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Abstract

Profilin-1 (PFN1) plays an important role in the control of actin dynamics, and could represent an important therapeutic
target in several diseases. We previously identified PFN1 as a huntingtin aggregation inhibitor, and others have implicated it
as a tumor-suppressor. Rho-associated kinase (ROCK) directly phosphorylates PFN1 at Ser-137 to prevent its binding to
polyproline sequences. This negatively regulates its anti-aggregation activity. However, the phosphatase that
dephosphorylates PFN1 at Ser-137, and thus activates it, is unknown. Using a phospho-specific antibody against Ser-137
of PFN1, we characterized PFN1 dephosphorylation in cultured cells based on immunocytochemistry and a quantitative
plate reader-based assay. Both okadaic acid and endothall increased pS137-PFN1 levels at concentrations more consistent
with their known IC50s for protein phosphatase 1 (PP1) than protein phosphatase 2A (PP2A). Knockdown of the catalytic
subunit of PP1 (PP1Ca), but not PP2A (PP2ACa), increased pS137-PFN1 levels. PP1Ca binds PFN1 in cultured cells, and this
interaction was increased by a phosphomimetic mutation of PFN1 at Ser-137 (S137D). Together, these data define PP1 as
the principal phosphatase for Ser-137 of PFN1, and provide mechanistic insights into PFN1 regulation by phosphorylation.
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Introduction

Profilins are small actin-binding proteins that are essential for all

eukaryotic cells. They play a role in many cellular processes

including cell motility, cytokinesis, gene transcription, endocytosis

and neuronal plasticity [1,2,3,4]. These activities depend on their

interactions with three major cellular ligands: globular actin (G-

actin), polyproline-containing proteins, and phosphatidylinositols

(e.g. phosphatidylinositol 4,5-bisphosphate, PIP2). In mammals,

four profilin isoforms have been identified, each encoded by a

distinct gene. Profilin-1 (PFN1) and profilin-2a (PFN2a), the classic

‘‘somatic’’ isoforms, are 65% identical in amino acid sequence,

and highly conserved in 3D structure [3]. PFN1 is ubiquitously

expressed, while PFN2a, the major splice isoform of PFN2, is

preferentially enriched in the brain [3]. Two testis-specific

profilins, PFN3 and PFN4, are recently described, and differ

substantially from PFN1 and PFN2a in their primary sequences

[5]. Both PFN3 and PFN4 bind G-actin with lower affinity than

PFN1 and PFN2a. PFN3 binds polyproline-ligands poorly, and

PFN4 completely lacks this activity [5].

Recent studies have linked profilins, in particular PFN1, to

several human diseases. Our prior work identified PFN1 as an

inhibitor of huntingtin aggregation, suggesting a role in the

pathogenesis of Huntington Disease (HD). The anti-aggrega-

tion activity of PFN1 depends on its binding to both G-actin

and a polyproline tract within huntingtin [6]. PFN1 is also a

putative tumor suppressor, and has been shown to inhibit

tumor cell growth and metastasis in several cancer models

[7,8,9,10,11,12].

Despite our detailed knowledge of profilin’s structure and

functions, we know little about how its cellular activities are

regulated. PFN1 is a phospho-protein in vivo [13,14], suggesting

that its activities could be regulated by phosphorylation. We have

previously determined that Ser-137 of PFN1 is a bona fide

phosphorylation site for the Rho-associated kinase ROCK [6].

Ser-137 lies within the polyproline-binding site of PFN1.

Mimicking phosphorylation at this site abolishes PFN1’s binding

to huntingtin, and inhibits its activity as an aggregation suppressor

[6]. To our knowledge, this was the first study to link a specific

phosphorylation event to defined cellular functions of PFN1, and

to demonstrate that PFN1 activity is regulated. While our prior

work identified ROCK as an upstream kinase for Ser-137, it left

uncertain which phosphatase mediates dephosphorylation of this

site. By exploiting a highly sensitive and specific PFN1 antibody

against pSer-137, we now provide pharmacological, genetic and

biochemical evidence that protein phosphatase-1 (PP1) exists in

the same protein complex with PFN1 and dephosphorylates Ser-

137.

Results

P3490 specifically recognizes pS137-PFN1 in situ
We previously generated a polyclonal phospho-specific antibody

against pSer-137 of PFN1 (P3490). Using this antibody, we

previously determined by Western blot (WB) that pS137-PFN1

levels in cultured cells are regulated by RhoA/ROCK signaling.

