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Abstract

Background: DNA copy number profiles from microarray and sequencing experiments sometimes contain wave
artefacts which may be introduced during sample preparation and cannot be removed completely by existing
preprocessing methods. Besides, large derivative log ratio spread (DLRS) of the probes correlating with poor DNA
quality is sometimes observed in genome screening experiments and may lead to unreliable copy number profiles.
Depending on the extent of these artefacts and the resulting misidentification of copy number alterations/variations
(CNA/CNV), it may be desirable to exclude such samples from analyses or to adapt the downstream data analysis
strategy accordingly.

Results: Here, we propose a method to distinguish reliable genomic copy number profiles from those containing
heavy wave artefacts and/or large DLRS. We define four features that adequately summarize the copy number profiles
for reliability assessment, and train a classifier on a dataset of 1522 copy number profiles from various microarray
platforms. The method can be applied to predict the reliability of copy number profiles irrespective of the underlying
microarray platform and may be adapted for those sequencing platforms from which copy number estimates could
be computed as a piecewise constant signal. Further details can be found at https://github.com/baudisgroup/CNARA.

Conclusions: We have developed a method for the assessment of genomic copy number profiling data, and suggest
to apply the method in addition to and after other state-of-the-art noise correction and quality control procedures.
CNARA could be instrumental in improving the assessment of data used for genomic data mining experiments and
support the reliable functional attribution of copy number aberrations especially in cancer research.
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Background
Since the introduction of molecular-cytogenetic tech-
nologies for whole genome copy number aberration
screening [1, 2], considerable advances have been made
to work with a variety of sub-optimal material (e.g. micro
dissected samples, aspiration biopsies, paraffin embedded
tissue), both in the areas of DNA preparation, labeling
and platform technologies as well as in bioinformatic pro-
cessing of the experimental read-out. However, DNA copy
number profiles from current microarray and sequenc-
ing experiments sometimes suffer from the presence of
systematical “wave patterns” [3] throughout the whole
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genome, where within each genomic segment the esti-
mated copy number deviates from the true value which is
supposed to be a constant. These wave artefacts disrupt
the piecewise constant signal of the copy number data
and may lead to false positives or negatives in identifying
CNAs.
One of the known causes to the wave artefacts is differ-

ential DNA retrieval across chromosomal regions, which
may be due to GC-content bias [4], DNA replication
timing [5], differences in chromatin organization during
DNA isolation [6] and damages to the DNA by fixation
procedures [7]. Copy number profiles with heavy wave
artefacts sometimes can be corrected if certain require-
ments are met. Marioni et al. developed a method to
remove wave artefacts in copy number profiles for normal
samples without obvious CNAs [8]. Wiel et al. suggested
to eliminate waves in tumor profiles with many CNAs
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using calibration profiles [3]. Some methods correcting
GC-content bias have also been implemented for microar-
ray [4] and sequencing experiments [9]. However, the
methods proposed in these studies have a limited abil-
ity to remove wave artefacts or put many restrictions on
the type and variability of the input data itself. In addi-
tion to wave artefacts, large derivative log ratio spread
(DLRS) [10] correlating with poor DNA quality also leads
to unreliable copy number profiles.
The limited ability of existing experimental and bioin-

formatic methods to remove wave artefacts or to correct
for source dependent DNA quality variations motivated
us to devise a method for assessing if genomic copy num-
ber can be reliably estimated from a pre-processed, tech-
nology agnostic copy number profiling dataset. Rather
than developing a method for improving the sample
derived copy number profiles themselves, our primary
intention here is to provide measures for the contam-
ination of copy number profiles through artefacts and
thereby to support decisions regarding the suitability of
these copy number profiles for downstream data analysis
and interpretation.
Zhang and Zhang previously designed such ameasure in

an explorative study [7] where they proposed using auto-
correlation scanning profile (ASP) to evaluate data quality,
and demonstrated on simulated data that the median of
ASP (medASP) can be used as a discriminative metric.
However, it will be shown in the “Discussion” section that
medASP is not an adequate measure for real-world data
of different scenarios.
In this paper, we assess the reliability of copy num-

ber profiles using a machine learning approach. From our
experience and by experiment, we selected four features
which are able to adequately represent the copy num-
ber profiles for reliability assessment, i.e. the number of
steps that can be detected by the step-fitting algorithm in
the copy number profile, a quantitative value indicating
how much the copy number data is step-like, the num-
ber of segments induced by both CNAs and wave artefacts
detected by circular binary segmentation [11, 12], and
the mean of DLRS within segments. We will explain in
detail about these features in the “Results and discussion”
section and discribe the step-fitting algorithm by which
the first two features are generated in the “Methods”
section. Based on these features, we trained a classifier to
predict the reliability of the copy number profile. We will
describe the way of classifying reliable and unreliable pro-
files, and subsequently assigning them into one of the five
subcategories each having a biological or experimental
correspondence. Our reliability assessment method can
also be adapted to assess copy number profiles generated
by those sequencing platforms from which copy num-
ber estimates could be computed as a piecewise constant
signal.

