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ABSTRACT
The influenza pandemic causes a large number of hospitalizations and even deaths.
There is an urgent need for an efficient and effective method for detecting the outbreak
of influenza so that timely, appropriate interventions can be made to prevent or at
least prepare for catastrophic epidemics. In this study, we proposed a computational
method, the shortest-path-based dynamical network marker (SP-DNM), to detect the
pre-outbreak state of influenza epidemics by monitoring the dynamical change of the
shortest path in a city network. Specifically, by mapping the real-time information to a
properly constructed city network, our method detects the early-warning signal prior
to the influenza outbreak in both Tokyo and Hokkaido for consecutive 9 years, which
demonstrate the effectiveness and robustness of the proposed method.

Subjects Computational Biology, Epidemiology, Public Health
Keywords Pre-outbreak state, The shortest path, Dynamic city network, Influenza outbreak,
Dynamic network marker

INTRODUCTION
Vast amounts of time and resources are being invested in planning for the next influenza
pandemic. However, despite the great efforts of prevention and control, seasonal influenza
remains a significant cause of morbidity and mortality worldwide, particularly among
persons aged ≥65 years and <2 years and those with medical conditions that confer
high risk for complications from influenza (Charu et al., 2011; CDC, 2013). Specifically,
the annual averages of 226,054 (range, 54,523–430,960) primary and 294,128 (range,
86,494–544,909) any listed respiratory and circulatory hospitalizations were associated
with influenza virus infections (Thompson et al., 2004). Furthermore, the total economic
burden of annual influenza epidemics amounted to $87.1 billion in US (Molinari et al.,
2007).

As the influenza pandemic is a great threat to both public health and social economics,
many studies were devoted to influenza control strategy, including the social distancing
interventions to restrain influenza spread (Kelso, Milne & Kelly, 2009), the collaboration
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among fields involving etiology, epidemiology, clinical practices, preventive medicine, and
molecular biological engineering (Zhong & Zeng, 2003), and mathematical models such as
a large-scale stochastic simulation model to investigate the spread of a pandemic strain of
influenza virus (Germann et al., 2006), and logistic regression models of influenza (Pfeiffer
et al., 2007; Boivin et al., 2000). There is no doubt that these theoretical and practical efforts
benefit influenza control. However, it is difficult to predict the outbreak of influenza due to
the complexity of its temporal and spatial characteristics in the evolution and transmission
processes. Therefore, to accurately signal the influenza outbreak, it should take regional
geographic information, transportation, the size of population and the number of clinics,
real-time clinic visiting data and other information into consideration.