The RhoA activator lysophosphatidic acid (LPA) mildly increased

pS137-PFN1 levels in cultured cells, which was blocked by the
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ROCK inhibitor Y-27632 [6]. To directly characterize the

phospho-specificity of this antibody, we pre-incubated P3490 with

antigenic peptides containing (pS137) or lacking a phosphate on

Ser-137 (S137), followed by WB to determine if its reactivity with

cellular PFN1 was affected. The pS137-peptide completely

blocked P3490 binding to PFN1 (Fig. 1A) as expected. However,

the non-phospho S137-peptide effectively blocked 90% of the

PFN1 signal versus the no peptide control (Fig. 1A). Thus, P3490

contains pan-antibodies that react with unphosphorylated PFN1,

and the bulk of the observed PFN1 signal likely represents cross-

reactivity with unphosphorylated PFN1 molecules that outnumber

those of phospho-PFN1. This limits the fidelity of P3490 to

accurately report pS137-PFN1 levels via WB.

Due to the limitation of P3490 associated with WB, we tested if

it can detect pS137-PFN1 in situ by immunocytochemistry. P3490

heterogeneously stained several cell lines (predominantly the

cytoplasm), i.e. not all cells were positive at the same time

(Fig. 1B). The cause for this staining pattern of P3490 is unclear,

but could either reflect individual variation among cells, or cell

cycle dependence. Cell staining by P3490 was completely inhibited

by its pre-incubation with the pS137-peptide, but was unaffected

by the unphosphorylated S137-peptide (Fig. 1C). This contrasted

the results on WB, and suggested that P3490 is highly phospho-

specific when used for in situ cell staining, in which the pan-

antibodies are nonreactive. In serum-starved NIH 3T3 cells, the

RhoA activator lysophosphatidic acid (LPA) markedly increased

the number of P3490-positive cells, and this was blocked by

ROCK inhibition with Y-27632 (Fig. 1D). Hydroxyfasudil (OH-

fasudil), a ROCK inhibitor structurally distinct from Y-27632, also

dose-dependently reduced P3490 staining. These effects were

visible microscopically (Fig. 1E), and easily quantified using a

fluorescence plate reader following incubation with a fluorescently-

labeled (Alexa FluorH488) secondary antibody (Fig. 1F). At 50 mM,

OH-fasudil eliminated P3490 staining in nearly all cells without

affecting their total PFN1 levels (Fig. 1E).

We further confirmed the specificity of P3490 for pS137-PFN1

using RNAi knockdown of endogenous PFN1. HEK293 cells were

transduced with lentiviral shRNAs targeting PFN1 (Fig. 2A),

which reduced P3490 staining (Fig. 2B–C), consistent with PFN1

being the cellular target of the antibody. This effect was evident

microscopically (Fig. 2B), and was quantified using the fluores-

cence plate reader (Fig. 2C). The relative decrease in total PFN1

level (60%) as a result of shRNA knockdown was larger than that

of P3490 staining (40%). This implies that Ser-137 phosphoryla-

tion of PFN1 may need to be kept at a certain level in the cell, and

could be regulated in a fashion partially independent of total PFN1

levels. In addition, P3490 stained ectopically expressed phospho-

mimetic PFN1(S137D) in cultured cells, but not PFN1(wt) or

PFN1(S137A). This was most evident when phosphorylation of

endogenous PFN1 at Ser-137 was inhibited by OH-fasudil

(Fig. 2D), and was also quantified by the fluorescence plate reader

(Fig. 2E and F). Taken together, these results confirmed the

specificity of P3490 for pS137-PFN1 for in situ staining.

Phosphatase inhibitors increase pS137-PFN1 levels in
cultured cells

To identify candidate phosphatases for pSer-137 of PFN1, we

employed pharmacologic inhibitors of serine/threonine phospha-

tases in cultured cells. Okadaic acid (OA) inhibits the serine/

threonine-specific phosphoprotein phosphatase (PPP) family, in

particular its two most abundant members, PP1 and PP2A [15].