Results
Piecewise constant model and segmentation
Tumor samples often contain CNAs, in which chromoso-
mal segments are found gained or lost in copy number,
deviating from the normal diploid status. Genome-wide
copy number can be depicted as a piecewise constant sig-
nal, where the change-points are the boundaries of the
chromosomal segments that differ in copy number, and
the constant value between a pair of change-points is the
copy number of the corresponding segment. Copy num-
ber profiling by microarray and sequencing techniques
gives noisy estimates of the true copy number at specific
genomic positions, which can be modeled as follows:
Assume a series of n log ratio copy number estimates

x = {xi : i = 1, 2, · · · , n} ordered by genomic position.
The piecewise constant model for the series is

xi = μi + εi, i = 1, 2, · · · , n, (1)

where μ = {μi : i = 1, 2, · · · , n} is a piecewise constant
function and ε = {εi : i = 1, 2, · · · , n} is a sequence of
independent and identically distributed errors. Assuming
a series ofm+1 change-points τ = {τj : j = 0, 1, 2, · · · ,m}
where 1 = τ0 < τ1 < · · · < τm = n + 1 delimit m seg-
ments with copy number level θ = {θj : j = 1, 2, · · · ,m}
such that

μi = θj, i ∈[ τj−1, τj), j = 1, 2, · · · ,m. (2)

The errors are usually assumed to be Gaussian ε ∼
N(0, σ 2) and supported by experimental data on self-self
hybridizations [13], although this assumption is not cru-
cial if the distances between successive τj’s are large [14].
The DLRS is denoted by σ and estimated by the standard
deviation of the error ε.
Segmentation is applied to recover the genomic posi-

tion of the boundaries and the underlying copy number
for chromosomal segments from the noisy copy number
estimates. Under the piecewise constant model, the seg-
mentation problem is to find the change-points τ delim-
iting the segments and the copy number levels θ for each
segment. If τ is known, θj can be estimated by the mean
of the copy number estimates that fall in the j-th segment,
that is

θ̂j =
∑τj−1

i=τj−1
xi

τj − τj−1
, j = 1, 2, · · · ,m. (3)

Many segmentation algorithms have been proposed (see
[15] and [16] for excellent review), among which the
popular circular binary segmentation (CBS) algorithm
[11, 12] was found to be one of themost accuratemethods.
Starting with the whole chromosome, the CBS algorithm
detects change-points delimiting a sub-segment with a
different copy number level in the middle of a larger seg-
ment, and does it recursively until no more change-points
can be found in any of the segments. For any interval
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[ a, b) and 1 ≤ a < b ≤ n, let the null hypothesis be
that the log ratio copy number estimates xa, xa+1, · · · , xb
are independent and identically distributed Gaussian and
the alternative be that there is a sub-segment with differ-
ent mean and same variance. CBS calculates the maximal
t-statistic T = maxa≤i<j≤b|Tij|,

Tij = Ȳij − Z̄ij

sij
√

(j − i)−1 + (b − a + i − j + 1)−1
, (4)

where Ȳij = (xi+1 + · · · + xj)/(j − i), Z̄ij = (xa + · · · +
xi + xj+1 + · · · + xb)/(b − a + i − j + 1), and s2ij is the
corresponding mean squared error.

Step detection and step-likeness quantification by
step-fitting
Ideally, DNA is uniformly retrieved from the chromo-
somes during sample preparation, that is, the amount of
DNA retrieved is proportional to the true copy num-
ber of the chromosomal segments present in the cells.
In this case, the log ratio copy number estimates contain
only abrupt jumps which satisfy the piecewise constant
assumption. However, in practice, due to GC-content bias
[4], DNA replication timing [5] and other biological phe-
nomena such as differences in chromatin organization
during DNA isolation [6] or damages to the DNA caused
by formalin fixation [7], DNA is sometimes retrieved dif-
ferentially across the genome, which adds artefacts in
the form of waves to the otherwise piecewise constant
signal. These wave artefacts adversely affect detecting
change-points which truly delimit the gained and lost
chromosomal segments.
Existing segmentation algorithms such as CBS are

poorly suited to discriminate the change-points that are
boundaries of the CNA segments from those introduced
by wave artefacts. When the magnitude of the waves are
less than that of the CNA signal, CBS leads to “hyper-
segmentation”, in which many change-points caused by
waves are detected in a single CNA segment. In the worst
case where the true copy number signal is buried in
the waves with comparable or even greater magnitude,
change-points detected by CBS largely depend on the
wave artefacts and are no longer boundaries of the CNA
segments.
Fortunately, in practice, CNAs induce abrupt jumps

