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Essentials
•	 Hemostatic complications associated with ventricular assist devices (VADs) are common, and multiple manifestations can coexist in the 

same patient.
•	 Pump thrombosis is a devastating complication that typically requires surgical management.
•	 Αcquired von Willebrand disease is an underdiagnosed manifestation associated with VADs that can complicate anticoagulant management.
•	 Maintaining a balance between bleeding and thrombosis risks is key to managing patients with VADs.
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1 | INTRODUCTION

Over the past 2 decades, the use of ventricular assist devices (VADs) 
has increased dramatically. The first VADs were used in acutely 
ill patients as a bridge to transplant; more recently, left VADs are 

implanted in patients for end‐stage chronic heart failure as desti-
nation therapy (ie, long‐term use). With the increased use of VADs, 
a greater understanding and appreciation of the unique hemo-
static complications associated with these devices has developed. 
In this review, we discuss the types of VADs currently in use and 

Abstract
Hemostatic complications are common in patients with ventricular assist devices. 
The pathophysiologic mechanisms that lead to dysregulated hemostasis involve com-
plex interactions between device surface, sheer stress, and blood flow. These factors 
lead to various manifestations that require a thorough understanding of the inter-
play among platelets, coagulation factors, and red cells. In this article, we review the 
pathophysiology of hematologic complications (bleeding, acquired von Willebrand dis-
ease, heparin-induced thrombocytopenia, hemolysis, stroke and pump thrombosis), 
the clinical manifestations, and the management of each. We summarize the evidence 
available for management of these entities and provide a pragmatic clinical review.
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their indications. The pathophysiology and clinical manifestations 
of coagulation defects seen in patients with VADs will be dis-
cussed, followed by management strategies of patients with these 
complications.

2  | VENTRICULAR ASSIST DEVICES

The burden of chronic heart failure (HF) is significant, with >870 000 
new cases diagnosed in the United States per year and a lifetime 
risk of developing HF of 1 in 5 for men and women after the age of 
40.1 Despite advances in our understanding of this syndrome, mor-
tality remains high, with a 50% mortality rate 5 years after diagnosis, 
which is higher than several common malignancies.2‒4 Moreover, 
the number of individuals who progress to end‐stage HF remains 
large, with few durable long‐term treatment strategies. Great strides 
have been made in medical and device therapy for HF; however, the 
prevalence of HF continues to rise, with estimates of a 46% increase 
by 2030 with total costs estimated at almost $70 billion.1 Beyond 
medical therapy, heart transplant remains the best therapy for end‐
stage HF with actuarial survival approaching 14  years.5 However, 
few individuals are candidates for this treatment, and the demand 
far exceeds the supply.

Mechanical circulatory support has been in evolution since the 
National Institutes of Health first started the artificial heart program 
in the 1960s. VADs are a manifestation of the program, serving now 
as destination therapy—treatment that supports the existing heart, 
not just until a heart transplant but also for the remainder of the 
patient's life. VADs have dramatically improved patients’ overall 
survival and quality of life. In addition to technical improvements in 
device design, there has been a shift in patient selection from criti-
cally ill patients in shock to patients with advanced class III‐IV HF.6 
Since 2005, data from >15 000 patients have been entered into the 
Interagency Registry for Mechanically Assisted Circulatory Support 
(INTERMACS).6 Outcomes are generally good, with enhanced sur-
vival (1‐year survival of 80%) and improved function and quality of 
life.7

The first generation of devices used pulsatile technology with 
integrated valve regulated flow. The first randomized trial, the 
REMATCH (Randomized Evaluation of Mechanical Assistance for 
the Treatment of Congestive Heart Failure) trial, demonstrated 
a survival advantage of the pulsatile VAD over optimal medical 
treatment.8 Second‐ and third‐generation devices have addressed 
device durability issues by removing valve‐regulated flow and mov-
ing to axial and centrifugal technology using blood as the bearing 
fluid. As such, the REMATCH II trial was conducted 10 years after 
REMATCH using the axial continuous‐flow HeartMate II (Thoratec 
Corp., Pleasanton, CA); it showed improved overall survival and 
reduction in adverse events compared to the pulsatile HeartMate 
XVE.9 The US Food and Drug Administration (FDA) subsequently 
approved the HeartMate II device as destination therapy. It re-
sulted in improved morbidity and mortality compared to first‐gen-
eration devices, providing a more stable platform for patients with 