Differential potencies of OA towards its target phosphatases have

enabled its use to implicate candidates, particularly PP1 (IC50,15–

50 nM) and PP2A (IC50,0.1–0.3 nM) [16]. Thus, we treated

HEK293 cells with increasing concentrations of OA, and tested the

effects on pS137-PFN1 levels by immunostaining with P3490. 16 hr

of OA treatment markedly increased the number of P3490-positive

cells at mid-nanomolar concentrations ($10 nM), which was

evident both microscopically (Fig. 3A) and after quantification

using a fluorescence plate reader (Fig. 3B). The effective

concentration of OA to increase pS137-PFN1 levels was much

higher than its IC50 for PP2A (0.1–0.3 nM), and more consistent

with its known IC50 for PP1 (15–50 nM). We also used endothall, a

structurally distinct phosphatase inhibitor that is also much more

potent against PP2A (IC50 = 90 nM) than PP1 (IC50 = 5 mM)

[17,18]. Like OA, endothall increased P3490 staining at concen-

trations (mid-micromolar) that are substantially higher than its IC50

for PP2A, but similar to that for PP1 (Fig. 3A and 3B). Due to

cytotoxic effects at high concentrations, we were unable to carry out

complete dose-responses of OA and endothall with regard to pS137-

PFN1 levels. At their effective concentrations, neither drug affected

the total PFN1 levels within cells (Fig. 3C). Fostriecin, a highly

specific and potent inhibitor of PP2A (IC50 for PP2A = 1.5–5.5 nM;

IC50 for PP1 = 45–58 mM), had no effect on P3490 staining, even at

1 mM (data not shown), a concentration expected to fully inhibit

PP2A in a living cell [16]. Taken together, these results suggested

that PP1, rather than PP2A, might be responsible for dephosphor-

ylation of PFN1 at Ser-137.

Genetic modulation of PP1 activity controls pS137-PFN1
levels in cultured cells

The above effects of phosphatase inhibitors indicated a role of

PP1 in pS137-PFN1 dephosphorylation. To test this more

definitively, we knocked down the alpha isoform of the PP1

catalytic subunit, PP1Ca, by transfecting HEK293 cells with

siRNAs. In parallel, we also knocked down the alpha isoform of

the PP2A catalytic subunit, PP2ACa. Based on Western blot

analysis, endogenous PP1Ca and PP2ACa were both knocked

down by 90% with no effect on cellular PFN1 levels (Fig. 4C). This

was also confirmed via immunofluorescence staining of the

transfected cells (Fig. 4A). We detected a three-fold increase of

P3490 staining in cells transfected with the PP1Ca-specific siRNA

in comparison to those transfected with the control siRNA (Fig. 4A

and B). In contrast, silencing PP2ACa had no effect on P3490

staining (Fig. 4A and B). As an additional test, in HeLa cells we

over-expressed wild-type PP1Ca, a catalytically inactive

PP1Ca(H125A) mutant, or wild-type PP2ACa, and stained with

P3490. Nearly all cells expressing wild type PP1Ca stained

negative for pS137-PFN1, while many cells expressing the inactive

PP1Ca(H125A) mutant or wild type PP2ACa stained positive for

pS137-PFN1 (Fig. 4D). These data strongly suggested that PP1

dephosphorylates PFN1 at Ser-137.

PP1 interacts with PFN1 in a pS137-dependent manner
The preceding experiments correlated PP1 activity with pS137-

PFN1 dephosphorylation, but left uncertain whether the dephos-

phorylation is carried out directly by PP1, or by an unknown

phosphatase whose activity is regulated by PP1. To test this, we

transiently expressed Myc-PP1Ca and PFN1 in HEK293 cells,

immunoprecipitated Myc-PP1Ca via an anti-Myc antibody, and

tested for co-precipitation of PFN1. Myc-PP2ACa was separately

co-expressed with PFN1 and immunoprecipitated as a control. We

readily detected PFN1 in a complex with PP1Ca, but not PP2ACa
(Fig. 5A). We next tested for preferential binding of PP1Ca to

pS137-PFN1 vs. unphosphorylated PFN1 by using the phospho-

mimetic PFN1(S137D) vs. phospho-resistant PFN1(S137A) mu-

tant. We transiently expressed HA-tagged PFN1(wt),

PFN1(S137A) or PFN1(S137D) in HEK293 cells along with
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Myc-PP1Ca, followed by immunoprecipitation of Myc-PP1Ca
and Western blot for co-precipitation of HA-PFN1. PP1Ca bound

more phosphomimetic PFN1(S137D) and less phospho-resistant

PFN1(S137A) in comparison to PFN1(wt), with all PFN1 variants

expressed at a similar level (Fig. 5B). These data suggested that

Ser-137 phosphorylation promotes PFN1 interaction with PP1,

which subsequently dephosphorylates pSer-137.

PP1 is known to interact directly with a small number of

substrates [19]. To determine if PP1 directly binds PFN1, we

tested for their binding in vitro. We immobilized recombinant 6His-

PFN1 (wt, S137A or S137D) proteins on nickel beads, mixed them

with bacterially expressed recombinant PP1Ca, and subsequently

tested for their interaction via Western blot against PP1Ca. We

did not detect any specific binding of PP1Ca to all three forms of

6His-PFN1(wt, S137A and S137D), despite that all proteins were

abundantly present (Fig. 5C). Thus, our data suggest that PP1

indirectly associates with PFN1 through an unknown linker

protein, and dephosphorylates pSer-137.

