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Sudden infant death syndrome (SIDS) is an unexplained death in infants, which usually 
occurs during sleep. The cause of SIDS remains unknown and multifactorial. In this 
regard, the diving reflex (DR), a peripheral subtype of trigeminocardiac reflex (TCR), is 
also hypothesized as one of the possible mechanisms for this condition. The TCR is a 
well-established neurogenic reflex that manifests as bradycardia, hypotension, apnea, 
and gastric hypermotility. The TCR shares many similarities with the DR, which is a 
significant physiological adaptation to withstand hypoxia during apnea in many animal 
species including humans in clinical manifestation and mechanism of action. The DR 
is characterized by breath holding (apnea), bradycardia, and vasoconstriction, leading 
to increase in blood pressure. Several studies have described congenital anomalies of 
autonomic nervous system in the pathogenesis of SIDS such as hypoplasia, delayed 
neuronal maturation, or decreased neuronal density of arcuate nucleus, hypoplasia, and 
neuronal immaturity of the hypoglossal nucleus. The abnormalities of autonomic nervous 
system in SIDS may explain the role of TCR in this syndrome involving sympathetic and 
parasympathetic nervous system. We reviewed the available literature to identify the 
role of TCR in the etiopathogenesis of SIDS and the pathways and cellular mechanism 
involved in it. This synthesis will help to update our knowledge and improve our 
understanding about this mysterious, yet common condition and will open the door for 
further research in this field.

Keywords: sudden infant death syndrome, trigeminocardiac reflex, diving reflex, oxygen-conserving reflex, 
bradycardia, asystole, smoking, prenatal nicotine exposure

inTRODUCTiOn

Sudden infant death syndrome (SIDS) is defined as the sudden unexplained death of a seemingly 
healthy child less than 1 year of age, usually during sleep. For the diagnosis of SIDS, the death should 
remain unexplained even after the autopsy, investigation of mortality scene, and review of clinical 
history (1). SIDS remains a leading cause of death in infants between ages of 1 month and 1 year. 
The incidence of SIDS varies between regions and among racial and ethnic subgroups (2, 3). It is a 
multifactorial disorder, the cause of which is still not fully elucidated. The exact cause of death in 
SIDS remains unclear; however, the exaggeration of parasympathetic activity and cardiorespiratory 
response to hypoxia has been suggested as a possible underlying mechanism (4–9). In addition, 
postnatal age, gestational age at birth, and level of arousability are also linked with SIDS (10, 11).
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FiGURe 1 | The trigeminocardiac reflex pathway.
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Infants who succumb to SIDS typically experience a severe 
bradycardia, which is the most shared and predictive event in 
infants monitored for life-threatening incidents (12, 13). It may 
be preceded or is accompanied by centrally mediated apnea. Such 
abnormal and exaggerated response to sensory trigeminal nerve 
stimulation has also been implicated in the etiopathogenesis of 
SIDS (14, 15).

Stimulation of trigeminal nerve leads to consecutive reflex 
bradycardia, hypotension, apnea, and gastric hypermotility, 
commonly known as the trigeminocardiac reflex (TCR). This 
reflex is most often transient, but sometimes may be pronounced 
and sustainable, particularly, in infants. The diving reflex (DR) (a 
subtype of TCR) is triggered as a result of stimulation of one of the 
sensory branches of the trigeminal nerve and leads to inhibition 
of cardiorespiratory center, thereby causes bradycardia and apnea 
(16–19). An exaggerated response to hypoxia (i.e., augmented 
TCR response) causing lethal bradycardia and apnea can be 
accused of sudden death in the victims of SIDS. In this article, we 
reviewed the available literature on SIDS to identify the evidence 
and explore the role of TCR in the pathogenesis of SIDS.

TRiGeMinOCARDiAC ReFLeX

Trigeminocardiac reflex has been classified into various subtypes 
including central, peripheral, and ganglionic TCR (17, 20–24). 
The central TCR is triggered by the stimulation of the intracranial 
part of trigeminal nerve proximal to Gasserian ganglion, and the 
peripheral TCR is triggered by the stimulation of the ophthalmic, 
maxillary, or mandibular branches of trigeminal nerve (25–30). 
TCR triggered due to the direct stimulation of Gasserian ganglion 
is classified as a separate entity (19).