which are visualized as steps and wave artefacts only
induce gradual changes. As a result, for copy number
profiles containing CNAs, reliable samples are usually
step-like, with few waves in each CNA segment, whereas
unreliable ones contain a lot of waves or the overall shape
of the signal does not resemble steps any more. Based
on these observations we implemented a fast step-fitting
algorithm of time complexity O(nlogn) adapted from the
method originally proposed by Kerssemakers et al. (refer

to Supplementary Methods 3 in [17]) to capture the step
signal which are mostly CNAs regardless of the change-
points introduced by wave artefacts, and assess how
much the copy number profile is step-like. See “Methods”
section for a detailed explanation about the step-fitting
algorithm and the adaptation.

Computer simulation: CBS versus the step-fitting algorithm
To demonstrate the differences betweenCBS and the step-
fitting algorithm in detecting change-points, 3 groups
of copy number profiles each containing 200 samples of
10,000 dimensions were generated (Figs. 1 and 2). Group
A are reliable copy number profiles containing many
CNAs; Group B are unreliable copy number profiles in
which the piecewise constant CNA signal is buried in
waves; Group C are hyper-segmented copy number pro-
files in which many change-points caused by waves are
present in a single copy number segment. See Additional
file 1 for details on how simulations were performed.
Figure 1 shows a set of simulated copy number profiles

having the same true CNA segments. A1 to A3 demon-
strate the segmentation on the same reliable copy number
profile, where the red lines in A1 are the predefined true
CNA segments. Red lines in A2 and A3 are copy number
segments recovered by CBS and step-fitting respectively,
from which it can be concluded that both methods recov-
ered the majority of copy number segments. While CBS
performs better in terms of detecting small segments of
low signal to noise ratio, step-fitting is capable of captur-
ing the overall step-like signal. B1 to B3 show the same
unreliable copy number profile with heavy wave artefacts
generated by introducing large auto-correlation to the
reliable copy number profile in group A, for which neither
CBS nor step-fitting can locate the true CNA segments
correctly. In B2, CBS found greater amount of change-
points most of which are noise, whereas in B3 step-fitting
also fitted noise but only those with more abrupt changes
and therefore the number of change-points detected are
less than CBS; Nevertheless, change-points detected by
both methods mainly depend on noise and are no longer
boundaries of the true CNA segments. C1 to C3 show
the same hyper-segmented copy number profile created
by passing the reliable copy number profile in group A
through a median filter to add small waves at the same
time preserving the overall step-like structure. While in
C2 CBS detected too many change-points within individ-
ual true CNA segments, step-fitting significantly outper-
formed by recovering majority of copy number segments
well. Note here the possibility of merging multiple seg-
ments detected by CBS using additional methods is not
considered, as our main goal is to find a good proxy for
the extent of wave artefacts which is represented by the
number of change-points that CBS can detect under its
standard setting.
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Fig. 1 An example of simulated copy number profiles. Samples of 10,000 dimensions (n = 10, 000) were generated for 3 reliability groups, i.e. A:
reliable copy number profiles containing many CNAs; B: unreliable copy number profiles having indiscernible CNAs due to wave artefacts; C:
hyper-segmented copy number profiles. In group A, both CBS and step-fitting recovered majority of copy number segments well; In group B, both
methods fitted noise and CBS detected more change-points than step-fitting; In group C, CBS detected too many change-points whereas
step-fitting recovered majority of segments well
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Fig. 2 CBS versus step-fitting for 200 set of simulated copy number profiles. Scatter plot of the number of segments detected by CBS (purple) and
step-fitting (green), plotted against the number of true CNA segments. In group A, the number of segments recovered by CBS approximates true
CNA segments very well; the number of segments recovered by CBS is close to that of step-fitting. In group B, both methods fitted noise in which
CBS found more change-points than step-fitting in general. In group C, CBS recovered much more segments than the number of true segments,
whereas step-fitting found majority of CNA segments well
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The observation from Fig. 1 can be generalized to the set
of 200 simulated copy number profiles as shown in Fig. 2.
For reliable copy number profiles in group A, the number
of segments recovered by CBS is a very good approxi-
mation to the true CNA segments (Spearman correlation
coefficient ρ = 0.89; Regressing the number of recov-
ered segments on the number of true segments by robust
linear regression results in slope w = 0.93 and intercept
b = 0.28), while step-fitting recovered majority of CNA
segments well except for those very short segments of low
signal to noise ratio (ρ = 0.41;w = 0.67 and b = 0.79). For
copy number profiles in group B containing heavy wave
artefacts, both methods fitted noise. CBS recovered more
segments than the number of true segments (w = 1.86
and b = −2.26) and although in our simulation there is
still correlation (ρ = 0.70) as the waves introduced in
different samples are of comparable size, the correlation
is not expected in real data where the waves are of vari-
ous size coming from different sources. Furthermore, in
group B, the number of segments found by step-fitting
is largely less than CBS and independent of the number
of true segments (ρ = 0.04; w = 0.13 and b = 19.56).
Last, for hyper-segmented copy number profiles in group
C, CBS recovered far more segments than the number of
true segments (ρ = 0.36; w = 2.84 and b = 222.80),
whereas step-fitting foundmajority of CNA segments well
(ρ = 0.38, w = 0.79 and b = 2.21).