Figure 1. In situ staining of mammalian cells by pSer-137-PFN1 antibody P3490 is responsive to RhoA/ROCK signaling. A, Equal
amounts of HEK293 cell lysate were separated on SDS-PAGE, and individual lanes were blotted with P3490 that was pre-incubated with no peptide
(Lane 1), or PFN1 peptides containing unphosphorylated (Lane 2) or phosphorylated Ser-137 (Lane 3). PFN1-pS137 peptide completely blocked the
binding of P3490 to PFN1. Unphosphorylated PFN1-S137 peptide blocked ,90% binding vs. the no peptide control. Total PFN1 (on a separate and
identically loaded gel) and actin levels were confirmed as being equal across all lanes. B, P3490 stains the cytoplasm of multiple cell lines in a
heterogeneous fashion, including HEK293, HeLa and NIH 3T3 (in green). DAPI was used as counterstain (in blue). C, Immunostaining of HEK293 cells
with P3490 (green) was unaffected by pre-incubation with the unphosphorylated PFN1-S137 peptide, but was completely inhibited by the
phosphorylated PFN1-pS137 peptide. DAPI staining is shown in blue. D, NIH 3T3 cells were serum-starved for 16 hr in the absence or presence of
50 mM Y-27632, followed by treatment with 10 mM Lysophosphatidic acid (LPA) for 60 min. Cells were immunostained with P3490 (green) and
counterstained with DAPI (blue) (a–c). LPA increased P3490 staining, which was blocked by the pretreatment with Y-27632. Total PFN1 levels were
unaffected by these treatments as indicated by immunostaining with a generic PFN1 antibody (PFN1 in green and DAPI in blue) (d–l). E, HEK293 cells
were treated with or without 50 mM hydroxyfasudil (OH-fasudil) for 2 hr, followed by immunostaining with P3490 (a–b) or the generic PFN1 antibody
(c–d) (both in green) and counterstaining with DAPI (blue). Nearly all cells treated with OH-fasudil became P3490-negative without changes in their
total PFN1 levels. F, HEK293 cells grown in a 96-well plate were treated for 24 hr with increasing concentrations of OH-fasudil (1, 3, 10, 50 mM),
immunostained with P3490 and Alexa FluorH488-labeled secondary antibody, and counterstained with DAPI. Fluorescence intensity was quantified
on a fluorescence plate reader. P3490 staining was normalized vs. DAPI to control for cell numbers, and the effects of OH-fasudil were calculated as
relative values as compared to the untreated cells. OH-fasudil reduced P3490 staining dose-dependently. Error bars represent the standard error of
the mean (SEM). Data are mean 6 SEM of three independent experiments.
doi:10.1371/journal.pone.0032802.g001
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Discussion

Our prior studies were the first to demonstrate how PFN1’s

biological activities are regulated, at least in part, through

phosphorylation at Ser-137 by the Rho-associated kinase ROCK.

