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Abstract: Multiple groups have described strategies for clinical implementation of pharmacogenetics
(PGx) that often include internal laboratory tests that are specifically developed for their
implementation needs. However, many institutions are not able to follow this practice and instead
must utilize external laboratories to obtain PGx testing results. As each external laboratory might
have different ordering and reporting workflows, consistent reporting and storing of PGx results
within the medical record can be a challenge. This might result in patient safety concerns as
important PGx information might not be easily identifiable at the point of current or future prescribing.
Herein, we describe initial PGx clinical implementation efforts at a large academic medical center,
focusing on optimizing three different test ordering workflows and two distinct result reporting
strategies. From this, we identified common issues such as variable reporting location and structure
of PGx results, as well as duplicate PGx testing. We identified several opportunities to optimize
our current processes, including—(1) PGx laboratory stewardship, (2) increasing visibility of PGx
tests, and (3) clinician and patient education. Key to the success was the importance of engaging
clinician, informatics, and pathology stakeholders, as we developed interventions to improve our
PGX implementation processes.
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1. Introduction

Pharmacogenetics (PGx) is a pillar of precision medicine that aims to improve healthcare by using
genetics to guide prescribing towards safer, more effective medication outcomes. Examples of PGx
include testing for genetic variants in human leukocyte antigen (HLA) presenting genes, to decrease
the risk of serious adverse drug reactions associated with drugs like abacavir and carbamazepine,
and testing for genetic variability in drug metabolizing enzymes, to guide antidepressant dosing.
Despite clinical guidelines and Food and Drug Administration-approved package labeling that provides
recommendations for select medications based on genotype, pharmacogenetic implementation efforts
across the United States are varied in depth and scope [1,2]. Pharmacogenetic implementation pioneers
frequently developed research-based programs where patients consent to broad panel-based testing
that is integrated into electronic systems, to guide drug prescribing [3–6]. Others developed inpatient
clinical programs where single drug-gene pairs were selected and implemented within a specific practice
setting, such as CYP2C19 testing for percutaneous coronary intervention [7–9]. Some organizations
also developed ambulatory pharmacogenetics services where patients are referred to pharmacogenetics
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clinics to help guide and interpret pharmacogenetic testing [10,11]. In the majority of cases of these
early adopters, the institutions identified a single source for PGx testing, such as internal PGx testing
panels, which were customized to the needs of their project, institution, and population.

However, it is unlikely that all health systems will have the capability to establish an
internal pharmacogenetics laboratory, and therefore the majority of clinicians will likely utilize
commercial laboratories, where pharmacogenetic test offerings are increasing [12]. Without dedicated
pharmacogenetics oversight, each clinical specialty within the institution might select a different
laboratory and develop their own test, ordering and reporting the workflow for pharmacogenetic
results in the electronic medical record (EMR). Multiple independent processes confound the integration
of pharmacogenetics into prescribing decisions, and these independent processes might cause decreased
visibility of relevant test results to all clinicians providing care to the patient, especially when the
results are returned as unstructured text documents, such as Portable Document Format (PDF) files.
Multiple groups are creating resources to enable uniform discrete reporting of genetic results in the
EMR, however, widespread adoption is not yet achieved [13–15]. Consistent result visibility is critical
to ensuring appropriate and safe medication use.

Our institution began a pharmacogenetics service in 2018, with the hiring of two clinical pharmacist
specialists focused in PGx implementation. However, prior to the initiation of this service several
clinical service lines already utilized pharmacogenetic testing. We chose to use an evidence-based
approach to determine initial PGx interventions. Therefore, our service focused on developing
standardized strategies for incorporating existing PGx results into the EMR, for all relevant patient care
decisions for gene-drug pairs, with established recommendations for dosing or use, based on Clinical
Pharmacogenetics Implementation Consortium (CPIC) guidelines or Food and Drug Administration
(FDA) package insert information. The description of these implementation efforts are unique
because the strategies for evaluating and integrating existing PGx results are less well described than
implementation of a new PGx-service that sets the testing criteria [16]. We believe that describing our
PGx implementation strategy will be informative for clinicians at institutions that are encountering
external PGx testing. Our processes might help guide opportunities for PGx result integration when
their institution might not have the infrastructure to develop their own pharmacogenetic testing
platforms or large-scale informatics efforts. Herein, we describe our initial processes to identify and
execute PGx-focused interventions, through the optimization of existing pharmacogenetic testing
strategies, implemented at a large academic medical center.