Reliability assessment metrics
In this section we further develop the reliability assess-
ment method on 1522 previously published copy number
profiles from different experimental batches and microar-
ray platforms (See “Methods” section for detail).
Figure 3 shows five typical cases each corresponding to

one of the reliability groups that can often be observed
among genomic copy number profiles. Apart from those
containing many CNAs which can be classified as hyper-
segmented, reliable and unreliable with heavy wave arte-
facts (Fig. 3a to c), there exist copy number profiles that
have no or very few CNAs (e.g. control samples from nor-
mal tissues; Fig. 3d); but also copy number profiles with
extraordinarily large DLRS suggesting poor DNA qual-
ity prohibiting the detection of any CNA (Fig. 3e). The
upper panel of each subgraph in Fig. 3a to e shows copy
number profile of a particular case segmented by CBS,
and the lower panel shows the same copy number profile
segmented by step-fitting in the optimal iteration when
Speak , the maximum value of S generated by the step-
fitting algorithmwas attained. The corresponding S values
throughout iterations are plotted in Fig. 3f (See The step-
fitting algorithm in “Methods” section for definition of S
and Speak).
In Fig. 3a to c, the performance of CBS versus

step-fitting is consistent with that on simulated data in

the previous section: In reliable copy number profiles
(Fig. 3b), segments recovered by CBS are comparable to
those from step-fitting; in unreliable copy number profiles
with heavy wave artefacts (Fig. 3c) both methods fitted
noise in which CBS found more change-points than step-
fitting; in hyper-segmented copy number profiles (Fig. 3a)
CBS detected a great many change-points within individ-
ual steps recovered by step-fitting, resulting in a higher
number of CBS derived segments. An additional feature
associated with reliability can be discovered by looking
closer into the three cases in which both the reliable and
the hyper-segmented copy number profile have clear step-
like structures, while in the unreliable case the boundaries
of the CNA segments aremuch less defined. This property
is reflected by the peak value of S: As shown in Fig. 3f, the
hyper-segmented (Case 1) and the reliable copy number
profile (Case 2) both attained relatively high Speak whereas
Speak for the unreliable copy number profile (Case 3) is
much lower.
In Fig. 3d and e, no apparent CNA exists or can be

detected. The former is unreliable due to large DLRS so
that the CNAs, even if are present, cannot be detected
properly, whereas the latter is a reliable control sample
diploid across the genome. Nevertheless, in both cases
step-fitting merely fitted noise and the corresponding S
values for Case 4 and 5 in Fig. 3f increase throughout iter-
ations yet remain close to 1 and no apparent peak can be
observed.
So far we have discussed 4 features related to the reli-

ability of copy number profiles, i.e. Speak , an indicator
of how much the copy number profile is step-like; l, the
number of steps detected by step-fitting; v, the number
of segments detected by CBS which could be induced
by both CNAs and wave artefacts; and σ , which is the
DLRS estimated by the standard deviation of the error ε

in Eq. (1).
The full set of reliability assessment metrics is summa-

rized in Table 1, where l and v combined represent the
wave density.

CNARA: reliability assessment for copy number profiles
To turn the qualitative metrics into quantitative ones and
therefore allow to predict the reliability of a given copy
number profile, a support vector machine (SVM) classifier
was trained on the 1522 previously published copy num-
ber profiles labeled as reliable or unreliable by experts (see
“Methods” section).
The 4 features Speak , l, v and σ were extracted for each