The outline of our study was shown in Fig. 1. The aim of this study was to solve the
problem that predicting the outbreak of influenza is difficult, so as to predict influenza
outbreak accurately, and save economic losses and human lives (Fig. 1C). In this study,
we present a novel computational method, the shortest-path-based dynamical network
marker (SP-DNM), to detect the early-warning signal of influenza outbreak. Specifically,
the dynamical progression of the influenza outbreak is divided into three states, that
is, the normal state, the pre-outbreak state and the outbreak state (Fig. 1B) (Liu et
al., 2012; Scheffer et al., 2009; Venegas et al., 2005). Based on SP-DNM, a city network
was constructed by combining the geographically adjacent information, transportation,
population mobility and the number of clinics of each city district. It was found that the
dynamical change of the city network reflects the severity of influenza. More importantly,
an index that quantitatively measures the shortest paths of the city network provides an
accurate way to detect the early-warning signal to the outbreak of influenza. This method
has solid theoretical background, that is, the dynamic network marker (DNM), which
theoretically proves that there is a dominant group of variables (DNM) satisfying three
generic properties when a system is in a critical state, that is, (1) the correlation between
any pair of members in the DNM group rapidly increases; (2) the correlation between one
member of the DNM group and any other non-DNM member rapidly decreases; (3) the
standard deviation or coefficient of variation for anymember in the DNM group drastically
increases (Liu et al., 2014; Liu, Aihara & Chen, 2013a). The DNMmethod has been applied
in cell differentiation (Chen et al., 2015; Richard et al., 2016), cancer (Lesterhuis et al.,
2017; Liu et al., 2019) and diabetes (Liu et al., 2013; Li et al., 2014), achieving satisfactory
result in many field. Based on above three generic conditions, SP-DNM is capable of
quantitatively measuring the criticality of the influenza outbreak, that is, the dynamically
significant changes of the shortest paths of the city network. Specifically, in Fig. 1B, the
SP-DNMmethod can easily distinguish pre-outbreak states by exploring the critical spatial
information from longitudinal high-dimensional historical records so that timely proactive
action such as vaccine, distance isolation can be performed to prevent or at least mitigate
the influenza outbreak (Kelso, Milne & Kelly, 2009; Zhong & Zeng, 2003). It was found that
the sudden change of shortest path in a city network can accurately identify a pre-outbreak
state, or equivalently, the end of a normal state of the network system, thus detect the
early-warning signal of the upcoming critical transition into a serious and irreversible
outbreak state. In this study, a weight was assigned to each edge of the city network,
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Figure 1 The outline of the proposed SP-DNMmethod. (A) In this study, the clinic visiting records
caused by influenza in Tokyo and Hokkaido were collected, covering 23 districts in Tokyo, 30 cities in
Hokkaido and 503 clinics. The data was normalized by the count of clinics in its region. (B) A city network
was constructed based on the geographically adjacent information of the city districts. In the city network,
weight of edges can be measured by Pearson correlation coefficient (PCC) and standard deviation (SD)
which indicate pre-outbreak state according to data we collected. Then, the Dijkstra algorithm is implied
into this weighted network to acquire the SP-DNM scores, whose rapid increase means that this network
is closed its pre-outbreak state. (C) Conclusion: By using SP-DNM, we can establish a real-time system to
monitor influenza outbreak, detect pre-outbreak state, study influenza transmission and make flu preven-
tion strategy to save people’s lives.

Full-size DOI: 10.7717/peerj.9432/fig-1

which was the correlation between the numbers of clinic visits of two adjacent districts.
Then, the four shortest paths were calculated and monitored in the dynamic city network,
i.e., (1) northernmost to southernmost; (2) westernmost to easternmost; (3) northwest to
southeast; (4) northeast to southwest. A composite index based on the dynamical changes
of these four shortest paths was employed to quantitatively measure the criticality of the
city network. The abrupt increase of the composite index provides the early-warning signal
of an impending critical transition into the influenza outbreak.

To demonstrate the effectiveness of our method, we applied SP-DNM to the historical
records in Tokyo and Hokkaido for consecutive 9 years, from 2010 to 2019 in Tokyo and
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from 2009 to 2018 in Hokkaido. SP-DNM accurately predicted each influenza outbreak
averagely 4 weeks ahead in Tokyo and 6 weeks ahead in Hokkaido. Moreover, by surveilling
the dynamic changes of the city network, it provides a new approach to study the epidemic
spread in a city.

MATERIALS & METHODS
SP-DNMhas solid theoretical background, i.e., the DNM theory (Liu et al., 2015; Liu, Chen
& Chen, 2020), according to which it divides the progression of epidemic dynamics into
three state, (1) a normal state; (2) a pre-outbreak state; (3) an outbreak state (Chen et al.,
2012) and provides some statistical properties to identify the pre-outbreak state which is
between normal state and outbreak state. These statistical properties are listed below (Chen
et al., 2012) and data below, that is x1, x2, y1, y2, are high-dimensional with longitudinal
historical record.
1. SD(x1) increases sharply, where x1 is historical data of DNM member in network, SD

represents the standard deviation of variables x1.
2. PCC(x1, x2) increases sharply, where x1 and x2 are historical data of DNM member in

network, PCC represents the Pearson correlation coefficient between two variables.
3. PCC(x1, y1) decreases sharply, where x1 is historical data of DNMmember in network

while y1 represents historical data of non-DNM member in network.
4. SD(y1) and PCC(y1, y2) would not have any remarkable change or be in specific rule,

where y1 and y2 represent historical data of non-DNM member in network.
By using these statistical properties above, it is possible to differentiate normal state

and pre-outbreak state, which means that the pre-outbreak state, which is unstable and
sensitive to perturbations, could be detected. Once the pre-outbreak state is detected,
proactive strategies can be exploited to reverse it to the normal state (Mather, 1982).