PATHwAY OF TCR

The branches of the trigeminal nerve, Gasserian ganglion, the 
sensory nucleus of the trigeminal nerve forms the afferent path-
way of the reflex (26, 31–33) (Figure 1). The short internuncial 
nerve fibers of the reticular formation connect the afferent 
pathway to the efferent pathway, which is predominantly formed 
by the parasympathetic neurons of the dorsal motor nucleus of 
the vagus nerve and nucleus ambiguus (19). Animal studies have 
shown the involvement of several other brainstem nuclei in the 
TCR pathway, which includes trigeminal nucleus caudalis, para-
trigeminal nucleus, parabrachial nucleus, rostral ventrolateral 
medulla oblongata, and dorsal medullary reticular field (34–36). 
Also, various subtypes of TCR show a difference in their reflex 
arc. While peripherally originated TCR is relayed via the spinal 
nucleus of the trigeminal nerve to the Kölliker–Fuse nucleus, 
the centrally originated TCR is conveyed via the nucleus of the 
solitary tract to the lateral parabrachial nucleus (35).

Activation of the sympathetic nervous system has been impli-
cated for the other less common manifestations of TCR, such as 
tachycardia and hypertension, which are seen in some subtypes 
of TCR. Studies have revealed that stimulation of the anterior 
ethmoidal nerve in the nasal mucosa (peripheral TCR) may 
simultaneously activate the sympathetic and vagal responses. This 
may result in parasympathetically mediated bradycardia along 

with sympathetically mediated peripheral vasoconstriction and 
hypertension (37, 38). In contrast to this, the centrally stimulated 
TCR manifests as bradycardia and hypotension due to activation 
of cardioinhibitory vagal response, whereas the ganglionic TCR 
is clinically present as either increase or decrease in heart rate 
(bradycardia/tachycardia) and blood pressure (hypotension/
hypertension) (39). These varied presentations of TCR are due 
to co-activation of parasympathetic and sympathetic nervous 
system (39).

DivinG ReFLeX AS A SUBTYPe OF TCR

The DR is a powerful autonomic reflex that manifests as the reflex 
bradycardia, apnea, peripheral vasoconstriction, and hyperten-
sion triggered by submersion of a face in cold water through 
branches of the trigeminal nerve (40). Both TCR and DR are phy-
logenetically oxygen-conserving reflexes, and researchers reveal 
a similar reflex arch in both (41). Thus, DR appears to be another 
subtype of TCR (39). The difference between DR and peripheral 
TCR shows different effect on blood pressure. Although periph-
eral TCR causes normotension or hypotension, DR leads to 
hypertension. This is due to intense peripheral vasoconstriction 
caused by more strong sympathetic stimulation during DR than 
during peripheral TCR (42). This reflex also persists in humans 
and is probably inherited from diving birds and amphibians (18, 
32, 43–45). It is particularly prominent in infants and manifests 
as severe bradycardia upon a single submersion of the face in the 
water (46, 47). Activation of this reflex due to the stimulation of 
sensory trigeminal fibers over the face and nasal mucosa causes 
apnea, a sudden drop in heart rate (due to parasympathetic 
activation), and a gradual increase in blood pressure as a result of 
peripheral vasoconstriction (due to increase in sympathetic tone) 
(44, 45). Also, there is a contraction of spleen releasing erythro-
cytes in the circulation (48, 49). Thus, the blood flow is redirected 
to vital organs (the brain and the heart) from the periphery and 
visceral organs. The heart rate is reduced, thereby lowering O2 
requirement of myocardium and the blood flow to the brain is 
increased without an increase in the cerebral metabolic oxygen 
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demand. Thus, DR is a protective oxygen-conserving reflex 
(18,  32, 44, 45). However, an exaggerated response that results 
in profound bradycardia can sometimes prove harmful or even 
fatal (14, 15, 50) and is often said to be associated with sudden 
death in infants.

ROLe OF TCR in SUDDen inFAnT 
DeATH SYnDROMe

Sudden infant death syndrome is the leading cause of death in the 
postneonatal period (12, 13, 51, 52). The exaggeration of para-
sympathetic activity and cardiorespiratory response to hypoxia 
has been suggested as the possible mechanism for these events 
(4–9). Similarly, trigeminal air-stream stimulation (TAS) model 
also showed that the TAS may induce apnea and bradycardia in 
premature infants (53). In infants monitored for apparent life-
threatening events, severe bradycardia was the most prevalent 
and predictive event seen in infants who succumbed to SIDS (12, 
13, 54), and hypoxia is a frequent event that precedes death in 
infants of SIDS (55).