of the 1522 samples and were used with the SVM classi-
fier. The svm function in the e1701 R package [18] which is
the interface to the C++ implementation libsvm [19] was
called, where the cost was set to 1 and the radical basis
function (RBF) kernel exp(−0.4|u − v|2) was chosen in
which the parameters were set by cross validation. Tenfold
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Fig. 3 Five example specimen of copy number profiles for each of the reliability groups. 3a: Case 1, hyper-segmented, discernible CNAs with some
waves; 3b: Case 2, reliable, discernible CNAs with few waves; 3c: Case 3, unreliable, indiscernible CNAs with heavy waves; 3d: Case 4, unreliable, large
DLRS, undetectable CNAs; 3e: Case 5, reliable, control sample or without many CNAs. In each subgraph 3a to 3e, the upper panel shows the copy
number profile segmented by the CBS algorithm, and the lower panel displays the same copy number profile segmented by step-fitting in the
optimal iteration when Speak was attained, where the red line is the fit and the blue line is the counter-fit. In Fig. 3f, S values are shown for the same
five copy number profiles. For each curve the S-values for 120 iterations are shown. The GEO accession numbers [29] for the five cases are: Case 1,
GSM360756 [30]; Case 2, GSM491138 [31]; Case 3, GSM360643 [30]; Case 4, GSM187938 [32]; and Case 5, GSM182894 [33]

cross-validation on the 1522 training samples resulted in a
total prediction accuracy of 99.08 % with standard devia-
tion 0.0083 (a 3D visualization can be found in Additional
file 1: Figure S5). The extremely high accuracy suggests
that the 4 features chosen can represent the copy number
profile very well for reliability assessment. The resulted

classifier can predict any new copy number profiles as
reliable or unreliable in terms of whole-genome CNA
evaluation. For fine tuning of the methodology to par-
ticular sample compositions or evaluation goals, we have
included the option to use user provided training sets (see
respective subsection below).
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Table 1 Reliability assessment metrics for copy number profiles.
Eight qualitative combinations lead to five reliability cases

Case No. Speak Wave density σ Assessment
(l and v)

1
high high high hyper-segmented, discernible

CNAs with some waves

high high low

2
high low high reliable, discernible CNAs with

few waves

high low low

3
low high high unreliable, indiscernible CNAs

with heavy waves

low high low

4 low low high unreliable, large DLRS

5 low low low reliable, control sample or
without many CNAs

Speak quantifies how much the copy number data is step-like; Wave density
depends on two features l and v, where l is the number of steps recovered by
step-fitting in the copy number profile and v is the number of change-points
detected by CBS which could be induced by both CNAs and wave artefacts; And σ

is the mean of DLRS within segments

For a copy number profile predicted as reliable, the value
of Speak tells if it has many CNAs or not (case 2 and 5
in Table 1). Usually control samples from normal tissues
or samples without many CNAs have Speak ≤ thr1, while
tumor samples containing CNAs that we are interested in
have Speak > thr1, where thr1 is a threshold with default
value 1.5.
Copy number profiles predicted as unreliable can be

further divided into 3 subcategories (case 1, 3 and 4
in Table 1), by carrying out the following procedure:
Denote samples in the training set by (S(i)

peak , l
(i), v(i), σ (i))

where i = 1, 2, · · · , 1522. Given any unreliable sample
b = (Speak , l, v, σ), create two dummy samples d1 =
(Speak , l, min(v(i)), σ) and d2 = (Speak , l, v, min(σ (i))) by
substituting v or σ by the minimum of the training set cor-
respondingly, and predict the reliability of d1 and d2. If d1
is reliable, b contains wave artefacts and therefore can be
subcategorized as either Case 1 or 3; if d2 is reliable, b has
large DLRS and thus belongs to Case 4; otherwise b suf-
fers from both wave artefacts and large DLRS and can be
either Case 1 or 3. As hyper-segmented samples in Case
1 may still be of interest for certain tasks such as looking
for CNA regions but not counting the number or keeping
track of the size of copy number gains or losses, a more
stringent threshold thr2 greater than thr1 for Speak could
be set, for example, to accept those hyper-segmented sam-
ples having Speak > thr2 with caution where the default
value of thr2 is 2.5.

Discussion
A comparison between CNARA andmedASP
The performance of CNARA and medASP [7] was
compared and shown in Fig. 4. The 1522 samples were
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Fig. 4 CNARA versus medASP. ROC plots of CNARA and medASP on
the validation set. The 1522 samples were split into training and
validation sets (50:50 %) at random, and the SVM classifier of CNARA
was trained on the training set. The AUC of CNARA is 0.9994,
compared to the AUC of medASP (0.7372)

randomly split into training and validation sets at the pro-
portion of 50:50 % and the SVM classifier of CNARA
was trained on the training set where the parameters
for the cost and the RBF kernel were set the same as
in the previous subsection. The probability of being pre-
dicted as unreliable for each sample in the validation set
was computed by the libsvm implementation [19] and the
median of ASP was computed for the same sample in
the validation set. The receiver operating characteristic
(ROC) curves for the two values were then generated
against the true class labels for the validation set.
As shown in Fig. 4, the area under the ROC curve (AUC)

for medASP is 0.7372, which suggests that the assump-
tions made in the medASP study [7], i.e. simulating copy
number profiles with a gain and a loss region of fixed size,
does not comform well with feature distribution in real-
world data. By contrast, the AUC of CNARA is 0.9994
which is consistent with the extremely high prediction
accuracy of the SVM classifier stated in the previous sub-
section. The value approaching 1 once again implies that
the 4 features chosen summarize the copy number profile
very well in terms of its reliability.