2. Materials and Methods

A retrospective review of pharmacogenetics utilization across the health system was designed
to assist the team with identifying areas where interventions could be made to optimize or expand
existing workflows, improve patient safety, or identify areas for increased education to clinicians.
Our goals were to—(1) identify what PGx tests were being ordered within the institution, (2) determine
the ordering and return the location of the PGx results, and (3) identify what clinical specialties utilized
PGx tests.

After obtaining approval from the institution’s internal review board (HUM00143486), the EMR
was queried for PGx test results from 1 June 2014–31 December 2018. Discrete variables were identified
through DataDirect, an internal, electronic data repository that extracts discrete information from
the institutional EMR [17]. The Electronic Medical Record Search Engine (EMERSE), a free-text
search engine of the EMR, was used to extract additional data of interest that could not be captured
as a discrete variable (e.g., clinical note documentation or text reported lab results) [18]. In both
systems, preliminary searches of laboratory tests, problem list entries, and clinical notes began by
using names of germline pharmacogenes, with guidelines from CPIC or germline genes included
in the FDA Pharmacogenomic Biomarkers table. Searches were then expanded to include names
of pharmacogenetic testing panels, such as Genesight®, to further identify cases of commercial
pharmacogenetic tests, ordered as a panel.
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Once a PGx result was identified in the medical record, additional data were gathered for each
result, such as, ordering workflow, testing laboratory (internal vs. external), location of result storage
in EMR, and format of result in EMR (i.e., discrete vs. text).

In addition to the retrospective chart review, the pharmacogenetics team began informally
surveying providers about their use and perceptions of pharmacogenetics, to determine what services
would be beneficial to clinicians and identify opportunities for education. A pharmacogenetic consult
service was also established and advertised to providers at our institution. This service is available for
any questions related to pharmacogenetics from providers and their patients. Direct consults with
patients can be requested by the provider for either pre- or post-PGx testing and are complete via
telephone. Clinicians can also request post-result interpretations of pharmacogenetics tests ordered
for patients. These interpretations are completed by a clinical pharmacy specialist and returned via a
standard pharmacogenetic note template that includes genotype and CPIC phenotype interpretation,
in addition to patient-specific considerations for prescribing.

3. Results

3.1. Retrospective Chart Review

Between 1 June 2014 and 31 December 2018, 6302 pharmacogenetic test results were identified
for 5663 patients. Thirteen unique pharmacogenes and 16 unique pharmacogenetic test orders were
identified in the EMR (Table 1). Thiopurine methyltransferase (TPMT) was the most commonly
tested pharmacogene, accounting for 50.6% of all PGx tests ordered. TPMT also had the most test
order options, with three distinct tests orderable in the EMR, two enzyme activity assays and one
genotype test.

Table 1. Pharmacogenetic tests identified in electronic medical record from 1 June 2014–31 December 2018.

Test N (%) Laboratory Order Process Result Location Result Format

TPMT enzyme assay 2694 (42.7) External Discrete EMR Results Text

G6PD activity 2122 (33.7) Internal Discrete EMR Results Discrete

HLA-B*57:01 579 (9.2) Internal Discrete EMR Results Text

TPMT Genotype 496 (7.9) External Discrete EMR Results Text

Genesight® 200 (3.2) External External Clinical
Note/Media NA

UGT1A1 Genotype 178 (2.8) Internal Discrete EMR Results Text

IL28B Genotype 15 (0.2) External Discrete EMR Results Discrete

HLA-B*15:02 5 (0.08) Internal Discrete EMR Results Text

DPYD Genotype 5 (0.08) External Non-discrete EMR Results Text

CYP2D6 Genotype 4 (0.06) External Non-discrete EMR Results Text

CYP2C9/VKORC1 genotype 2 (0.03) External Non-discrete EMR Results Text

HLA-B*58:01 1 (0.02) External Non-discrete EMR Results Text

Drug metabolizing enzyme panel 1 (0.02) External Non-discrete EMR Results Text

EMR—electronic medical record, discrete—reportable and measurable data in EMR, and non-discrete—non-measurable
data in EMR.