end‐stage HF awaiting transplant or those who are transplant 
ineligible.10‒12

The HeartMate 3 centrifugal continuous‐flow device is the 
most recent VAD engineered to improve hemocompatibility and 
reduce shear stress. It was compared with the HeartMate II in 
the MOMENTUM3 (Multicenter Study of MagLev Technology in 
Patients Undergoing Mechanical Circulatory Support Therapy With 
HeartMate 3) trial, and showed superiority over the HeartMate II in 
the composite end point of disabling stroke and reoperation rate for 
pump thrombosis at 6 months after implantation, with an event‐free 
survival at 6 months of 86.2% in the centrifugal‐flow pump group and 
76.8% in the axial‐flow pump group. There was no difference in death 
or disabling stroke between the groups, but reoperation for pump 
malfunction was less frequent in the centrifugal‐flow pump group 
than in the axial‐flow pump group.13 This device is approved for use in 
the European Union and was approved by the FDA in October 2018 
for use as short‐term and long‐term therapy for patients with ad-
vanced refractory HF. The ENDURANCE (The HeartWare Ventricular 
Assist System as Destination Therapy of Advanced Heart Failure) trial 
similarly assessed the safety and effectiveness of the centrifugal‐flow 
left VAD—HeartWare HVAD (Medtronic, Dublin, Ireland)—relative to 
a control, axial‐flow left VAD in patients with advanced heart failure. 
The primary end point of survival at 2 years free from disabling stroke 
or device removal for malfunction or failure in the intention‐to‐treat 
population showed that the HeartWare centrifugal‐flow device was 
noninferior to the control device.14

From these trials, it was clear that VADs are associated with signif-
icant morbidity and mortality; morbidities include bleeding, infection, 
pump thrombosis, and stroke. An analysis of US registry data of cu-
mulative event rates in 8644 patients found that approximately 29% 
experienced bleeding events and 17% experienced neurologic com-
plications (stroke and hemorrhage).15 Therefore, comorbid conditions 
are important in candidate selection, and prior clotting disorders or 
bleeding diatheses are important considerations. Inability to tolerate 
anticoagulation due to prior bleeding events on oral anticoagulants 
remains a contraindication to VAD support. Additional comorbidities 
such as renal and hepatic dysfunction, prior chest surgery, peripheral 
arterial disease, and diabetes mellitus are important considerations 
for optimal candidate selection and timing of VAD implant.

3  | PATHOPHYSIOLOGY OF 
HEMATOLOGIC COMPLICATIONS

The placement of a VAD can lead to a variety of hematologic com-
plications. The etiology of these complications is due to both the 
presence of a large foreign body (nonendothelial surface) and in-
creased shear forces acting on flowing blood and its cellular compo-
nents. Conceptually, there is a “VAD triad” analogous to Virchow's 
triad consisting of the interactions of (1) artificial surface, (2) blood 
alterations, and (3) the effects of abnormal flows (Figure  1). The 
major blood components that are affected by the presence of a 
VAD are coagulation factors, platelets, and erythrocytes.
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3.1 | Coagulation factors

When placed, the VAD presents a large area of a nonendothelial sur-
face to flowing blood. Plasma protein absorption by the surface is the 
first thing to occur.16 These proteins include fibrinogen and contact 
pathway proteins (factor XII, kallikrein and high‐molecular‐weight 
kininogen). Fibrinogen can offer binding sites for platelets, leading 
to the formation of platelet aggregates. The binding of the contact 
system proteins to the surface leads to activation of coagulation by 
generating factor IXa, which can then lead to thrombin generation.17 
Studies have shown that with VAD placement there is depletion of 
contact pathway proteins over the first 2 weeks, suggesting activa-
tion with resultant protein depletion.18