Custom training set
Apart from the training set consists of absolutely reliable
and unreliable copy number profiles, CNARA is flexible
to take in additional average quality samples labeled by
experts to the training set to accomodate to their own
need. For example, the boundaries of the CNA segments
for formalin-fixed paraffin embedded (FFPE) samples are
known to be less well defined than fresh-frozen samples in
general [7, 20]. Therefore, when working with a large set
of FFPE samples, one may wish to keep those slightly con-
taminated samples and reject others that are highly con-
taminated. To achieve this, people can create their own
training set by including several slightly contaminated
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samples as reliable and highly contaminated as unreliable
according to expert knowledge to the original training set
(See Additional file 1 for more details on building custom
training set).

Conclusions
During our efforts on the curation of human cancer
copy number data from genomic screening experiments
[21, 22], we have frequently encountered data sets chal-
lenging the state-of-the-art quality assessment proce-
dures. While several methods have been proposed to
improve the readout of genomic copy number profiling
both through improvements of experimental design [6]
as well as application of advanced bioinformatic meth-
ods [3, 4, 8, 9], many data sets still contain artefacts that
can not be removed sufficiently by these existing meth-
ods. As a result, when working with tens of thousands
of genomic copy number profiles derived from a multi-
tude of platforms and different pre-processing methods, a
robust method capable of identifying the low quality data
sets based on extractable features is needed.
Previously, some downstream quality control measures

such as genotyping call rate [23] and derivative log-ratio
spread (DLRS) [10] have been reported for microarrays to
describe the noise induced during sample hybridization
onto the arrays. However, existing evaluation methods are
limited in controlling for inherent noise due to differential
DNA retrieval across the genome during sample prepa-
ration, which is a severe problem in the generation of
genomic copy number profiles, and therefore reliability
assessment for copy number profiles remained an open
problem. Zhang and Zhang previously did an explorative
study [7] where they proposed medASP as a discrimi-
native metric for evaluating the quality of copy number
profiles and achieved good accuracy on simulated data.
However, it has been shown in the previous section that
medASP is not an adequate measure for real copy num-
ber data which contains different amount of copy number
gains and losses of various sizes at different genomic
positions.
In this paper, we proposed a method for assessing the

reliability of DNA copy number profiles. We showed five
typical cases each corresponding to one of the reliabil-
ity groups that can often be observed in practice and
discussed in detail about the 4 features which can repre-
sent the copy number profiles well in terms of reliability,
namely the number of steps detected by step-fitting, an
indicator of how much the copy number data is step-
like, the number of segments induced by both CNAs
and wave artefacts detected by CBS and the mean of
DLRS within segments. To obtain the first two features
we proposed a fast step-fitting algorithm of time complex-
ity O(nlogn) which is scalable to high-throughput copy
number data. Taking these 4 features as input, an SVM

classifer was trained on 1522 samples labeled as reliable
or unreliable according to expert knowledge. By tenfold
cross-validation on the whole dataset, the resulting clas-
sifier achieved a total accuracy of 99.08 % with standard
deviation 0.0083. Predicted samples can be further sub-
categorized into the five reliablility classes, each having
a biological or experimental correspondence. To the best
of our knowledge, this is the first application developed
for real-world data filling the gap of controlling the qual-
ity problem regarding differential DNA retrieval for copy
number profiles, which is non-overlapping with and com-
plementary to the objectives of any state-of-the-art quality
control measures.
Our method can be applied to log ratio copy number

data before or after normalization. Applied before nor-
malization, it helps to judge if the log ratio copy number
data needs normalization and noise correction; applied to
the normalized data, it assesses the utility of the data in
downstream analysis. Nonetheless, since it evaluates an
aspect of the quality different from any existing quality
control measures, we suggest our reliability assessment
method to be the last step after any possible downstream
quality control and bias correction methods, to decide if
the normalized sample can be finally included in datamin-
ing experiments for biomedical knowledge generation.We
have to emphasize that, while our method can deliver
information about the quality of the signal derived from
whole genome copy number screening experiments, by
itself it does not address problems arising from the pos-
sible clonal heterogeneity, e.g. in biosamples derived from
cancer tissues. Also, the impact of reliability assessment
will depend on the intended downstream analyses; for
instance, the reliability of whole-genome CNA profiles, as
determined by our method, may be of less concern when
using statistical CNA peak finding tools like GISTIC [24].
Thanks to the competing efforts on estimating genomic

copy number from exome and whole-genome sequenc-
ing [25] especially recent development of CopywriteR [26]
which is capable of extracting uniformly distributed copy
number information from sequencing data, we are opti-
mistic that in the near future piecewise constant signal for
copy number estimates could be computed reliably with
comparable acurracy to that of microarray platforms. Due
to the universality of our method in dealing with samples
from different platforms and the flexibility in taking new
training samples, at that time our reliability assessment
method can also be easily adapted to those copy number
profiles generated by sequencing platforms.