Three unique test ordering processes were identified—(1) discrete order in EMR, meaning the
test order could be searched in the EMR, (2) non-discrete order in EMR, meaning the test result was
within the EMR but the test was placed as a “miscellaneous” order, and (3) external-to-EMR orders,
where the test order was placed directly through the commercial laboratory. Ten of the 16 PGx tests
were available as discrete orders in the EMR, 5 were available as non-discrete orders in the EMR,
and one was ordered external to the EMR.
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Of the 15 PGx tests that could be ordered in the EMR, four were performed by an internal laboratory
and all were discrete orders. The remaining EMR-orderable PGx tests, whether discrete or non-discrete,
were sent to external laboratories. All tests that were ordered within the EMR had the test results
displayed within the results section of the EMR. Two of the PGx test results were reported as a
discrete genotype or phenotype (IL28B and G6PD), while all other PGx test results were reported in the
laboratory results, as text comments based on the original laboratory report.

The only way to identify that an external-to-EMR PGx test was completed for a patient was to
search for clinician documentation in an encounter note. All identified cases were for a pharmacogenetic
panel test that was focused on psychotropic prescribing, and searching for the name of the test panel
was the most efficient way to identify cases. In 58% of the identified cases, the genotype result for
the patient was identifiable, most commonly through a scanned PDF of the laboratory report that
was uploaded into the EMR. Although clinicians mentioned testing was performed in clinical notes,
they rarely reported the genotype results for the patient in the associated documentation.

The overall volume of PGx tests did not vary from year to year, although the proportion of IL28B
tests decreased over the study period, while the proportion of Genesight® panel tests increased over
the study period, likely reflecting practice changes over the study period.

3.1.1. Duplicate Test Results

Although the median number of pharmacogenetic tests per subject was 1, the range of tests per
subject was 1–8. Therefore, we evaluated the prevalence of duplicate pharmacogenetic tests.

Overall, 12% of patients (n = 680) had >1 result for the same pharmacogenetic test in the EMR,
during our study time frame. This was most common for patients with TPMT testing (15%), followed by
those with G6PD testing (6.8%), then HLA-B*57:01 (3%), and UGT1A1 genotype testing (2.2%).
The median number of duplicate tests per patient was 2 (range 2–8). For HLA-B*57:01, and UGT1A1
genotypes, 100% of the duplicate orders occurred during unique patient appointments. For TPMT,
73% of duplicate test orders occurred in unique appointments, while the remainder of duplicate tests
were ordered at the same appointment. Sixty percent (n = 319) of patients with > 1 TPMT test had
multiple TPMT enzyme assay tests, 33% had an enzyme assay and genotype test, and the remainder had
multiple TPMT enzyme assays and a genotype test. The large proportion of testing repeated at separate
patient appointments suggests the first test result might have been missed by the ordering clinician.

3.1.2. Pharmacogenetic Problem List Entries

Seventy-seven subjects had pharmacogenetic problem list entries for 13 different pharmacogenes
(Table 2). A corresponding pharmacogenetic test result was identified in the EMR for 54 (70%) of these
PGx problem list entries. The majority of the problem list entries provided information about the gene
that was tested, but limited the information about the identified genetic variant or phenotype to allow
for clinical application.
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Table 2. Pharmacogenetic problem listing the entries identified in electronic medical record (EMR).

Gene Problem List Entry N

TPMT

Intermediate TPMT activity 33
TPMT intermediate metabolizer 1
Poor metabolizer of azathioprine 1

Thiopurine methytransferase deficiency 1

RYR1
Monoallelic mutation of RYR1 14

Biallelic mutation of RYR1 2

CYP2D6
CYP2D6 deficiency 2

Cytochrome p450 2D6 enzyme deficiency 2
Poor drug metabolizer due to cytochrome p450 CYP2D6 variant 2