3.2 | Platelets

Platelets become activated both by interactions with the nonen-
dothelial surface and by the high shear forces. The nonendothelial 
surface introduced can activate platelets directly, independently of 
fibrinogen or contact system proteins. In an in vitro study, 15 min-
utes after blood was exposed to a surface, 5 to 16 platelets per 
1000  μm were deposited—with this number increasing by 40% to 
50% with the applied shear force.19 The presence of a rapidly rotat-
ing pump is another surface reaction that can lead to very high shear 
forces, much more than those found in normal circulation; this can 
lead to alterations in von Willebrand protein, platelets, and erythro-
cytes.20 In the above‐mentioned in vitro model, levels of platelet fac-
tor 4 (PF4)—a marker of platelet activation—were increased within 
120 minutes.21 High shear unfolds von Willebrand protein, exposing 
platelet‐binding sites. Platelets bind and become activated, recruit-
ing more platelets to bind to von Willebrand proteins, resulting in the 
formation of platelet thrombi.22 One would hypothesize that activa-
tion of platelets can lead to platelet deposition in the inner linings of 
the thrombus. However, a histopathologic analysis of thrombi from 
the HeartMate II VAD showed that the inner rings of the throm-
bus were rich in fibrin and von Willebrand factor (VWF). Platelets 
were found in the outer rings, suggesting that they may have a role 
in thrombus growth as well.23

The presence of a nonendothelial surface can also be a source 
of platelet dysfunction. In one study, 69% of patients with VADs 
had impaired ristocetin‐induced platelet aggregation and decreased 
activity of plasma VWF, presumably due to lack of high‐molecular‐
weight VWF multimers.24 Finally, the vast majority of VAD patients 
are on antiplatelet agents, and those agents will augment platelet 
dysfunction.25 Clinically, the platelet function assays are abnormal in 
all patients, likely reflecting both platelet dysfunction and acquired 
von Willebrand disease (aVWD).26,27

3.3 | Erythrocytes

Erythrocytes do not tolerate the high shear forces found in VADs 
and can be disrupted. The magnitude of the shear force needed to 
disrupt erythrocytes is 15 times higher than that required to unfold 
von Willebrand protein and 3 times higher than that required to ac-
tivate platelets, so only a limited amount of VAD blood flow leads to 
red cell destruction.20 Routinely, with VAD placement there is an in-
crease in hemolysis due to presence of focal areas of very high shear. 
However, this hemolysis is markedly accentuated with the formation 
of pump thrombi.28 Presence of thrombin in the blood flow leads to 
local areas of very high shear, with resultant erythrocyte destruction 
and clinically evident hemolysis.

4  | CLINICAL HEMATOLOGIC 
MANIFESTATIONS

4.1 | Acquired von Willebrand disease

The high shear stress associated with VADs leads to aVWD. Von 
Willebrand protein is synthesized as a dimer that then polymerizes 
to form ultra‐large multimers over 20 000 kD in size. When released 
from endothelial cells, these ultra‐large multimers are large enough 
to allow spontaneous binding and aggregation of platelets. As spon-
taneous platelet aggregation is undesirable in normal circumstances, 
von Willebrand protein undergoes cleavage by ADAMTS‐13, result-
ing in formation of high‐molecular‐weight (HMW) multimers. The 
multimers are <20 000 kD in size but are the most effective in pro-
moting hemostasis.

Von Willebrand protein usually circulates in a folded‐up configu-
ration, but under shear stress it can extend into long strings.29 This 
unfolding exposes the von Willebrand A2 domain, which is a site for 
ADAMTS‐13 cleavage, leading to loss of the most hemostatically 
effective HMW multimers. In addition, high levels of shear forces 
can lead to physical breakdown of HMW multimers, which further 
adds to the aVWD.30 The onset of aVWD after VAD placement is 
rapid, often occurring immediately after surgery.31,32 In an in vitro 
model, the onset of aVWD was within 2 hours of starting blood flow 
through the device, demonstrating the rapidity of protein degrada-
tion.21 The aVWD appears to last as long as the VAD is in place—
even up to 80 months. The resolution of aVWD is also rapid after 
VAD removal—often within 1 week.33

F I G U R E  1   VAD Triad
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On laboratory testing, the levels of von Willebrand protein are 
markedly elevated, but ratio of von Willebrand activity to protein are 
markedly lower, <0.7, reflecting the loss of the HMW multimers.34 
Multimer analysis demonstrates that the levels of the HMW frac-
tions are decreased by 30%, with a concomitant rise in the medium‐ 
and low‐molecular‐weight fractions.26 Studies reveal that decreased 
or absent HMW multimers are very common, occurring in virtually 
all patients with a VAD.33 However, the level of VWF activity of pro-
tein is not the only explanation for clinical bleeding seen in patients 
with VADs.35 In one prospective study, 27% of patients with loss of 
HMW multimers had bleeding complications.27