In traditional DNMmethod, researchers use IDNM score to detect pre-outbreak state by
combining statistical properties (1), (2) and (3):

IDNM =
PCCin

PCCout
SDin

where PCCin represents correlation between two DNM member, PCCout represents
correlation between a DNM member and a non-DNM member, SDin represents standard
deviation of a DNM member. It is noted that such DNM method is with solid theoretical
background and thus has a series of following modified approaches and applications to
real-world cases. For example, an algorithm called Landscape DNMmethod was developed
which employs local-landscape score on the basis of the DNM statistical properties (Chen et
al., 2019). TheMarkovmodel was applied to describe the three states of disease progression,
which enhance the accuracy of obtaining information from statistical properties (Chen et
al., 2016; Chen et al., 2017), etc.

Algorithm
The overview of our algorithm was presented in Fig. 2 and code was shown in Algorithm
1. In a city network with longitudinal clinic-visiting record, the weight of edge can be
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Figure 2 The diagram interpretation of SP-DNM. Including three steps, (1) constructing network by us-
ing gene information or geographical information, (2) constructing the weighted network by calculating
Pearson correlation coefficient and standard deviation of each edge, (3) detecting the pre-outbreak state
by surveilling sudden change of the shortest path in the network.

Full-size DOI: 10.7717/peerj.9432/fig-2

measured by the Pearson correlation coefficient and standard deviation of its associated
nodes. Based on the DNM theory, the transformation of different state of flu outbreak
progression can be described by a city network with changing weights. In other words,
the sharp increase of weight indicated that the pre-outbreak of influenza is coming. In
order to avoid the abnormal signals caused by sudden local surges of weights, the Dijkstra
algorithm was employed in this city network to calculate the shortest path. The procedure
of the SP-DNM method was descripted as follows.
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Algorithm 1 SP-DNM
Input: S{s1,s2,...,st }: Longitudinal historical hospitalization record caused by flu;

G(V ,E): City network graph modeled according to geographical information
Output: T : Real early-warning signal of flu

Tm: Mild early-warning signal of flu
1: initialization: set T = 0, Tm=∅; set d0(i)= d−1(i)=∞,i∈ {1,2,3,4} ;

set PCC0(i,j) = SD0(k) = 0, for each eij ∈E , vk ∈V
2: while dT (i) <dT−1(i), i∈ {1,2,3,4} do
3: T = T + 1
4: for edge eij ∈E do
5: δ= ||SDt (vi,vj)|−|SDt−1(vi,vj)|| where SDt (vi,vj)= |SDt (i)+SDt (j)|/2
6: Weight the edge eij withW t

ij = δ||PCCt (vi,vj)|−|PCCt−1(vi,vj)||
7: end for
8: Calculate the four shortest paths’ weight sum dT (i)=Dijkstra(G(V ,E))
9: if three shortest paths satisfy the condition dT (i)≥ dT−1(i) then
10: T add to the set Tm

11: end if
12: end while
13: return T , Tm

Constructing city network
The dynamic city network is the premise of our method. For the application of DNM
method in gene expression, gene network was constructed by mapping genes to protein-
protein interaction network and extracting the central gene’s associated genes as its first-
order neighbors. For detecting influenza outbreak, it is reasonable to use geographical and
transportation information to construct a global city network. The city network was formed
by geographical and transportation information. In the network, each node represents a
district, while each edge represents the main traffic route connecting two districts. As
shown in Fig. 3A, there are 23 different regions in Tokyo. Correspondingly, there are 23
nodes and 53 edges in the Tokyo city network according to its real geographical position
and traffic route.

In addition, the dynamical change of transportation among the cities has been taken into
consideration. According to the passenger flow of the main traffic route or metro station,
a coefficient parameter α has been assigned to corresponding edge, that is, such coefficient
for the maximum passenger flow is set as 1, and the other coefficient is the percentage of
the corresponding passenger flow in the maximum. Due to the yearly dynamic change of
passenger flow, the city network alters year by year.