DPD DPD Deficiency 6

CYP2C9
Monoallelic mutation of CYP2C9 gene 1

CYP2C9 deficiency 2

CYP3A4
Ultra-rapid metabolizer associated with CYP3A4 2

Cytochrome p450 3A4 enzyme deficiency 1

CACN1S Monoallelic mutation in CACN1S 2

CYP1A2 CYP1A2 gene mutation 2

CYP2C19
CYP2C19 intermediate metabolizer 1

Cytochrome p450 2C19 enzyme deficiency 1

CYP mutation
CYP gene mutation – unknown type 1

Mutation of liver cytochrome that can lead to impaired drug metabolism 1

MTHFR Biallelic mutation of MTHFR gene 1

CYP2B6 CYP2B6 intermediate metabolizer 1

CYP3A5 CYP3A5 gene mutation 1

3.2. Clinical Services

Based on the findings of the retrospective evaluation, we developed additional pharmacogenetic
services in the form of clinical decision support to improve PGx-associated workflows. To improve
result visibility, we added the relevant pharmacogenetic test result to the medication order screens for
abacavir and thiopurines. To address the high rates of duplicate testing, we began the development
of clinical decision support, which was implemented for HLA-B*57:01 and TPMT. Both passive and
active clinical decision support (CDS) strategies were used to notify clinicians that a pharmacogenetic
test result was either missing for a relevant medication order, or was already available for a duplicate
laboratory order (Figure 1). CDS was also developed to notify clinicians of a high-risk result for the
HLA-B*57:01 genotype, which was reported as an unstructured text comment in the EMR. Using custom
structured query language, test results were extracted and were subsequently stored in the EMR
as discrete data elements. We compared the rate of patients with a duplicate TPMT test order for
6 months pre- and post-CDS implementation. In the pre-CDS period (1 April 2019–1 October 2019),
for 17.6% of patients, the TPMT test order placed in this time period was a duplicate test; in the
post-CDS period only 9.6% of patients had a duplicate TPMT order placed. No duplicate test alerts
fired for HLA-B*57:01 in the post-CDS time period.
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Figure 1. Sample screenshots of pharmacogenetic best practice advisory (BPA) alerts. © 2020 Epic
Systems Corporation.

While evaluating the discrete test orders, we also identified there was a cost difference between
the two available TPMT enzyme assays, with no strong clinical indication to prefer one test from the
other. We therefore worked with the laboratory formulary committee and clinicians who utilized this
testing to decrease the number of TPMT enzyme assay orders in the EMR, to decrease the overall costs
of testing. The overall estimated cost savings for the institution based on these interventions was
approximately $47,000 annually.

In addition to clinical decision support, the pharmacogenetics service provided both education
and clinical consultation, based on the findings of our initial inquiries. In terms of educational efforts,
a grand rounds presentation was provided to the department of pharmacy, as well as small group
education with pharmacists on the CDS interventions discussed above. Education and outreach efforts
with non-pharmacists were primarily focused on services that utilized the external-to-EMR test orders.
The education sessions varied, but frequently covered a review of pharmacogenetics, introduction to
pharmacogenetics resources such as the Clinical Pharmacogenetics Implementation Consortium,
discussion on how to interpret PGx test results, and potential limitations of pharmacogenetics.
Approximately 200 clinical pharmacogenetic consults were completed to date via the consult service,
primarily in ambulatory psychiatry, for assistance with the interpretation of commercial laboratory
psychotropic pharmacogenetic panels.
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4. Discussion

Through this investigation, our team identified multiple opportunities for pharmacogenetic
interventions to optimize pharmacogenetic testing strategies that already existed within our institution,
and to increase the integration of these results into prescribing decisions. There was substantial
heterogeneity in terms of both the test ordering and test resulting procedures within our institution.
Additionally, we unexpectedly discovered that many patients had duplicate pharmacogenetic testing
performed. These findings were not previously described in the pharmacogenetics implementation
literature, but are likely true at many institutions where the clinical service lines developed independent
strategies for using PGx testing. All of these discoveries present opportunities for pharmacist-led,
PGx-focused interventions that have the potential to decrease costs and improve patient safety.

Laboratory stewardship is the process of improving patient safety by ensuring that appropriate
tests are ordered, returned, and interpreted correctly for patients, while maintaining and developing
testing protocols that are fiscally responsible [19]. Pharmacists, and other PGx-trained clinicians,
can play a significant role in PGx laboratory stewardship within their institutions, by helping to
identify inappropriate testing, as well as comparing different testing strategies. This could present
opportunities to improve test ordering and resulting workflows, as well as identify cost-saving
opportunities, such as our intervention to remove a more expensive, but clinically comparable,
TPMT enzyme assay. Although this process does not directly impact the daily pharmacist workflows,
it helped to develop and establish mutually beneficial projects for pharmacy, pathology, and clinicians.