4.2 | Hemolysis

Hemolysis is a common phenomenon seen after implantation of a 
VAD. In clinical practice, hemolysis can be an early marker of throm-
bosis, and routine monitoring for changes in plasma free hemoglobin 
and/or lactate dehydrogenase (LDH) help to diagnose potential 
thrombus development. Patients may have asymptomatic changes 
in these serum markers, and a careful assessment of pump param-
eters and markers of ventricular unloading through noninvasive or 
invasive means is important in deciding either to increase anticoagu-
lation, to administer thrombolytics, or to proceed to pump exchange. 
One particular form of mechanical circulatory support (MCS) associ-
ated with hemolysis is the Impella device, which is increasingly used 
in cardiogenic shock. The rate of hemolysis is approximately 60% in 
patients who require long‐term (>24 hours) support.36

Free hemoglobin is routinely used to assess erythrocyte de-
struction. False‐positive results can be seen when hemolysis occurs 
during blood sampling and in high bilirubin states, such as in hepatic 
dysfunction from right ventricular heart failure, drugs, or sinusoidal 
endothelial dysfunction.37 Haptoglobin, a protein synthesized by 
the liver, binds free hemoglobin in states of hemolysis and is usually 
depleted. However, reduced synthesis due to liver impairment can 
result in low levels of haptoglobin without hemolysis. An increase in 
LDH of >2.5 times the upper limit of normal can be indicative of early 
device thrombosis.11

Free hemoglobin is normally filtered through the glomerulus and 
actively reabsorbed in proximal tubule cells, where it is catabolized 
with release of iron in the form of hemosiderin. When the reabsorp-
tion capacity of the kidney is exceeded, hemoglobinuria occurs.38 
This can lead to acute renal failure during severe episodes of in-
travascular hemolysis. Furthermore, chronic intravascular hemoly-
sis can lead to hemosiderin deposition in the proximal tubule and 
Fanconi syndrome.39

Other clinical manifestations of intravascular hemolysis are re-
lated to local and systemic nitric oxide deficiency, resulting in endo-
thelial dysfunction. In animal models, nitric oxide has been shown 
to inhibit platelet aggregation and adhesion by increasing cyclic 
guanine monophosphate levels.40 In deficiency states, such as ni-
tric oxide scavenging by hemoglobin, platelet aggregation increases, 
as shown in studies of healthy volunteers.41 Nitric oxide also has 
a role in smooth‐muscle regulation.38 This was demonstrated by 

administration of hemoglobin preparations to healthy human vol-
unteers, resulting in abdominal pain, esophageal spasms, and 
dysphagia.42

The seventh INTERMACS annual report showed that patients 
who required a pump exchange had a worse survival compared to 
patients who did not require a pump exchange.6 However, this likely 
reflects poor outcomes once refractory hemolysis develops regard-
less of whether patients undergo pump exchange. In another study, 
patients treated with medical therapy intensification had worse out-
comes than patients who underwent pump exchange (1‐year free-
dom from stroke or death of 49.5% and 87.5% in the medical and 
surgical cohorts, respectively; P = 0.027.43

4.3 | Thrombosis

Despite many efforts put in place to make the VAD surface less 
thrombogenic as well as the use of aggressive anticoagulation tech-
niques, thrombotic complications remain the most feared VAD‐re-
lated complications with rates of 7% to 16% per year.44,45

4.3.1 | Stroke

Strokes occur with an incidence ranging from 7% to 10% per year 
according to one meta‐analysis.46 Studies consistently show that 
about 50% of strokes in this setting are embolic and 50% are hem-
orrhagic.47,48 The etiology of embolic strokes is assumed to be for-
mation of thrombi in the pump, which are then the source of the 
emboli, as they have direct access to the arterial outflow. However, 
it is important to recognize that patients with HF may have atrial 
fibrillation and prior left ventricular mural thrombi, both of which 
may be sources of thrombus formation. Hemorrhagic strokes may 
be primary brain bleeds or hemorrhagic transformation of em-
bolic strokes. Strokes are an adverse prognostic indicator, with a 
case fatality rate of 13% and double the risk of death over the long 
term.45,49 International normalized ratio (INR) control appears to be 
important, as strokes are increased with INR <1.5 to 2.0, and hemor-
rhagic strokes increase with INR >3.0.50