Constructing the weighted city network
A city network can be descripted as a graph G= (V ,E), where V ={ v1,v2,...,vn} is the set
of vertexes of city network and E ={ e1,e2,...,em} is the set of edges of city network. There
are the following procedures implied into the city network.
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Figure 3 Map and network of Tokyo. (A) Original map of Tokyo and its constructed network. (B) The
name of 23 regions and its corresponding code and population in the table.

Full-size DOI: 10.7717/peerj.9432/fig-3

First, based on the longitudinal historical records, we considered the data per week as a
sample. In other words, for each vertex vi at time point t , there are a series of time series
data {s1,s2,...,st }.

Second, for each edge ek of the city network at week t , assign it a weight Weight kt with
the correlations of its two vertexes vi,vj :

Weight kt =α ·σ |
∣∣PCCt

(
vi,vj

)∣∣− ∣∣PCCt−1
(
vi,vj

)∣∣|
where PCCt

(
vi,vj

)
represents the Pearson correlation coefficient of the two vertexes vi,vj

at week t , PCCt−1
(
vi,vj

)
represents the Pearson correlation coefficient of the two vertexes

vi,vj at week t−1, the year-varying parameter α represents a coefficient corresponding to
the yearly transportation volume between two districts and the parameter σ is expressed
by the following equation:

σ =

∣∣∣∣SDt (vi)+SDt (vj)
2

−
SDt−1(vi)+SDt−1(vj)

2

∣∣∣∣
where SDt (vi) represents the standard deviation of the data of vertex vi at week t , and
SDt−1(vi) represents the standard deviation of the data of vi at the previous week t−1.

Detecting the pre-outbreak state
In order to accurately and quantitatively reveal the dynamical changes caused by the
longitudinal historical records, it is required to obtain the shortest paths of the city
network, which is sensitive to the local abnormal variation of the city network. In this
study, the Dijkstra algorithm was implied to obtain the city network’s shortest paths to
detect the pre-outbreak of influenza outbreak.

Then, to reflect the global change of the network through the shortest paths, four
shortest paths were defined, this is, the northernmost node to the southernmost node, the
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westernmost node to the easternmost node, the northwest node to the southeast node, the
northeast node to the southwest node. The length of each shortest path was regard as the
SP-DNM scores:

Lit =
∑K i

j=1Weight ij , i∈ {1,2,3,4}
where Lit , K

i and Weight ij represents the length, the edge numbers and the weight of each
edge of ith shortest path respectively at the week t .

According to the DNM theory, the SP-DNM scores, which was based on the standard
deviations of these vertexes in the city network and their Pearson correlation coefficients,
could be employed to quantitatively describe changes in the city networks caused by
influenza, thereby to detect the pre-outbreak state.

In this study, a 3-fold change threshold was implied to detect the signal of tipping point.
That is, we calculate the SP-DNM scores for the city network at a week t . If the SP-DNM
scores satisfied the following condition, the time point t was regarded as the tipping point:

Lit ≥ 3∗Lit−1, i∈ {1,2,3,4}.
Otherwise, week t is considered as in the normal state, and the data derived from week

t are also comprised in the control samples. Then, the next timepoint t +1 is selected as
the candidate to carry on our algorithm until the pre-outbreak was detected.

RESULTS
In this section, we applied the SP-DNM method to the historical records in Tokyo and
Hokkaido for consecutive 9 years, from 2010 to 2019 in Tokyo and from 2009 to 2018
in Hokkaido. It is showed that SP-DNM accurately predicted each influenza outbreak
averagely 4 weeks ahead in Tokyo and 6 weeks ahead in Hokkaido.

The data of Tokyo was obtained from Tokyo Metropolitan Infectious Disease
Surveillance Center (http://survey.tokyo-eiken.go.jp/epidinfo/weeklyhc.do), including
the number of clinic visits every week in a year from 23 region. The data of
Hokkaido was obtained from Hokkaido Infectious Disease Surveillance Center
(http://www.iph.pref.hokkaido.jp/kansen/501/data.html), including the number of
clinic visits every week in a year from 30 region. During 2010–2019 (in Tokyo) and
2009–2018 (in Hokkaido), the number of clinic visits per week in each region has
been collected. These dataset span 53 districts and nine years, involving 20 million
people. Both the two datasets have been normalized by dividing the number of
clinics in a region. The transportation data of Tokyo was obtained from Tokyo
statistical yearbook (https://www.toukei.metro.tokyo.lg.jp/tnenkan/tn-index.htm) and
the transportation data of Hokkaido was obtained from Hokkaido District Transport
Bureau (https://wwwtb.mlit.go.jp/hokkaido/kakusyu/toukei/index.html).