Ideally, all PGx results would be available in a discrete format in one location in the EMR,
however, there are substantial barriers to deploying this strategy that might not make it feasible
at all institutions. Use of pharmacogenetics is likely to increase and so pharmacists should work
to develop strategies to document pharmacogenetic results into the EMR, regardless of the testing
source, to improve result visibility and ease communication of test implications. Our initial strategy
for improving documentation is a standardized note template that includes the genotype result and
uses standardized CPIC phenotype terminology. One primary goal of the result interpretation was to
specifically address issues related to psychotropic panel testing. First, the products currently used by
our providers only describe pharmacogenetic guided recommendations for psychotropic medications,
when the PGx result might be applicable to other drug classes. An example is CYP2C19 testing,
where clinical recommendations currently exist for psychotropic, cardiovascular, and antifungal
agents [20–23]. Providers might not be aware of the non-psychotropic implications of the PGx result
and these potentially significant drug–gene interactions might be missed. Secondly, the laboratory
interpretations do not consider other patient-specific factors that might impact result interpretation of
pharmacogenetics, such as renal and hepatic function and drug–drug interactions. Finally, many of
the genetic results are not consistently interpreted into pharmacogenetic phenotypes by different
labs [24]. This results in variable interpretations that are sometimes at odds with recommendations
from pharmacogenetic guidelines. As our consultation translates the genotype result into a phenotype,
based on the CPIC standardized phenotype definitions, results for all patients with consultations
show a consistent interpretation. Although this process has limitations, it overcomes many barriers
to the traditional storage of PDF lab reports, in that, it is searchable in the EMR, improves the
visibility of the genetic results, and overcomes the barrier of variable phenotype interpretations
by commercial laboratories that could be inconsistent with interpretations from pharmacogenetic
guideline organizations [24].

As described by others, when implementing new clinical services, each of these interventions
required the engagement and buy-in of relevant stakeholders. The first step of clinician engagement was
educating them on the current state of testing in their practices and presenting potential interventions
to optimize the existing process. Once clinician buy-in was achieved, we then engaged pathology
and health informatics to further evaluate and approve these interventions. Many PGx programs
described establishing pharmacogenetics oversight committees that include stakeholders and provide
approvals for all PGx-related testing and interventions [3,25]. The development of this type of
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oversight committee might represent a barrier to PGx implementation for some institutions, as it
might not fit in the existing committee structure or might have too much overlap with other existing
committees. We demonstrated that pharmacogenetic interventions can be successfully deployed
without establishing a PGx-focused oversight committee, as long as all relevant stakeholders are
involved in the development of the interventions.

There are some limitations to the approach we took to conduct our retrospective review of
pharmacogenetics at our institution. Although the queries were completed with extensive terminology
in multiple data tracking systems, cases of PGx testing might still have been missed. The EMERSE
system helps to minimize this risk, by allowing for “synonym” searches for common alternative or
misspellings of the query word, however, some terms might still have been missed in the clinician
documentation [18]. Additionally, external results are frequently stored as scanned PDFs in the EMR
and there is currently no query method to evaluate this PDF data at our institution. This complication
implies that it is likely that additional cases of both single-gene and panel-pgx tests could have been
missed in this preliminary search, if they were not also reported in the clinical note format. As this is a
challenge many institutions likely face, it highlights how clinicians need to be proactive in identifying
what PGx testing is occurring within their practice areas and across their institution to ensure they can
be incorporated into relevant patient-care decisions.

Until pharmacogenetic tests are reported as discrete results from all laboratories into all EMRs,
interim strategies for capturing pharmacogenetic results will be needed. Clinicians have, and likely will
continue, to independently integrate relevant PGx tests into their practices as new PGx associations are
discovered. Pharmacists and other PGx-focused clinicians can have a significant impact in optimizing
the use of pharmacogenetic tests within their institutions, by contributing to laboratory stewardship,
providing education, and providing support for patients and providers on PGx result interpretation.

5. Conclusions

Herein, we described the initial processes we developed to establish a PGx-service focused on
optimizing the workflows and visibility of existing PGx test orders within our institution. We were
able to establish a consult service, with a standard documentation strategy to improve result visibility
and develop CDS tools within the EMR, to identify patients who might require PGx testing and
prevent duplicate PGx test orders. Successful implementation of services required an assessment of
PGx utilization, engagement, and support of relevant stakeholders, and collaboration with informatics.
Ideally further integration of test results into the EMR as discrete data would allow for additional CDS
development, particularly for results from external laboratories.
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