4.3.2 | Pump thrombosis

The other devastating thrombotic complication of VAD placement is 
pump thrombosis. Rates vary in the literature but range from 5.5% to 
12%.51 Diagnosis of early thrombosis can be subtle, but 4 early signs 
are pump power elevation, a rise in LDH, evidence of hemolysis, or 
new heart failure symptoms.52 A rise in LDH is a sensitive and early 
sign of pump thrombosis.53 Thrombi in the pump disrupt blood flow, 
causing an increase in shear forces and red cell destruction, which 
leads to a marked increase in LDH levels—often >1000 μ/L.51,54,55 
Pump findings include increased power need or the finding that in-
creasing power to the pump does not increase blood flow.54

Imaging with echocardiography or computed tomography can 
show either signs of thrombosis or changes in blood flow sugges-
tive of obstruction to flow that may be consistent with thrombosis in 
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the pump. The pump ramp test looks to evaluate whether increasing 
pump speed leads to decreased left ventricular volume or unloading 
of the ventricle. In a normal‐functioning VAD, the increased speed 
would lead to “draining” of the ventricle, but if the flow is blocked, 
this decrease in ventricular size is blunted. Falling blood pressure and 
cardiogenic shock are late signs.

The rate of pump thrombosis for the patients with a HeartMate 
II VAD was noted to be increased in many centers in 2013.11 The 
etiology for this is not known, but speculation ranges from subtle 
changes in the pump design and preparation to less intense antico-
agulation or to no heparin bridging after pump placement. An anal-
ysis of this device in the INTERMACS registry found an increase in 
pump exchange due to thrombosis from 2009 to 2012.56 Indeed, 
pump design may also play a role in prevention. The HeartMate 
3, a fully magnetically levitated centrifugal continuous‐flow pump 
with a change in speed every 2 seconds as a means to wash the 
rotor, showed lower rates of pump thrombosis compared to the 
HeartMate II.13

4.4 | Heparin‐induced thrombocytopenia

The combination of heparin exposure and increased platelet activa-
tion places patients with VADs at risk for heparin‐induced thrombo-
cytopenia (HIT). HIT is a platelet activation syndrome mediated by 
antibodies to heparin‐PF4 protein complexes that activate platelets 
and lead to thrombocytopenia and thrombosis. One difficulty in as-
sessing both patients and the literature on HIT incidence is the pres-
ence of frequent false‐positive anti‐PF4 antibodies, evaluated by 
PF4 ELISA, in this setting as with any cardiac surgery population.55 
Studies do show high rates of PF4 antibody formation in the 50% 
range, but the rate of finding platelet‐activating PF4 antibodies is 
10%, which is higher than in cardiac surgery or other high‐risk set-
tings.57‒60 The presence of platelet‐activating PF4 antibodies does 
markedly increase the risk of thrombosis.

The most sensitive sign of HIT is a ≥50% fall in the platelet 
count.59 In assessing the VAD patient at risk for HIT, one needs to 
keep other causes of thrombocytopenia in mind, such as recent sur-
gery or infections. The 4Ts score is a pretests clinical scoring system 
that takes into account the degree of thrombocytopenia, timing of 
platelet count fall, other causes of thrombocytopenia, and throm-
bosis, and has been shown to have a high negative predictive value 
(ie, low‐probability 4Ts score essentially excludes HIT) in a system-
atic review and meta‐analysis.61 Furthermore, one study has shown 
that combining 4Ts clinical score with the PF4 ELISA test increases 
sensitivity and specificity.62 In patients with thrombocytopenia and 
a high 4Ts score, especially with new thrombosis, blood should be 
drawn for PF4 ELISA testing. If the ELISA test is positive, patients 
need to be changed to an alternative anticoagulation. Given the high 
false‐positive rate, anti‐PF4 antibodies need to be confirmed with 
heparin‐induced platelet activation testing (serotonin release assay), 
which is specific for HIT.61

The first step in treatment of HIT is to avoid heparin. 
Alternatives for anticoagulation include argatroban, bivalirudin, or 

fondaparinux.63,64 For patients with renal insufficiency, argatroban 
is the preferred choice. Clearance of argatroban is decreased in he-
patic disease, and the dose is typically decreased as well. Given its 
long half‐life, renal clearance, and lack of validated methods for mon-
itoring, fondaparinux is not routinely used in patients with MCS. Our 
preferred choice is therefore bivalirudin unless a patient has severe 
renal insufficiency.