Methods
The copy number profile dataset
1522 previously published copy number profiles
(Additional file 2: Table S1) were used in our study. The
samples were obtained from arrayMap [21, 22] with the
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original data retrieved from NCBI’s GEO repository
[27], with preprocessing and noise correction performed
through the standard arrayMap data processing pipeline
[21]. Probe-level plots with added segmentation markers
were visually inspected and selected by experts with
respect to the empirically assessed copy-number calling
reliability, and with the goal of a balanced representation
of reliable and unreliable copy number profiles as well
as a sufficient coverage of cases from different reliability
groups. This selection resulted in 804 absolutely reliable
copy number profiles (cf. cases 2 and 5 in Table 1) and
718 absolutely unreliable copy number profiles including
hyper-segmented ones (cf. cases 1, 3 and 4 in Table 1). See
Additional file 1 for data preprocessing and Additional
file 2: Table S1 for a complete list of the arrays being
analyzed and their reliability labels. The data is available
at arraymap.org [21, 22].

The step-fitting algorithm
To recover the set of change-points τ = {τj : j =
0, 1, 2, · · · ,m} delimiting the CNA segments from the log
ratio copy number estimates x = {xi : i = 1, 2, · · · , n},
the algorithm updates τ iteratively, starting from τ (0) =
{1, n + 1}, in each iteration k introduces an additional
change-point τ (k) to τ (k−1), called the best-fit, which
minimizes the cost function

H =
n∑

i=1
(xi − μi)

2 (5)

by scanning through all possible locations i = 2, · · · , n,
i �∈ τ (k−1) and adding i to τ (k−1) as the temporary change-
point set τ

(k)
temp such that τ

(k)
temp = sort(τ (k−1) ∪ i), in

which the elements are ordered from the smallest to the
largest; μi in Eq. (5) is computed from Eqs. (2) and (3)
where {τj−1, τj} ⊆ τ

(k)
temp, j = 1, 2, · · · , k + 1. The location

i that minimizes Eq. (5) is therefore τ (k), and τ in the kth
iteration is updated as τ (k) = sort

(
τ (k−1) ∪ τ (k)).

Next, in between each pair of τj−1 and τj in τ (k) where
j = 1, 2, · · · , k + 1, find the change-point cj which is the
best-fit for xi, i ∈[ τj−1, τj) such that it minimizes

Fj =
τj−1∑

i=τj−1

(xi − ψi)
2, (6)

where cj ∈ (τj−1, τj) and

ψi =
⎧
⎨

⎩

∑cj−1
i=τj−1

xi/(cj − τj−1) for i ∈[ τj−1, cj)
∑τj−1

i=cj xi/(τj − cj) for i ∈[ cj, τj)
(7)

The set of change-points cj’s plus the boundary denoted
by c(k) = {cj : j = 1, 2, · · · , k+1}∪{c0 = 1, ck+2 = n+1}
is called the counter-fit change-points for iteration k. The
cost function Q for the counter-fit is defined as

Q =
n∑

i=1
(xi − νi)

2. (8)

where

νi =
∑cj−1

i=cj−1
xi

cj − cj−1
, i ∈[ cj−1, cj), j = 1, 2, · · · , k + 2.

(9)

The algorithm proceeds iteratively adding the best-fit
change-point τ (k) each time to the change-point set τ (k−1)

in the previous iteration and finding the set of counter-fit
change-points c(k) correspondingly, until the number of
iterations reaches a predefined threshold K . This results
in a set of best-fit change-points and a set of counter-fit
change-points located in between one another.
The step-fitting algorithm stated above (refer to Supple-

mentaryMethods 3 in [17] for more information) has time
complexity of ∼ 2nK (for definition of the tilde notation
see [28]) where n is the dimension of the copy number
estimates x and K is the total number of predefined itera-
tions usually greater than 100. An important observation
which helps to improve the computational efficiency is
that, of all the counter-fit change-points in c(k) in the kth
iteration, the most prominent change-point cj if added to
τ (k) decreasing the cost function H the most is always
the best-fit change-point τ (k+1) to be included in the next
iteration, specifically,

