themselves with some cough suppressant or



796 Y. ZOU ET AL.

o8

3-Methylheptane 0.6
3-(Methylthio)-1-propene
Dimethyldisulfide
Acetic acid 0.2
3-Carene
I-Menthol
2,5-Dimethylfuran 0.2
Limonene
Camphene
3,3-Dimethylhexane
Phytol
1-Octene
2-Ethylhexanol
n-Heptane
Isopropylbenzene
- Eucalyptol
n-Octanol
n-Nonane

0.4

0.4

o-Cymene
4-lsopropyltoluene
Propyl acetate

n-Butylacetate

3-Ethyltoluene

3-Methylbutanol

2-Butoxyethanol

Hexanal

o-Xylene

n-Octanal

n-Nonanal

n-Undecane

| 1-Methylnaphthalene

U U VT UBH E L L UE LE L LBFE L
2 I R
0 8 S o8 SES5E5E0&B8x2cE 285
v - 2 5 O = = o % o S0 =z
£ 85 8= EEEZ T £ T & :
T A Lo a8 L =L 33 £ &
Eaz<"rETSE TEL R
T a £ @ g
= £ E & a ~ 8
m £ 8 H | @

= o 3] =

= o

@

=

e

)

o0-Cymene .

L LY UCBTBETELEE L L

S S8 522 85 <& 85§

S8 8288388

B R EEEREEEEEE:

& " 8S s g oxTO =

= = °|2=_=

23222 % tI3 %

S o a X ¥ s c g

L]
g ca=a z
;

E] o o T

;

3 2
-

Figure 3. Spearman rank correlation analysis among 31 selected metabolites.

cold drug and did not state in their questionnaire.
However, it could have been avoided to a certain
extent by more careful and scientific design of ques-
tionnaire. In future research, we would give more
related examples and more strict definition of each
symptom and treatment. Secondly, some cigarettes
may contain menthol, and menthol cigarettes has
been confirmed to increase lung cancer risk [25,26].
So, it is not sure whether the regulation of monoter-
penoid biosynthesis pathway is related to lung cancer
or other factors including therapy and smoking.
Although their relation to lung cancer is not yet clear,
menthol, camphene and eucalyptol were detected
when comparing breath VOCs from smokers and non-
smokers with and without COPD [27]. This literature
also suggested even though some VOCs relate not

only to disease but also to smoking status, detections
of their concentrations still make sense for dis-
ease diagnosis.

As regard to toluene and xylene degradation, o-
xylene and acetic acid were found in this pathway.
Although we did not find any literature reporting the
relations of this pathway and lung cancer incidence,
toluene and xylene are confirmed to be risk factor of
lung cancer [28,29]. Additionally, they have been
detected in exhaled breath [30], especially they were
reported as lung cancer markers in exhaled breath in
a series of papers [31-34]. But many aromatic VOCs
were also reported as results of cigarettes exposure
[35], which made it doubtful whether they can be
available lung cancer markers. In our view, even cigar-
ette smoke may be the source of these molecules,
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Figure 5. ROC analysis based on PLS-DA. (a) ROC curve and (b) predictive accuracy in 100 cross validations.

their levels still make sense. Because the key point is
the difference of degradation capacity rather than
absolute concentrations of those molecules. To test
our hypothesis, we applied univariate statistical ana-
lysis in people with different genders and smoking
status. Group-wise differential metabolites were listed
in Supplementary materials (S4) which showed that
o-xylene was selected as differential metabolite both
in smokers and non-smokers. However, it has no sig-
nificant differences between subjects with and without
lung cancer, when we took all subjects including
smokers and non-smokers into consideration. Similar

results were shown in a dual centre study comparing
breath VOCs which was mentioned above [27]. In that
study, COPD patients were diagnosed from smokers
and non-smokers, respectively, to overcoming the con-
founding effects of smoking. However, the sample size
of each subgroup was limited. More longitudinal stud-
ies for aromatic VOCs should be conducted in future,
especially focussing on toluene and xylene degrad-
ation pathway.

Other pathways obtained in our study were
reported as lung cancer-related pathway before,
including  glycosaminoglycan  biosynthesis-heparan
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Figure 6. A heatmap of differential metabolite profiles of 236 samples.

sulphate, reductive carboxylate cycle (CO, fixation),
glycolysis/gluconeogenesis, C5-branched dibasic acid
metabolism, pyruvate metabolism, selenoamino acid
metabolism, taurine and hypotaurine metabolism and
sulphur metabolism. Although metabolism analysis
such as pathway enrichment were rarely used in stud-
ies on lung cancer biomarkers in breath, similar stud-
ies have been conducted based on miRNA or DNA
data. That provides lots of meaningful information for
our work. Higher impact values indicated that these
metabolic pathways are more relevant to the patho-
genesis of lung cancer. Among all pathways, we