Detecting the pre-outbreak state in Tokyo
According to the proposed SP-DNM method, the following procedures were carried out
to identify the pre-outbreak state of flu outbreak in Tokyo. Firstly, the city network shown
in Fig. 3A was constructed according to the geographical location and transportation.
Additionally, the regions and their corresponding codes and population were listed in
Fig. 3B. Secondly, weights were assigned to each edge as showed in the section of Materials
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and Methods. It should be noted that, because influenza outbreak often occurs between
the end of one year and the beginning of the next year, we regard a year in our algorithm
is from April 1 to March 31 of the following year. Thirdly, Dijkstra algorithm was applied
to the city network to obtain its four shortest paths and figure out the SP-DNM scores.
Four shortest paths we defined are: (1) node 5, Kita-ku to node 1, Minato-ku, represents
the northernmost node to the southernmost node; (2) node 13, Suginami-ku to node
22, Katsushika-ku, represents the westernmost node to the easternmost node; (3) node
20, Nerima-ku to node 15, Edogawa-ku, represents the most northwest node to the most
southeast node; (4) node 23, Adachi-ku, to node 10, Setagaya-ku, represents the most
northeast node to the most southwest node. Finally, the SP-DNM scores were employed
to determine whether the city network has reached its pre-outbreak state.

The prediction results of influenza outbreak in Tokyo has been shown in Fig. 4. The
early-warning signals of flu were detected by our method before influenza outbreak from
2010 to 2019. It is clear that the overall dynamical trend of SP-DNM curve was ahead of the
clinic-visiting curve, which indicates that the early-warning role of the SP-DNM method.
The red bars represent real warnings, which are indicated if all SP-DNM scores passed the
3-fold change threshold. It is seen that these real warnings were ahead of blue bars which
represent the influenza outbreak, demonstrating the accuracy of our method. After red bar,
the pre-outbreak state, the number of clinic visits increase rapidly and reach the peak after
3–6 weeks. The results presented in the figure reveal that our method identifies the early
warning of influenza outbreak accurately with an average of 4-week window ahead, which
provides adequate time to control influenza outbreak. Besides, yellow bars represent mild
warnings, which are indicated if a proportion of 3/4 SP-DNM scores (three shortest paths
but not all) satisfied the 3-fold change threshold. It is seen that after the mild warnings the
clinic-visiting count increases slowly in several weeks.

Based on the severity of flu spread, we classify our warning signal into two classes, the
real warning and mild warning. It is seen in Fig. 4 that from 2016 to 2019after the real
warning time points, the clinic-visiting count increases sharply, which peaked in a few
weeks. After the mild warning time points, the clinic-visiting count increases slowly in
several weeks. Therefore, the mild warning signal means that influenza only spreads in
some marginal region and most core regions are still in control for the flu infection. In
other words, it is beneficial to trace the city network to find the region where influenza
strikes and make proactive strategy.

As the results illustrated, SP-DNM predicts the pre-outbreak state accurately. It is
worth noting that it is meaningful to remain an average of 4-week window without drastic
fluctuation tomake proactive strategy.When the prediction window ismore than six weeks,
the situation of flu outbreak may change over time, resulting in that the flu prevention
and control strategies need to be constantly changed causing a lot of human and financial
loss. In the meanwhile, when the prediction window is less than two weeks, it is extremely
tough to make effective flu precautions in a limited time. In general, the prediction window
of four week in average is relatively suitable to make the timely and efficacious influenza
control measures.
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Figure 4 The predictions of annual influenza outbreak in Tokyo from 2010 to 2019.Our SP-DNM
method timely detect the early-warning signal of influenza outbreak for each year, i.e., results respectively
in (A)2010-2011, (B)2011-2012, (C)2012-2013, (D)2013-2014, (E)2014-2015, (F)2015-2016, (G)2016-
2017, (H)2017-2018, (I)2018-2019. The red line represents the clinic-visiting count, while the other lines
represent the SP-DNM scores. X axis represents the time evolution (week in a year) in a year. Y axis on
left side represents SP-DNM scores, and Y axis on right side represents the clinic-visiting count. The yel-
low bar stands for mild warning, the red bar represents real warning and the blue bar represents the in-
fluenza outbreak point. To avoid violent disturbance when calculation window was too short, we use more
data in last year to calculate Pearson’s correlation coefficient and 55-week data including data in last year
in calculation for unity.