4.5 | Bleeding

Bleeding can occur in up to 80% of patients with VADs, with a 
meta‐analysis reporting an overall rate of 30% (10% of which are 
fatal).45 There are several patterns of bleeding. There is an early 
increased incidence of bleeding with or after surgery requiring 
reoperation in 14% to 30% of patients.65‒67 Factors that put pa-
tients at risk for surgical bleeding include anticoagulation before 
surgery and renal and/or liver dysfunction due to heart failure. 
Other risk factors for surgical bleeding are older age and cardio-
genic shock.65,68

The need for long‐term combination antiplatelet and anti-
thrombotic therapy is a risk factor for bleeding. In addition, aVWD 
and platelet dysfunction are also risk factors for bleeding. Finally, 
changes in blood flow due to the VAD, especially continuous‐flow 
models, may lead to anatomic causes of bleeding. In the late post-
operative period, bleeding is usually from the gastrointestinal (GI) 
tract or intracranial. The most serious site of bleeding is intracranial 
hemorrhage, with rates of 1% to 9% per year being reported.69 In a 
pediatric series, the rate was 17%, with most patients dying of the 
intracranial bleed.70

The most common site of bleeding is the GI tract, with up to 5% 
to 40% suffering this complication.71‒74 The site of bleeding can 
be anywhere in the GI tract and is often a challenge to diagnose, 
as it may be related to diffuse angiodysplasia. Studies showed an 
8.7% to 38% rate of ulcers and gastritis, presumably due to both 
antiplatelet agents and stress.72,75 Arteriovenous malformations 
are a particular source of bleeding, especially in patients with 
continuous‐flow pumps.72 With the advent of continuous‐flow 
devices, the risk of GI bleeding was noted to increase—in some 
studies >10‐fold over pulsatile flow devices.71 In these patients, 
the site of bleeding was found to be arteriovenous malformation, 
with a rate of 20% to 60% being reported.76 Given the associa-
tion of continuous‐flow pumps and arteriovenous malformation, it 
has been hypothesized that the lack of pulse pressure is a key risk 
factor for the development of abnormal vasculature. Supporting 
this idea is the increased risk of arteriovenous malformations seen 
in other disease states marked by lack of pulse pressure such as 
aortic stenosis.77 Theories on etiologies for arteriovenous mal-
formations range from an increased sympathetic tone leading to 
smooth‐muscle relaxation and vessel dilation to hypoperfusion 
resulting in local hypoxia and vascular dilation.73,75 Other postu-
lated mechanisms include the impact VWF may have on vascu-
lar integrity, including the possibility that VWF fragments may be 
proangiogenic (Table 1).78
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5  | MANAGEMENT STRATEGIES

5.1 | Bleeding

Life‐threatening major hemorrhage is managed with immediate re-
versal of anticoagulation using prothrombin complex concentrate 
for warfarin79 and platelet transfusions to reverse the antiplatelet 
effect. The role of von Willebrand replacement is controversial given 
that any infused factor is likely to be rapidly degraded.15 It has been 
proposed that reducing pump speed may help, as this may lessen 
shear forces and degradation of VWF. However, even with reduced 
pump speed, the shear forces generated are still an order of magni-
tude greater than physiologic levels and von Willebrand degradation 
still occurs. For patients with GI bleeding, where most studies show 
the majority of the bleeding lesions are in the upper tract, esophago-
gastroduodenoscopy (EGD) is the first diagnostic approach. If EGD 
is negative, a pill endoscopy is an option to image the small bowel, 
which is often the site of arteriovenous malformations.66,75 For pa-
tients with frankly bloody stools, colonoscopy is the first choice for 
evaluation.

Mild to moderate bleeding requires an individualized assessment 
to identify the best approach for management. Epistaxis or mild GI 
bleeding can be managed by holding aspirin. Another approach is 
to lower the INR goal; however, it has been shown that lessening of 
anticoagulation may lead to thrombosis. Having a GI bleed is also a 
7.4‐fold risk factor for stroke, perhaps due to the need to decrease 
or halt anticoagulation.72

Longer‐term management of bleeding patients is less settled, as 
patients often rebleed after the first event.72 Reduction of anticoag-
ulation should be considered only for patients with recurrent severe 
bleeding. However, even off anticoagulation, the rate of rebleeding 
approaches 40%.80 There are anecdotes about the use of octreotide 
to control bleeding from arteriovenous malformations, but results 
are contradictory, and again this should be reserved for patients for 
whom there are no other options to control bleeding.81,82 There are 
preliminary promising data for omega‐3 fatty acids, where the use 
of 4 g daily resulted in lower rates of GI bleeding (3%) compared to 