Ser-137 phosphorylation abolishes PFN1’s binding to polyproline-

containing ligands, e.g. huntingtin, which reduces its ability to

inhibit polyglutamine-dependent huntingtin aggregation [6]. Our

current work identifies PP1 as the principal phosphatase to

dephosphorylate PFN1 at Ser-137. By using a phospho-antibody

against pSer-137 of PFN1, we found that pharmacologic inhibition

and genetic knockdown of the catalytic subunit of PP1 (PP1Ca),

but not PP2A (PP2ACa), increased pS137-PFN1 levels in cultured

cells. PP1Ca binds PFN1 in cultured cells. This interaction

Figure 2. P3490 specifically detects pS137-PFN1 via immunofluorescence staining. A, HEK293 cells were infected for three days with
lentiviral shRNA particles encoding either a scrambled nucleotide sequence (Ctrl shRNA), or a target-specific sequence for human PFN1 (PFN1 shRNA).
Efficient PFN1 knockdown was confirmed by Western blot. B, virus-mediated PFN1 knockdown reduced P3490 staining (green, a–b), as visualized by
confocal fluorescence microscope. Total PFN1 decrease was also confirmed by immunofluorescence staining (green, c–d). DAPI (blue) was used to
counterstain cells either as merged (a–b) or unmerged images (e–f). C, staining of virus-infected cells with P3490 and PFN1 antibodies (as in A and B)
was quantified by fluorescence plate reader, and normalized vs. DAPI to control for cell numbers. The decrease of P3490 (,40%; *, p,0.05, unpaired
t-test) and total PFN1(60%; p,0.001, unpaired t-test) staining caused by PFN1 knockdown was calculated relative to cells infected with the control
shRNA (arbitrarily set as 1). Error bars represent the standard error of the mean (SEM). Data are mean 6 SEM of three independent experiments. D,
HEK293 cells were transiently transfected with Myc-tagged PFN1(wt, S137A or S137D), treated with 50 mM hydroxyfasudil for 16 hr, and double
stained with an anti-Myc (red) and P3490 (green) antibodies. Only cells expressing the phosphomimetic Myc-PFN1(S137D) stained positive with
P3490 (g–i), but not Myc-PFN1(wt) (a–c) or Myc-PFN1(S137A) (d–f). Arrowheads indicate two cells that expressed Myc-PFN1(S137D) and stained
positive with P3490. E, Western blot confirmed comparable levels of Myc-PFN1 over-expression (wt, S137A and S137D) in transiently transfected
HEK293 cells, as compared to cells transfected with an empty vector (pcDNA3). F, cells transfected (as in E) with pcDNA3 or various PFN1 constructs
were immunostained with P3490, and quantified on a fluorescence plate reader with normalization vs. DAPI. The effects of PFN1 over-expression on
P3490 staining are represented as relative change compared to cells transfected with pcDNA3. Only PFN1(S137D) increased P3490 staining
(***, p,0.001, unpaired t-test). Cells were not treated with hydroxyfasudil. Error bars represent the SEM. Data are mean 6 SEM of three independent
experiments.
doi:10.1371/journal.pone.0032802.g002
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increases when Ser-137 is mutated to aspartate, mimicking

phosphorylation, and decreases when it is mutated to alanine,

blocking phosphorylation. The simplest interpretation of our data

is that PP1 directly dephosphorylates pSer-137 of PFN1.

PP1 is a major eukaryotic serine/threonine phosphatase, and is

thought to catalyze the majority of cellular protein dephosphor-

ylation events [19]. There are four different catalytic subunits of

PP1 in mammals (a, b, c1,c2), which are associated with a large

number of regulatory subunits. This allows for hundreds of

dimeric holoenzymes that are highly substrate-specific [19,20,21].

Our finding that PFN1 co-immunoprecipitates with PP1 from

cultured cells in a phosphorylation-dependent manner suggests

that they co-exist in a complex to dephosphorylate pSer-137.

However, a lack of direct binding between these two proteins in

vitro suggests that they are likely linked in vivo by an unknown

PP1-interacting protein (PIP). This is consistent with the fact that

PFN1 lacks a typical PP1-docking motif (RVxF, SILK or

MyPhoNE (myosin phosphatase N-terminal element with the

consensus sequence of RxxQV/I/LK/RxY/W)) that is found in

most PIPs [19]. Given the vast number of PIPs estimated to be

encoded by the human genome (,650, 180 of which are known)

[19], identifying the one specifically targeting PP1 to PFN1 could

be a daunting task. However, screening PFN1-binding proteins

for this PIP might be a more feasible approach. Our finding that

mimicking Ser-137 phosphorylation (which should disrupt

PFN1’s binding to all polyproline-containing proteins) increases

PFN1’s interaction with PP1 argues against this PIP being a

polyproline-containing ligand of PFN1. This effectively rules out

the vast majority of PFN1-interacting proteins as the candidate,

and focuses our future efforts on the limited number of non-

polyproline ligands of PFN1 (e.g. actin and gephyrin) [3]. At a

minimum, this will reveal the additional linker protein, if existent,

between PFN1 and the unknown PIP, and take us one step closer

to identifying it.

Figure 3. Pharmacologic inhibition of serine/threonine phosphatases increases pS137-PFN1 in cultured cells. A, HEK293 cells were
treated with okadaic acid (OA) (a–d) or endothall (e–h) for 16 hr at increasing concentrations (1, 3 and 10 nM for OA; 1, 3 and 10 mM for endothall),
followed by immunostaining with P3490 (green) and counterstaining with DAPI (blue). The number of P3490-positive cells and overall P3490 staining
intensity increased notably at 10 nM of OA and 10 mM of endothall treatment. B, effects of OA and endothall on P3490 staining were quantified using
a fluorescence plate reader. P3490 levels were normalized vs. DAPI, and the effects of the drugs were represented as relative change vs. the vehicle
controls. OA and endothall increased P3490 staining dose-dependently. Error bars represent the SEM. Data are mean 6 SEM of three independent
experiments. C, HEK293 cells treated with 10 nM OA (a–b) or 10 mM endothall (c–d) were immunostained for total PFN1 (green) and counterstained
with DAPI (blue). Merged images showed no changes in total PFN1 levels as a result of the drugs.
doi:10.1371/journal.pone.0032802.g003
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As an essential protein for all eukaryotic cells, PFN1 has now