Interestingly, the laryngeal chemo-reflex (LCR), a protective 
mechanism, causes closure of the glottis, coughing, and apnea 
during aspiration of the fluid into larynx/trachea and, therefore, 
has also postulated as one of the causes of SIDS (56, 57). On the 
other hand, DR, a subtype of TCR, has also been implicated to 
have a role in SIDS (14, 15, 58). The TCR is regulated by many 
brainstem nuclei and endogenously modulated by many neu-
rotransmitters, the important one being serotonergic (5-HT), 
cholinergic (ACh), and nicotinergic (42, 59). Abnormalities in 
the modulation of these neurotransmitters along with defect 
in brainstem nuclei maturation may lead to exaggerated TCR 
response. Therefore, we summarize pieces of evidence in four 
hypotheses.

Serotonergic Hypothesis
Abnormalities of serotonergic neurons have been observed in 
victims of SIDS (60–67). These victims had a higher number of 
5-HT neurons in the medulla and cerebrospinal fluid (68, 69). 
Also, these medullary 5-HT neurons have been proposed to act 
as central respiratory chemoreceptors that are involved in the 
facilitation of respiration in response to hypoxic episode and 
generation of respiratory rhythm (70–73). These observations 
suggest that medullary 5-HT dysfunction may result in loss 
of respiratory and autonomic response to hypoxia and hyper-
carbia leading to sudden death in SIDS victims during sleep. 
Interestingly, the 5-HT1A-binding density was more reduced in 
males compared to females’ SIDS victims, which also explains 
why males are more vulnerable to SIDS (68, 74). Notably, these 
conditions (hypoxia, hypercarbia, and male gender) are also 
common risk factors for inciting the TCR. In animal experiment 
models, investigators have shown that the serotonin modulation 
is linked with TCR mechanism that further explains the possible 
role of TCR in SIDS (42, 75).

Cholinergic Hypothesis
The decrease in cholinergic receptors density, as well as binding 
dysfunction of cholinergic receptors, has also been implicated 

as a risk factor for SIDS. Investigators have found a reduction in 
some choline acetyltransferase (ChAT) neurons as well as their 
binding capacities in hypoglossal nucleus and dorsal motor 
nucleus of vagus in SIDS cases (76–84). Also, hypoplasia of the 
arcuate nucleus has also been observed in these infants (76, 
85, 86). These findings suggest a specific defect in cholinergic 
neurons in the brainstem of SIDS infants, which could cause 
abnormal control of cardiovascular and respiratory functions 
in these babies and contribute to the etiology of SIDS (76). They 
observed that cholinergic neurons endogenously inhibit the 
excitatory glutamatergic transmission to parasympathetic car-
diac vagal neurons in response to trigeminal nerve stimulation 
via mAChRs. Neostigmine (an acetylcholinesterase inhibitor) 
significantly inhibited, whereas atropine (muscarinic receptor 
antagonist) enhanced this transmission, thus demonstrating 
the role of muscarinic (m4 type mACh) receptors. A decreased 
cholinergic activity could result in reduced inhibition of excita-
tory neurotransmission to cardiac vagal neurons in response 
to trigeminal nerve stimulation and thus an exaggerated TCR 
response in SIDS infants (59). Cholinergic receptors also play 
a significant role in sleep-dependent changes. The cholinergic 
neurotransmission in the brainstem is an important integral 
component of rapid eyeball movement sleep generation (87, 
88). Change in cholinergic receptor activity is associated with 
potentiation of TCR and trigeminally evoked respiratory 
suppression (89) as well as with altered sleep–awake cycles in 
infants both of which are also seen in victims of SIDS. Studies 
have identified incomplete and less frequent arousal from sleep 
in response to hypoxia in SIDS victims. Kato et al. studied the 
characteristics of arousal from sleep in 16 infants who were 
being monitored for some days or weeks before they died of 
SIDS. The polygraphic sleep recordings of these infants were 
compared with those of matched control infants. The result of 
this study showed significantly fewer cortical arousal (complete 
arousal) in an infant who eventually died of SIDS later than 
in the control infants. Victims of SIDS had more frequent and 
longer duration of subcortical arousal (incomplete arousal) 
than controls. This study suggested an incomplete arousal pro-
cess from sleep in infants who succumb to SIDS (90). Sensory 
stimulation of the trigeminal nerve during REM sleep has been 
shown to cause REM sleep-associated respiratory failures in 
SIDS infants (89, 91).