Full-size DOI: 10.7717/peerj.9432/fig-4

To better show the effectiveness of our method, the diagram of the clinic-visiting counts
was presented in Fig. 5, from which it is seen that our warning points (the red diamonds)
were ahead of the outbreak points (the blue circles), revealing accuracy and effectiveness
of SP-DNM method.

Trace the change in the city network of Tokyo
To illustrate how SP-DNM works, we presented dynamic evolution of network in terms of
weight from 2013 to 2014 at key period in Fig. 6. At the beginning of the year, it can be seen
that all nodes are colored with light green and all edges are thin which means no influenza
case and low correlations respectively. When system state approaches to its outbreak state,
changes firstly occurred near node 2 at the 28th week, revealing that influenza are likely
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Figure 5 Identified results by SP-DNM in Tokyo from 2010–2019. It is clear that flu outbreak was accu-
rately detected by the SP-DNMmethod for each year, i.e., results respectively in (A)2010-2011, (B)2011-
2012, (C)2012-2013, (D)2013-2014, (E)2014-2015, (F)2015-2016, (G)2016-2017, (H)2017-2018, (I)2018-
2019. The Y axis represents the number of clinic visits, the yellow rectangle represents the mild warning
point, the red diamond represents real warning point, and the blue circle represents flu outbreak point.

Full-size DOI: 10.7717/peerj.9432/fig-5

to spread from region 2. As time goes by, the influenza impact gradually spread to farther
region, leading more andmore edges on the left side become thicker. Finally, both standard
deviation and correlation between adjacent node increase sharply at the 32nd week before
flu outbreak at the 36th week, causing an influence that the SP-DNM scores satisfied the
3-fold change threshold, which indicate the appearance of pre-outbreak state. To avoid
those edge with high correlation, shortest path drastic change in the 29th and 30th week.
However, at the 32nd week, most edges are in high correlation, so SP-DNM scores exceed
three-fold threshold and the early-warning signal was generated. The dynamic change
of network indicates that the SP-DNM method is able to represent real process state of
influenza in the city network and generate early-warning signal of influenza, which is
helpful for flu prevention. Moreover, dynamic evolution of other shortest paths in Tokyo
city network were shown in the Supplemental Information.

Detecting the pre-outbreak state in Hokkaido
To validate the generality and effectiveness in another region and another network,
SP-DNM has also been applied in Hokkaido from 2009 to 2018. The detailed results were
shown in the Supplemental Information. The early-warning signals were detected correctly
and there was an average of 6-week window ahead without drastic fluctuation, which was
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Figure 6 The dynamic evolution of Tokyo city network during a key period from 2013 to 2014. It is
clear that flu outbreak was accurately detected by the SP-DNMmethod, reflecting in (A) the 10th week,
(B) the 20th week, (C) the 28th week, (D) the 29th week, (E) the 30th week, (F) the 32nd week, (G) the
36th week, (H) the 38th week, (I) the 42nd week. The Y axis represents the number of clinic visits, the yel-
low rectangle represents the mild warning point, the red diamond represents real warning point, and the
blue circle represents flu outbreak point.

Full-size DOI: 10.7717/peerj.9432/fig-6

caused by the differences of the city networks between Tokyo and Hokkaido. There are 23
regions with 53 edges in Tokyo city network while 30 regions but only 49 edges in Hokkaido
city network. And the transportation in Tokyo is much denser than that in Hokkaido. The
population of Tokyo is much larger than that of Hokkaido. These factors caused that the
flu transmission in Tokyo may be faster than in Hokkaido, and the performance of our
method in Tokyo is better than that in Hokkaido.
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DISCUSSION
In the discussion, we make a comparison with our SP-DNM method, the sum of weight
method (a method which just utilize weight of edges simply) and the Landscape DNM
method (Chen et al., 2019). Moreover, an extra experiment has been performed to figure
out the best number of shortest paths by deleting or adding the shortest paths.