τ (k+1) = argmax
cj∈c(k)

dj (10)

and

dj =
τj−1∑

i=τj−1

(xi − μi)
2 − (xi − ψi)

2, (11)

where i ∈[ τj−1, τj), {τj−1, τj} ⊆ τ (k), cj ∈ (τj−1, τj) and
j = 1, 2, · · · , k + 1; μi and ψi are computed as in Eqs. (2),
(3) and (7) respectively. Here we keep track of the set of
dj’s for each corresponding cj as the difference set d(k).
Furthermore, after the best-fit change-point τ (k+1) being
included in τ (k+1), to update the corresponding counter-
fit set c(k+1) and difference set d(k+1) we only need to
exclude τ (k+1) = ct from c(k) and the corresponding dt
from d(k) first, and then scan the region delimited by the
two best-fit break-points directly next to τ (k+1) in τ (k+1)

for two additional counter-fit break-points and the cor-
responding two differences. To be specific, given τr =
τ (k+1), {τr−1, τr , τr+1} ⊆ τ (k+1), find cr ∈[ τr−1, τr) and
cr+1 ∈[ τr , τr+1) as computed in Eqs. (6) and (7), and com-
pute dr and dr+1 as in Eq. (11); then update c(k+1) =
(c(k)\τ (k+1))∪cr∪cr+1 and d(k+1) = (d(k)\dt)∪dr∪dr+1.
In this way, the time complexity is reduced to O(nlogn).
To estimate the number of steps in the copy number

profile and assess howmuch the data is step-like, the same
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model selection criterion is adopted as in Kerssemakers’
method, where the step-indicator S is introduced and
defined as

S = Q
H
. (12)

For reliable copy number profiles or hyper-segmented
profiles containing many steps which are mostly CNAs, in
early iterations change-points in τ (k) and c(k) both locate
significant steps such that Q is close to H and therefore S
is close to 1. S increases until it peaks in the optimal itera-
tion when change-points in τ (k) cover all significant steps
and all change-points in c(k) merely fit noise so thatQ and
H differ the most. After that S decreases as change-points
in both τ (k) and c(k) begin to fit noise andQ andH become
closer again. As a result, the number of iterations it takes
for S to reach the peak, denoted by l, is an estimation of
the number of steps in the copy number profile.
In Kerssemakers’ literature they also mentioned the

peak value of S denoted by Speak approximates quadratic
of signal to noise ratio given by Speak ≈ 1 + 	2

4σ 2 , where 	

is the mean of the absolute difference of μi’s around each
best-fit change-point τj weighted by

√
τj+1 − τj−1, where

τj ∈ τ (l), j = 1, 2, · · · , l, and σ is the standard deviation of
ε in Eq. (1). For unreliable copy number profiles of which
the steps are drowned by wave artefacts of large mag-
nitude, Speak is significantly smaller than that of reliable
copy number profiles containing comparable amount of
CNAs. For those profiles containing few significant CNAs
or control samples which are diploid across genome, S is
close to 1 throughout iterations and no apparent peak can
be observed so that Speak is close to 1. Therefore Speak
is an indicator of how much the copy number profile is
step-like.
The adapted step-fitting algorithm is summarized in

Algorithm 1.

Algorithm 1 Adapted step-fitting algorithm
Input: x
Initialize: τ (0) = {1, n + 1}, c(0) = {1, c1, n + 1}, d(0) =

{d1} and S(0) = 1.
For k = 1, 2, · · · ,K
1: Find τ (k) = argmaxcj∈c(k−1) dj where dj ∈ d(k−1), j =

1, 2, · · · , k
2: Set τ (k) = sort(τ (k−1) ∪ τ (k))
3: Given τr = τ (k) = ct ∈ c(k−1), {τr−1, τr , τr+1} ⊆ τ (k),

find cr ∈[ τr−1, τr), cr+1 ∈[ τr , τr+1), dr and dr+1
4: Update c(k) = (c(k−1) \ τ (k)) ∪ cr ∪ cr+1
5: Update d(k) = (d(k−1) \ dt) ∪ dr ∪ dr+1
6: Set S(k) = Q/H

Output: l = argmaxk{S(k), k = 1, 2, · · · ,K}, Speak = S(l),
τ (l), c(l)

Software
The CNARA software and a tutorial is available at https://
github.com/baudisgroup/CNARA.

Additional files

Additional file 1: Supplementary Methods. This document describes
the computer simulation procedure for the 3 groups of copy number
profiles in Figs. 1 and 2, the preprocessing procedure for the 1522 copy
number profile dataset and the supporting Figures S1-S5, and the
procedure of building custom training set. (PDF 933 kb)

Additional file 2: Supplementary Table S1. A complete list of the 1522
copy number profiles, including GEO accession number and reliability
label. (TSV 58 kb)
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