nicotine Hypothesis (Mixed Model)
Prenatal exposure of the fetus to nicotine alters the density and 
binding capacity of serotonin and cholinergic receptors (61, 63, 
68, 80, 81, 92, 93) and is one of the major risk factors contribut-
ing to SIDS (94, 95). Gorini et  al. used a rat model to study 
the effects of prenatal nicotine exposure in the offsprings of 
the mothers who were exposed to clinically significant nicotine 
levels during gestation (75). The results of this study showed an 
exaggerated TCR response in animals exposed to nicotine dur-
ing the prenatal period. They observed that prenatal exposure to 
nicotine significantly facilitates excitatory glutamatergic neuro-
transmission to cardiac vagal neurons in the nucleus ambiguus 
upon stimulation of trigeminal sensory afferents compared to 
their unexposed counterparts. The prenatal nicotine exposure 
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also enhanced the endogenous serotonergic facilitation of TCR. 
All these effects thus lead to heightened TCR response (75). 
Also, a reduction in the number and function of AChRs has 
also been found in infants exposed to prenatal nicotine. Fetal 
exposure to nicotine suppresses mRNA expression and thus 
decreases brainstem mAChR binding. This again contributes 
to exaggeration of TCR by reduced inhibition of cardiac vagal 
neurons. Exposure to nicotine during the prenatal period 
facilitates modulation of inhibitory and excitatory pathways 
to the vagal nucleus in response to hypoxia or hypercapnia 
(96, 97). Prenatal exposure to nicotine decreases inhibitory 
GABAergic signals to the vagal nucleus during hypoxia (98) as 
well as hypercapnia (99). This decreased inhibitory GABAergic 
inputs to vagal nucleus cause increase in vagal activity to heart, 
thereby causing severe and sometimes lethal bradycardia in 
these animals (100–102). These findings suggest the likely 
cellular mechanism that causes an exaggerated response and 
pronounced bradycardia in victims of SIDS. Fetal exposure to 
nicotine also causes dysfunction of brainstem monoaminergic 
pathway. It leads to downregulation of 5-HT receptors and 
enhancing the risk of death due to SIDS (85). Prenatal nicotine 
exposure modulates 5-HT receptors in areas of brainstem 
regulating cardiorespiratory function that results in exagger-
ated TCR response and lethal outcome (75, 103).

Other Hypotheses
Frequent developmental abnormalities in the brain stem, 
particularly in the arcuate nucleus, have been identified in 
SIDS (85, 86, 104–106). The arcuate nucleus is an important 
cardiorespiratory center in the medulla and hypoplasia of this 
nucleus has been detected in over 50% of infants dying of SIDS 
(105). Alterations in another brainstem nucleus have also been 
demonstrated (85, 107–112). Some of these nuclei (e.g., nucleus 

ambiguus, parabrachial nucleus) also participate in the reflex arc 
of TCR (40, 42). Besides, Lavezzi et al. observed an association 
between tobacco use and decreased in the functional activity 
of trigeminal nucleus that can trigger sudden death in babies 
(108). On the other hand, SIDS may occur due to a lack of 
sufficient development and plasticity of glutamatergic synapses 
(insufficient glutamate signaling) in the mesencephalic nucleus 
of the trigeminal nerve and reticular formation of the brainstem 
(113). All these findings thus suggest the role of developmental 
defects (i.e., neuronal deficiency and immaturity) in the brain-
stem nuclei regulating cardiorespiratory and other autonomic 
function in infants who die of SIDS. Therefore, the TCR may 
be a missing link in the etiopathogenesis of this subgroup of 
patients as well.

COnCLUSiOn

Serotonergic or/and cholinergic dysfunction in the brainstem 
autonomic nuclei causes an exaggerated TCR response and thus 
culminates in sudden intense bradycardia, apnea, and death 
and, therefore, can be linked with the etiopathogenesis of SIDS. 
However, whether the exaggerated TCR response is the cause in 
all cases of SIDS is a subject for future research.
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