Evaluation of accuracy and stability
Before comparison, it is necessary to define metrics which measure accuracy and stability
of predictive method.
• Accuracy rate. This metric gives the percentage of years which predict point is in front

of outbreak point in all years. When a predict point was behind an outbreak point, it means
prediction fail. It can be easily measured by

p=
nright
n

where nright represents the number of years which predict point is in front of outbreak
point, n represents the number of years.
• S-index (instability/error index). Based on the accuracy rate, our predicted point

is supposed to possess a suitable range ahead outbreak point. S-index (instability /error
index) can be measured by the mean-square error (MSE) by

S− index=
∑n

i=1(wi−w)2

n
where wi represents the interval window that the predict point ahead of outbreak point
in each year, w represents the suitable window set according to historical data and region
characteristic ahead outbreak point, n represents the number of years. In our work, w was
defined by an average of difference between the week with fastest increase in clinic visits
and outbreak week in each year. By the way, w in Tokyo is 41/9 and w in Hokkaido is 59/9
in our experiment. According to the definition of S-index, therefore, the lower the S-index
is, the higher stability a method would be.

Comparison with method using sum of weight
According to DNM theory, sum of weight can also regard as indicator of pre-outbreak
state and we call the method utilizing sum of weight as indicator sum of weight method.
However, this method is not suitable to detect pre-outbreak states for some reason, due
to the sensitivity of Pearson correlation coefficient when the data is perturbed by noises,
which would be likely to amplify weight of some edges, causing appearance of fake signal.
Besides, it neglects spatial feature of network, leading to untimely signal, which leads to the
difficulty of studying diseases transmission and nodes interaction. Results of comparison
were shown in Table 1. Clearly, the warnings of sum of weight method are earlier than that
of our method, causing more drastic fluctuation and higher S-index. In Fig. 6, from 2013
to 2014, at the 29th week, edges on the left side become thick, in this case, the surveilling
system based on the sum of weight method generated signal, which resulted in a bigger
fluctuation before the outbreak. While at the 32nd week, nearly all edges become thick,
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Table 1 Comparisons with other methods on detecting flu outbreak in Tokyo in all years. It includes 2-shortest-path DNMmethod, 4-shortest-
path DNMmethod, 6-shortest-path DNMmethod, sum of weight DNMmethod and landscape DNMmethod. The number in the bracket indicates
the difference between the prediction point and the outbreak point.

Time 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 Accuracy S-index

2 shortest paths (week) 35(6) 37(4) 31(6) 32(4) 22(7) 28(5) 19(11) 19(9) 19(7) 100% 8.691
4 shortest paths (week) 37(4) 37(4) 31(6) 32(4) 23(6) 28(5) 27(3) 25(3) 21(5) 100% 1.148
6 shortest paths (week) 37(4) 37(4) 31(6) 32(4) 23(6) 28(5) 27(3) 25(3) 21(5) 100% 1.148
Sum of weight (week) 37(4) 32(9) 30(7) 29(7) 22(7) 23(10) 17(13) 18(10) 15(11) 100% 23.35
Landscape DNB (week) 30(11) 34(7) 32(5) 32(4) 25(4) 26(7) 20(10) 18(10) 17(9) 100% 14.814
Outbreak (week) 41 41 37 36 29 33 30 28 26 ____ ____

which confirms the actuality of the generated signal. Because those weights on the left side
increase sharply at the 29th week, exploiting sum of weight method should consider such
an influence (generate signal 7-weeks ahead) while SP-DNM method is not likely to be
influenced by this significant change (generate signal 4-weeks ahead). In conclusion, the
SP-DNMmethod is relativelymore robust than the sum of weightmethod, and additionally
exploiting our method can effectively avoid generating fake signal.