been linked to several human diseases such as Huntington disease

[6] and cancer [7,8,9,10,11,12]. It will thus be of great interest to

identify therapeutic approaches to regulate its activity. Our prior

and current identification of ROCK and PP1 as direct regulators

of Ser-137 phosphorylation and dephosphorylation raises the

possibility of targeting these two enzymes to manipulate PFN1

activity and treat these diseases. For example, ROCK inhibitors

(e.g. fasudil), which are expected to up-regulate PFN1 activity, are

already in clinical use to reduce vasospasm in the setting of

subarachnoid hemorrhage [22,23]. Importantly, they ameliorate

behavioral deficits of HD transgenic mice [24] and have been

validated as being anti-metastatic in several cancer models

[25,26,27,28]. Our work thus represents an early step in defining

the mechanisms by which it may be possible to specifically control

PFN1’s activity to benefit patients.

Materials and Methods

Plasmids
Mammalian expression vectors encoding Myc-PP1Ca (wt or

H125A) and Myc-PP2ACa were kindly provided by Dr. Hiroshi

Shima (Miyagi Cancer Center Research Institute, Japan) [29].

Mammalian expression vectors encoding untagged or Myc-tagged

PFN1 (wt, S137A and S137D) were cloned in pcDNA3 as

described previously [6]. HA-tagged human PFN1 (wt, S137A and

S137D) was PCR amplified and cloned into the EcoRI (59) and

XhoI (39) sites of pcDNA3.1. Primer sequences are as follows: 59-

CCGGAATTCGCCGCCATGGCCTACCCATATGATGTT-

CCAGATTACGCTTCTTTGGGTGCCGGGTGGAACGCC-

TACATCGACAACCTCATG-39 (upper primer containing an

HA-tag); 59-CCGCCGCTCGAGTCAGTACTGGGAACGCC-

GAAGGTGG-39 (lower primer).

siRNAs and shRNAs
Negative control siRNA (SI03650325) and human PP1Ca-

specific siRNA (SI02225748) were purchased from Qiagen. A pool

of three siRNAs targeting different regions of human PP2ACa
were purchased from Santa Cruz (sc-43509). To silence PFN1, a

21nt sequence (59-GGAATTTAGCATGGATCTTCG-39) was

custom-designed to target 246-267nt of human PFN1 mRNA, and

cloned as short hairpin RNA (shRNA) downstream of the U6

promoter in a lentiviral vector, pFLRu-FH (kind gift of Dr. Greg

Longmore) [30]. A control shRNA was similarly constructed using

Figure 4. Protein phosphatase-1 (PP1) dephosphorylates PFN1 at Ser-137. A, HEK293 cells were transfected with control, or sequence-
specific siRNAs targeting human PP1Ca or PP2ACa. They were immunostained with P3490 (a–c) or the antibody against total PFN1 (d–f) (both in
green) and counterstained with DAPI (blue). Silencing PP1Ca, but not PP2ACa, increased the number of P3490-positive cells and their staining
intensities, while having no effect on total PFN1 levels. B, effects of PP1Ca and PP2ACa knockdown on P3490 staining were quantified using the
fluorescence plate reader, normalized vs. DAPI, and represented as change relative to control siRNA. PP1Ca knockdown increased P3490 staining
three-fold (***, p,0.001, unpaired t-test), while PP2ACa knockdown had no effect. Error bars represent the SEM. Data are mean 6 S.E.M. of three
independent experiments. C, Western blot confirmed .90% knockdown of both PP1Ca and PP2ACa in HEK293 cells. Neither affected PFN1 levels.
Arrowhead indicates PP1Ca. The identity of the protein band above PP1Ca, which cross-reacts with PP1Ca antibody, is unknown. D, HeLa cells were
transfected with Myc-PP1Ca(wt) (a–c), Myc-PP1Ca(H125A) (catalytically inactive) (d–f) or Myc-PP2ACa (g–i), double immunolabeled with an anti-Myc
antibody (red) and P3490 (green), and counterstained with DAPI (blue). Neither Myc-PP1Ca(H125A) nor Myc-PP2ACa over-expression affected P3490
staining of the transfected cells (as indicated by the presence of cells that were both red and green). However, PP1Ca(wt) over-expression inhibited
P3490 staining (as indicated by the mutual exclusivity of red and green cells).
doi:10.1371/journal.pone.0032802.g004
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a non-targeting sequence (59-CAACAAGATGAAGAGCAC-

CAA-39) adapted from the MISSION Non-Target shRNA control

vector from Sigma. Lentiviral particles were purified by the Hope

Center Viral Vectors Core at Washington University.