enriched, glycosaminoglycan biosynthesis-heparan sul-
phate with rich factor of 0.333 (p=.008) may be the
most possible dysregulated pathway related to lung
cancer. Yang et al. reported it as one of the biologic
pathways enriched by differentially expressed smoking
and lung cancer specific miRNA [36]. Similarly, reduc-
tive carboxylate cycle (CO, fixation) was reported as
lung cancer related pathway in 2016 [37]. Wang et al.
investigated specific genotypes of different subtypes
or stages of lung cancer through gene expression var-
iations of chromosome 2 genes. IDH1 were selected as
differential gene and enriched to reductive carboxylate
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Figure 7. Bubble plot of the metabolic pathway.
Table 3. Pathway enrichment analysis based on differential metabolites.
KEGG ID annotation Annotation Rich factor p-value Matching IDs
map00902 Monoterpenoid biosynthesis 0.0682 .00022228 C00400
C06076
C09844
map00622 Toluene and xylene degradation 0.0417 .00750019 00033
C07212
map00534 Glycosaminoglycan biosynthesis-heparan sulphate 0.3333 .00818327 00033
map00720 Reductive carboxylate cycle (CO, fixation) 0.0625 .04290716 C00033
map00621 Biphenyl degradation 0.0435 06111813 C06575
map00010 Glycolysis / Gluconeogenesis 0.0323 .08152337 00033
map00660 (5-Branched dibasic acid metabolism 0.0313 .08404388 00033
map00620 Pyruvate metabolism 0.0313 .08404388 00033
map00450 Seleno-amino acid metabolism 0.0333 .07899619 00033
map00430 Taurine and hypotaurine metabolism 0.0500 .05335453 00033
map00920 Sulphur metabolism 0.0556 .04814461 00033
map00440 Phosphonate and phosphinate metabolism 0.0222 11621235 00033
map00908 Zeatin biosynthesis 0.0256 1015025 00033
map00624 1- and 2-Methylnaphthalene degradation 0.0222 11621235 C14082
map00140 Steroid hormone biosynthesis 0.0101 .23859889 02373
map01062 Biosynthesis of terpenoids and steroids 0.0102 23648811 C06076
map01110 Biosynthesis of secondary metabolites 0.0029 .55196064 00033
C00400
C06076
map01100 Metabolic pathways 0.0021 .78425283 C00033
C06076
C07212

cycle (CO, fixation) pathway which is upregulated in
lung cancer. Huang et al. performed a meta-analysis of
4 lung cancer microarray datasets encompassing 353
patients to reveal differentially expressed genes
between normal lung tissues and lung cancer of differ-
ent stages [38]. Overall, 1838 genes were found to be
dysregulated. glycolysis/gluconeogenesis were showed
to be one of significantly regulated pathway in lung

cancer. As regard to C5-branched dibasic acid metab-
olism, a genome-scale metabolic models for exploring
changes in metabolism under normal and cancer con-
ditions have concluded this pathway is relevant to
lung cancer and prostate cancer [39]. Additionally, its
dysregulation is also related to cystic fibrosis which is
one of the risk factor of lung cancer [40]. As with
pathways above, pyruvate metabolism [41,42], seleno-
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Table 4. Potential biomarkers of lung cancer in
exhaled breath.

Name HMDB PubChem KEGG CAS
Hexanal HMDB0005994 6184 (02373 66-25-1
o-Xylene HMDB0059851 7237 C07212  95-47-6
Acetic acid HMDB0000042 176~ C00033  64-19-7
Camphene HMDBO0059839 6616 C06076  79-92-5
p-Cymene HMDB0005805 7463  C06575 99-87-6
Menthol HMDBO0003352 16666 C00400 2216-51-5
1-Methylnaphthalene  HMDB0032860 7002 C14082 90-12-0
Eucalyptol HMDB0004472 2758 (09844 470-82-6

amino acid metabolism [43] taurine and hypotaurine
metabolism [44] also be confirmed to be closely
related to lung cancer through other kinds of
omics data.

Although we believe that abnormalities of VOCs
in breath of lung cancer patients are closely related
to dysregulation of these pathways, results are not
convinced enough. More details about relationship
between lung cancer and volatile metabolites, like
genetic-level information, are necessary. Other kinds
of omic data have also been involved in HMDB,
which made it more compatible with the increasing
number of multi-omic or systems biology studies
[16]. Recently, efforts have been made on searching
lung cancer markers in exhaled breath condensate
(EBC) where genes [45] and proteins [46] could be
detected. With different sampling technique, multi-
omics data including VOCs, genes and proteins
could be acquired in exhaled breath, simultaneously.
Therefore, studies combining volatile breath and EBC
may be a promising way to do some data mining
on exhaled Ilung cancer markers and their
related pathways.

There still some limitations in this study. As far as
we known, subtypes and stages of lung cancer have
influences on metabolic disorders. However, the
sample size in our study is not enough for compari-
sons among subgroups. Other limitation is that too
many VOCs were not involved in HMDB database,
owing to few studies on pathway related to volatile
metabolites. Therefore, metabolomics cannot work in
exploring breath marker as well as it should be.
Further, lack of standards of sampling techniques
and analytical techniques may lead to different
results between various studies. For instance, expira-
tory flow rate, breath hold and inclusion of anatom-
ical dead space were reported to be significant
influence factors of breath test [47]. Addressing
these weaknesses requires more researchers making
efforts to expand the metabolic dataset, and stand-
ardize the sampling and analytical techniques.

5. Conclusion

A key challenge for efforts to apply breath diagnosis
of lung cancer in clinical is the lack of clear explan-
ation about relationship between volatile makers and
lung cancer. Although our study failed to provide a
list of all markers in breath, we still open the possibil-
ity of exploring dysregulated pathway which result in
variation of VOCs in breath, which may illustrate
where these markers derived from. We believe that
with the gradually improved bioinformatic database
(e.g. HMDB or KEGG) the bottleneck of studies on
exhaled markers of lung cancer may be removed.
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