Comparison with Landscape DNM method
A local landscape DNM method was proposed to detect the critical state of flu
outbreak (Chen et al., 2019), which combined PCCin, PCCout and SDin as an indicator
to describe the flu spread and outbreak. We applied landscape DNM method on Tokyo,
the comparison result was shown in Table 1. It is seen that signals are about 4 to 11 weeks
ahead the flu outbreakwhen using landscapeDNMmethod to detect the pre-outbreak state,
which is with large fluctuation. Moreover, S-index of SP-DNM are lower than Landscape
DNM method’s, which shows the high stability of our method.

Comparison with logistic regression
In our study, we proposed a computational method, the shortest-path-based dynamical
network marker (SP-DNM), which leverages the graph theory to detect the early warning
signal of influenza outbreak. A comparison was carried out between the proposed SP-DNM
and traditional logistic regression as shown in Fig. 7. It is seen that the performance of
SP-DNM is better than logistic regression. The AUC of SP-DNM-based surveillance system
is 0.8978 and the AUC of logistic-regression-based system is 0.8396. It should be noted
that the monitoring system solely use counts of clinic visits. In addition, our method is a
model-free method, which means that there is no training and testing modules in analysis,
and thus avoiding the overfitting problem.

The best number of shortest paths
An extra analysis was carried out to figure out the best number of shortest paths and result
was listed in Table 1. Two original paths (node 20 to node 15, node 23 to node 2) were
deleted, forming a two shortest path experiment. Two additional paths (node 2 to node
16, node 14 to node 18) were added, forming a six-shortest-path experiment. Compared
with four-path SP-DNM method, signals were detected 1 or 2 weeks ahead in 2010–2011,
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Figure 7 The performance comparisons of SP-DNM-based and logistic-regression-based methods.
The AUC of SP-DNM is 0.8978, while that of logistic regression is 0.8396. It can be seen that the SP-
DNM-based surveillance system performs better than logistic regression.

Full-size DOI: 10.7717/peerj.9432/fig-7

2014–2015 and 2018–2019, 6 and 8 weeks ahead in 2016–2017, 2017–2018 with two-path
SP-DNM method. And result of six-path SP-DNM method is the same as four-path
SP-DNMmethod. When the number of shortest paths decreases, our method cannot cover
the whole network causing that 3-fold change threshold conditions are tailless to satisfy,
which make an earlier signal. When the number of paths increases, the calculation result
keeps invariant, because four shortest paths have already covered the whole network. For
Tokyo or Hokkaido, four-path SP-DNM method is enough for detecting pre-outbreak
states. Nevertheless, when quantity of nodes increases or network structure changes,
SP-DNM may require more shortest paths.

CONCLUSIONS
Influenza is a complex disease threatening people’s lives and causing huge economic losses.
Due to its complicated biological system and the equally intricate external environment,
it’s challenging to predict influenza outbreak according to similar phenotype and outer
data expression. It is of great importance to find an efficient and effective method to detect
the outbreak of influenza, so as to make timely and appropriate intervention or prevention
for the catastrophic epidemics, saving economic losses and human lives.

In our work, a new computational method SP-DMN based on the dynamical change of
shortest paths in a city network was proposed to detect the pre-outbreak state of influenza
in dynamic city network, which performed well in Tokyo and Hokkaido. By using this
method, pre-outbreak states can be predicted with an average of 4-week window ahead,
providing enough time for making proactive strategy to control influenza.

Comparing with the traditional DNM approach, there are some advantages of our
proposedmethod. First, the SP-DNM is a model-free method, whichmeans that there is no
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training and testingmodules in analysis, and thus avoiding the overfitting problem. Because
our method solely depends on the statistical indicators including Pearson correlation
coefficient and standard deviation. Second, SP-DNM has strong resistance to noise and
can avoid fake signal, thus detecting pre-outbreak states accurately. Third, we can study
disease transmission and nodes interaction by watching dynamic change of network. Our
classification system of influenza spread helps to make exact and effective anti-influenza
strategy.

However, there are still limitations in SP-DNM. When the connectivity of the graph
becomes extremely small, our method performed approximate the effect of the sum of
weight method due to the shortest path’s rare changes as the evolution of weighted city
network. Also, for different structures of the network, a different quantity of shortest paths
may influence the prediction result, which is our future research target.
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