Antibodies
Commercially available primary antibodies were as follows:

rabbit anti-PFN1 (Cell Signaling, #3237), mouse anti-Myc tag

(Santa Cruz, sc-40), rabbit anti-actin (Santa Cruz, sc-1616-R),

rabbit anti-PP1Ca (Cell Signaling, #2582), rabbit anti-PP2ACa
(Cell Signaling, #2038), mouse anti-HA tag (Covance, MMS-

101P). Custom-made antibodies include rabbit polyclonal anti-

body against the C-terminus of PFN1 (KCYEMASHLRRSQY,

gift of Dr. Nicholas A. DiProspero) and affinity purified rabbit

polyclonal anti-pS137-PFN1 (New England Peptides, Ac-

CMASHLRR(pS)QY-OH) [6]. Secondary antibodies used for

Western blotting include alkaline phosphatase-conjugated second-

ary antibodies (Sigma, A3562) and horseradish peroxidase-

conjugated secondary antibodies (Amersham Biosciences,

NA9340V for anti-rabbit and NA931V for anti-mouse antibodies).

Secondary antibodies for immunofluorescence staining include

Alexa FluorH 488-conjugated goat anti-rabbit IgG (Invitrogen, A-

11034) and Alexa FluorH 546-conjugated goat anti-mouse IgG

(Invitrogen, A-11030). Agarose conjugated with secondary anti-

mouse IgG (A6531) and EZview Red affinity gel conjugated with

rabbit anti-c-Myc antibody (E6654) were purchased from Sigma.

Reagents
Alpha isoform of bacterially expressed recombinant PP1

catalytic subunit was purchase from Sigma (P7937). Nickel-NTA

beads were purchased from Qiagen (30410). Protease inhibitor

cocktail (11-836-170-001) was purchased from Roche Diagnostics.

ECL Plus Western blotting detection kit (RPN2132) was

purchased from GE Healthcare. Lysophosphatidic acid (L7260)

was purchased from Sigma. Okadaic acid (495609), Endothall

(324760), Fostriecin (344280) and Hydroxyfasudil (390602) were

purchased from Calbiochem. Fetal bovine serum (SH3007103)

was purchased from Hyclone. Gold anti-fade mounting media was

purchased from Invitrogen (P36934).

Cell culture and transfection
HEK293, HeLa and NIH 3T3 cells were cultured in Dulbecco’s

modified Eagle medium containing 10% fetal bovine serum and

penicillin/streptomycin. Lipofectamine 2000 (Invitrogen) was used

for transfecting both DNAs and siRNAs using the protocol

recommended by the manufacturer.

Immunoprecipitation
HEK293 cells over-expressing Myc-PP1Ca(wt or H125A) or

Myc-PP2ACa were lysed with buffer containing 50 mM Tris-HCl

(pH 7.4), 150 mM NaCl, 0.1% Triton X-100, and protease

inhibitors. Cleared lysate was mixed with agarose beads bound

with anti-Myc antibody. After 2 hr of mixing at 4uC, beads were

washed 4 times with lysis buffer, and analyzed by Western blot for

co-immunoprecitation of untagged or HA-tagged PFN1 via

antibodies against PFN1 (1:1000) or the HA tag (1:1000). For in

vitro pull-down experiment, 20 ml nickel NTA beads were pre-

blocked with 1% bovine serum albumin (BSA) for 30 min at room

temperature, and subsequently mixed with 10 mg 6His-tagged

PFN1(wt, S137A and S137D) proteins previously purified from

bacteria [6] for 30 min at 4uC. After washing, 2 mg of

recombinant PP1Ca was added to the beads in 100 ml binding

buffer containing 10 mM Tris-HCl (pH 7.4), 150 mM NaCl,

0.1% BSA, 0.1% Triton X-100 and protease inhibitors. Following

1 hr incubation at 4uC, beads were washed 4 times with binding

buffer without BSA, and analyzed by Western blot for PP1Ca or

Coomassie blue staining for 6His-PFN1.