22% in a retrospective control group, but these results need to be 
confirmed in a randomized clinical trial.83

5.2 | Anticoagulation

Antithrombotic therapy with both anticoagulation and antiplatelet 
agents is crucial in preventing thrombotic complications in VAD pa-
tients. It was once standard that patients after VAD placement be 
treated with heparin until warfarin achieves a therapeutic INR. Now 
it is not uncommon to find heparin being held in this period to de-
crease early postoperative bleeding rates.84‒87 However, this lack of 
heparin has led to recent concern of an association with increased 
risk of pump thrombosis. It may be prudent to limit holding heparin 
to patients at high risk of bleeding, such as those with previous GI 
bleeding or other risk factors for hemorrhage.84

Given the role of platelet activation by surfaces and shear, aspirin 
is started when surgical bleeding stops. There is no consensus on dos-
ing, with recommendations ranging from 81 to 325 mg depending on 
centers.87 One center has reported decreased stroke risk with 325‐
mg dosing, but other studies show increased bleeding.65 Conversely, 
a small study eliminated the use of aspirin and used warfarin with an 
INR of 2 to 2.5 with low thrombosis and bleeding rates. This provoca-
tive finding will need to be confirmed by larger studies.88

Warfarin is started with varied INR goals among centers as well 
as consideration of patient risk factors for either bleeding or throm-
bosis.45 Most INR goals are in the 2 to 3 range, but many centers 
using HeartMate II will drop this to 1.5 to 2.5 based on data show-
ing less bleeding with no increase in thrombosis with INRs in this 
range.84,89 Studies show that with HeartMate II patients, the highest 
rate of thrombosis was with INRs <1.5, but the rate was still high 
with INRs of 1.5 to 2.0. Bleeding increases slightly with INRs >2.5 to 
3.0 but increases substantially with INRs >3.5.49 One challenge with 
warfarin is that, due to illness and polypharmacy, these patients have 
may have unstable INRs. The time in therapeutic range for VAD pa-
tients is only 30% to 50%.65 This time in range is considerably lower 
than that reported in atrial fibrillation patients, and this instability of 
anticoagulation may add to both bleeding and thrombosis risk.

TA B L E  1   Hematologic manifestations and their management

  Signs Treatment Long‐term

Pump thrombosis Increase LDH or plasma free hemo-
globin, hemolysis, new or worsening 
heart failure, failed pump ramp test

Heparin Eptifibatide  
Thrombolytics (intravenous or 
intraventricular) 

Surgery preferred (pump replacement)

Increase INR range 2.5‐3.5 
Increase aspirin dose to 325 mg/daily

Heparin‐induced 
thrombocyto-
penia

Thrombosis, thrombocytopenia without 
alternative explanation (drug‐induced, 
sepsis)

Argatroban 
Bivalirudin

Avoid heparin products

Bleeding Depends on site of bleed and severity Warfarin: prothrombin complex 
concentrate 

Antiplatelet agents
•	 Aspirin: 1 plateletpheresis unit
•	 Other agents: 2 plateletpheresis units

Reduce INR goal to 1.5‐2.0 (if moder-
ate bleed), or halt (if severe bleed) 

Risk/benefit discussion

INR, international normalized ratio; LDH, lactate dehydrogenase.
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Traditionally, heparin is monitored by the activated partial throm-
boplastin time (APTT). However, this test can be affected by warfarin, 
high factor VIII due to underlying inflammation, and hemolysis. Recent 
studies have shown that the APTT underestimates heparin require-
ments for VAD patients when compared to heparin levels measured 
by anti‐Xa activity.90 One of the factors responsible for this discrep-
ancy is residual warfarin effect. It has been shown that for every 1.0‐
unit rise in INR >1, the APTT increases by 16 seconds, which can lead 
to falsely high APTTs.91 Elevations of LDH >1000 also interfere with 
the APTT assay. For patients who are taking or have recently taken 
warfarin and for those with high LDHs, using heparin levels via the 
anti‐Xa assay may result in more accurate heparin dosing and does not 
lead to an increased risk of bleeding despite supratherapeutic APTTs.