Immunofluorescence staining
Cultured cells were fixed for 30 min with 4% paraformalde-

hyde, washed 3 times with PBS, followed by blocking with 2%

BSA in PBS/0.1% Triton X-100 for 30 min. P3490 antibody was

diluted at 1:5000 (v/v) with blocking buffer and incubated with

cells for 2 hr at room temperature or overnight at 4uC. Cells were

Figure 5. PP1 and PFN1 interact in cultured cells. A, HEK293 cells
were co-transfected with an untagged PFN1 along with either an empty
vector (pcDNA3) (Lane 1), or Myc-tagged PP1Ca (Lane 2), or PP2ACa
(Lane 3), followed by immunoprecipitation with an anti-Myc antibody
and Western blot for PFN1. PFN1 co-immunoprecipitated specifically
with PP1Ca, but not PP2ACa. B, HA-PFN1 constructs (wt, S137A or
S137D) were co-transfected into HEK293 cells with pcDNA3 (Lanes 1–3)
or Myc-PP1Ca (Lanes 4–6). Myc-PP1Ca was immunoprecipitated with an
anti-Myc antibody, and co-immunoprecipitated HA-PFN1 was detected
by an anti-HA antibody. Relative to PFN1(wt), more PFN1(S137D) and
less PFN1(S137A) bound to PP1Ca. C, Purified 6His-PFN1 (wt, S137A or
S137D) proteins were bound to Ni-NTA beads, and subsequently mixed
with recombinant PP1Ca (Lanes 2–4). Beads without His-PFN1 were
mixed with the same amount of PP1Ca to control for nonspecific
binding (Lane 1). Beads were washed, and analyzed for binding of
PP1Ca to 6His-PFN1 by Western blot. 6His-PFN1 proteins were
visualized by Coomassie blue staining. No specific binding was
observed between purified PP1Ca and 6His-PFN1 (wt, S137A or
S137D), despite that they were abundantly present.
doi:10.1371/journal.pone.0032802.g005
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washed 4 times with PBS/0.1% Triton X-100, incubated with

1:500 dilution of Alexa FluorH 488 goat anti-rabbit secondary

antibody in blocking buffer for 2 hr at room temperature, washed

4 times with PBS/0.1% Triton X-100, and mounted. For total

PFN1 staining, custom-made rabbit polyclonal antibody against

the C-terminus of PFN1 (KCYEMASHLRRSQY) was used at

1:100 and followed by secondary antibody incubation as for

P3490. For double labeling, cells were simultaneously incubated

with P3490 (1:5000) and anti-Myc antibody (1:1000) overnight at

4uC, followed by 2 hr incubation with 1:500 dilution of Alexa

FluorH 488 goat anti-rabbit antibody and Alexa FluorH 546 goat

anti-mouse antibodies at room temperature. In all cases, DAPI

was included in the secondary antibody solution at a concentration

of 1 mg/ml. Images were acquired using the Zeiss LSM 5

PASCAL system equipped with the following lasers: 405 nm,

488 nm, 543 nm.

For quantitative immunostaining within 96-well plates,

HEK293 cells were grown to approximately 90% confluence,

fixed, blocked, stained with P3490 (1:5000) or anti-PFN1 antibody

(1:100) and Alexa FluorH 488 goat anti-rabbit antibody (1:500),

and counterstained with DAPI as described above. Cells were

washed 4 times with PBS/0.1% Triton X-100, left in 150 ml PBS,

and quantified for fluorescence intensity (490/519 nm for Alexa

FluorH 488 and 365/439 nm for DAPI) using a fluorescence plate

reader (INFINITE M1000, Tecan, Inc). Background fluorescence

was acquired using cells stained only with the secondary antibody.

Background subtracted fluorescence intensity for Alexa FluorH
488, which represented P3490 reactivity, was then normalized

against DAPI level to control for total cell number. For all

experiments, at least 4 replicate wells were quantified for a given

condition, and each experiment was repeated at least three times

independently.

Antigen competition
P3490 was first diluted 1:5000 in the blocking buffers for

immunofluorescence (PBS/0.1% Triton X-100/2% BSA) or

Western blot (TBS/0.05% Tween 20/5% skim milk), and then

mixed at 1:200 molar ratio (antibody/peptide) with PFN1 peptides

containing (Ac-CMASHLRR(pS)QY-OH) or lacking a phosphate

on Ser-137 (Ac-CMASHLRRSQY-OH) for 30 min at room

temperature. A control antibody solution was set up by mixing an

equivalent volume of water (instead of peptides) with P3490. All

antibody solutions (no peptide, S137-peptide and pS137-peptide)

were subsequently used to immunostain or immunoblot HEK293

cells as described above.
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