The direct oral anticoagulants (DOACs) have been shown in the 
setting of venous thromboembolism and atrial fibrillation to be just as 
effective as warfarin with lesser rates of bleeding, including intracranial 
hemorrhage and fatal bleeding. Given the lack of need for monitoring 
as well as no food and minimal drug interaction, the DOACs are at-
tractive for the replacement of warfarin in VAD patients. A small study 
of 7 patients using dabigatran showed no excess rate of bleeding or 
thrombosis.92 However, a single‐center, randomized trial of dabigatran 
vs. warfarin was terminated early due to increased thromboembolic 
events associated with dabigatran.93 Furthermore, given the negative 
experience with dabigatran use in mechanical heart valves, routine use 
cannot be recommended until ongoing clinical trials are completed.

5.3 | Pump exchange

Treatment of pump thrombosis is primarily surgical, involving 
exchange of the pump or urgent cardiac transplant when feasi-
ble. While the patient is being evaluated, initial medical therapy 
consisting of heparin is started, but this alone is considered insuf-
ficient to treat pump thrombosis.15,51,54 Some groups have tried 
adding glycoprotein IIb/IIIa inhibitors, usually eptifibatide, for 24 
to 48 hours, but this can be complicated by bleeding and stroke. 
A large study using eptifabatide 0.1 to 2.0  μg/kg/min with no 
bolus showed only a 17% success rate and a mortality rate of 41% 
with a 63% rate of bleeding.94 Thrombolytics have also been tried 
with a variety of dosing protocols, ranging from a 100‐mg bolus 
of tissue‐type plasminogen activator (t‐PA) to an intraventricular 
infusion of 1 mg/min, which can limit the total amount of thrombo-
lytics infused.54,95 A novel approach uses a low‐dose infusion of a 
bolus of 3 mg and then a 5‐ to 6‐hour infusion of t‐PA at 3 mg/h.54 
However, the results of medical therapy are poor, with studies 
showing only 23% to 50% success and high rates of complications: 
10% to 15% stroke, 65% bleeding, and 17% to 52% mortality.51,52 
Data for surgical replacement are better, with only 0% to 6.5% 
early mortality, making this the therapy of choice.

The key to prevention of pump thrombosis is adequate anticoag-
ulation. INRs must be monitored frequently to keep patients in the 
therapeutic range. For patients with a history of pump thrombosis, it 
is prudent to aim for a higher INR range of 2.5 to 3.5. Some also have 
advocated increasing the aspirin dose to 325 mg/d.

6  | PERIOPERATIVE MANAGEMENT FOR 
NONCARDIAC SURGERY

As discussed previously, all patients with a left VAD will likely be 
maintained on anticoagulation. In patients undergoing noncardiac 
surgery, appropriate anticoagulation bridging should be undertaken. 
Warfarin should be discontinued 2 to 5 days preoperatively and a 
heparin infusion initiated until the morning of the planned proce-
dure.96,97 For patients with a history of HIT, both argatroban and 
bivalirudin are recommended for bridging. In some cases, patients 
with an increased risk of bleeding due to platelet dysfunction and 
aVWD may be safely taken to surgery without bridging if there is 
concern for hemorrhage intra‐ or postoperatively.98

In the postoperative setting, anticoagulation should be re-
sumed when the risk of postoperative bleeding is deemed ac-
ceptable.99 It is generally recommended that heparin be used in 
this setting if there are no contraindications, but some case se-
ries have suggested that warfarin may be resumed without the 
need for heparin.85 Timing of resumption of antiplatelet therapy 
is variable, but most published experiences suggest that aspirin 
can be resumed 1 week postoperatively.100 The management of 
bleeding in the postoperative period depends on the cause and 
source of bleed. Surgical causes may need operative correction 
and management. However, bleeding unrelated to the opera-
tion remains common (eg, GI bleeding) and must be monitored 
postoperatively.101

7  | SUMMARY

VADs remain an important modality in the treatment of advanced 
HF for those who cannot wait or are not candidates for heart trans-
plantation. The balance of bleeding and thrombosis is complex, and 
a multitude of patient and device characteristics can shift this bal-
ance. Careful assessment of bleeding and thrombotic risks should 
occur prior to VAD implant. The perioperative phase is a complex 
time that often results in activation of blood components and may 
set the stage for future bleeding and/or thrombotic events, which 
carry increased risks of morbidity and mortality.
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