
Endothelial stomatal and fenestral diaphragms in 

normal vessels and angiogenesis

R. V. Stan * 

Angiogenesis Research Center, Department of Pathology, Department of Microbiology 
and Immunology, Dartmouth Medical School, Hanover, NH, USA

Received: June 8, 2007; Accepted: June 9, 2007

Abstract

Vascular endothelium lines the entire cardiovascular system where performs a series of vital functions including
the control of microvascular permeability, coagulation inflammation, vascular tone as well as the formation of new
vessels via vasculogenesis and angiogenesis in normal and disease states. Normal endothelium consists of het-
erogeneous populations of cells differentiated according to the vascular bed and segment of the vascular tree
where they occur. One of the cardinal features is the expression of specific subcellular structures such as plas-
malemmal vesicles or caveolae, transendothelial channels, vesiculo-vacuolar organelles, endothelial pockets and
fenestrae, whose presence define several endothelial morphological types. A less explored observation is the dif-
ferential expression of such structures in diverse settings of angiogenesis. This review will focus on the latest
developments on the components, structure and function of these specific endothelial structures in normal
endothelium as well as in diverse settings of angiogenesis.
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Introduction

Blood vessels have evolved to carry oxygen, nutri-
ents and signaling molecules to distant organs in ver-
tebrates higher than amphibians. The establishment
of the primitive vascular plexus from angioblasts [1],
known as vasculogenesis, followed by remodeling 
of this plexus into a hierarchical, mature vascular 
network, capable to accommodate the circulation of
blood, are crucial for organ growth. The network
expands with the growth of the organism via another
process named angiogenesis, term defining the for-
mation of neovessels from preexisting ones. In a
more elaborate way, the term angiogenesis refers to
the sprouting of new capillaries from the post-capil-
lary venules that involves endothelial cell activation,
extracellular matrix degradation, migration and prolif-
eration, maturation and stabilization of new blood
vessel by recruitment of pericytes and smooth mus-
cle cells [2]. This contribution of angiogenesis to
organ growth continues after birth until adulthood,
when most blood vessels remain quiescent. In the
adult, angiogenesis occurs during the menstrual
cycles in the ovary and uterus as well as in the pla-
centa during pregnancy. Endothelial cells maintain
their ability to divide rapidly in response to physiolog-
ical stimuli (i.e. hypoxia), angiogenesis being reacti-
vated during wound healing in the adult. In many dis-
orders, this stimulus becomes excessive, and the
balance between stimulators and inhibitors is tilted,
resulting in an angiogenic switch. The best known
conditions in which angiogenesis is switched on are
cancers, ocular and inflammatory disorders.
However, many additional processes are affected,
such as obesity, asthma, diabetes, cirrhosis, multiple
sclerosis, endometriosis, AIDS, bacterial infections
and autoimmune disease (for a comprehensive
review see ref. [3]).

Endothelial phenotypic changes in diverse set-
tings of angiogenesis are under intense scientific
scrutiny in search for novel biomarkers with potential
for therapy [3–5]. An interesting and less explored
observation is the expression by endothelial cells of
specific subcellular structures such as caveolae and
their stomatal diaphragms, fenestrae, transendothe-
lial channels (TEC) and vesiculo-vacuolar organelles
(VVOs).This review will discuss the knowledge on the

structure function and regulation of these structures
in normal endothelia as well as in angiogenesis.

Endothelial phenotypes –

morphology

Vascular endothelium is a highly differentiated cellu-
lar monolayer with the organization of a simple squa-
mous epithelium. It lines the entire cardiovascular
system and thus constitutes a quasi-ubiquitous pres-
ence in organs and tissues throughout the body.
From a morphological point of view, depending on
their content of specific structures, endothelia have
been classically defined into three main structural
types: the continuous, fenestrated and discontinuous
endothelium. The continuous endothelium (Fig. 1A)
occurs in all large vessels (both arteries and veins)
and microvessels of the body wall (skin, skeletal
muscles) as well as those of the visceral muscles
(myocardium included) and the lung. As reflected by
its name, its main characteristic is the formation of a
continuous, uninterrupted barrier between the blood
and tissues. In a quiescent state it features a large
population of caveolae or plasmalemmal vesicles [6,
7], extremely few TEC [8] and virtually no fenestrae.
In select continuous endothelia (e.g. lung, tongue)
caveolae can be provided with a stomatal diaphragm
(SD). In addition to relatively fewer caveolae, the fen-
estrated endothelium (Fig. 1B) features specialized
microdomains such as fenestrae, TEC and endothe-
lial pockets [9–14]. This type of endothelium occurs
in all endocrine glands, digestive tract mucosa and
kidney (e.g. peritubullar capillaries). Caveolae and
TEC are always provided with an SD and fenestrae
are provided with a fenestral diaphragm (FD) in most
cases within the fenestrated endothelium.
Discontinuous or sinusoidal endothelium lines the
sinusoids in the liver and bone marrow. It has
extremely few caveolae always provided with an SD
and sinusoidal gaps. The gaps are also called fenes-
trae in a large body of literature (reviewed in ref. [15])
but they differ from those of the fenestrated endothe-
lium by being of a larger diameter, heterogeneous in
size and by not being subtended by a diaphragm.
Variations are found between these differentiated
types of endothelium with respect to the surface den-
sity of each of the structures expressed [12, 14].
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Structure of endothelial stomatal

and fenestral diaphragms 

in normal endothelium

Besides the common set of organelles featured by all
mammalian cells, endothelia are provided with spe-
cific structures/microdomains that were discovered
very early after the introduction of the electron micro-
scope to biology in the 1950s. Microdomains such as
fenestrae, caveolae, TEC and VVO were implicated as
sites of transendothelial exchange between the blood
plasma and the interstitial fluid in health and disease.
These structures have continuously intrigued many
researchers in the field especially as their compo-
nents remained elusive for decades.

Caveolae and their stomatal diaphragms

Caveolae (or plasmalemmal vesicles) were first
described in the endothelium of continuous type [6]
but they occur in all types of endothelia as well as
most mammalian cell types (for a review see ref.
[16]). They are morphologically defined as spherical
invaginations of plasma membrane of regular shape
and size (~70 nm average outer diameter). They can
occur singly or in grape-like clusters attached to
either front of the endothelium.

Only in select endothelia of continuous type (i.e. in
lung, tongue, kidney vasa recta) and in all fenestrated
and sinusoidal endothelia, caveolae are provided
with an SD. The existence of caveolae with or without
SDs has been clearly demonstrated by rapid-freeze
deep-etch techniques ([17, 18] and Fig. 2A, B). By
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Fig. 1 Endothelium of continuous (A) and fenestrated (B) types as seen by freeze fracture. (A) The P face of the 
abluminal membrane of a heart endothelial cell shows the numerous caveolae. These are organized in linear arrays,
better seen in the higher magnification images (insets). (B) Two endothelial cells of a jejunal capillary show the 
disposition of fenestrae in sieve plates. Higher magnification insets compare the linear disposition of caveolae (left) and
fenestrae (right), suggesting attachment to cytoskeletal elements. Reproduced from reference [12], with permission.
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transmission electron microscopy, the SD is a thin
(~5–7 nm) protein barrier (Fig. 7A) that occurs in their
necks or stoma or in between vesicles that are part
of a cluster. The diameter of the SD is variable 
(<40 nm), most probably due to variable diameter of
caveolar necks during caveolae internalization [19].
At the place of SD insertion, the plasma membrane
forms a sharp angle (arrowheads in Figs 4C–D, 5B–C).
Electron dense material is usually present on the
intracellular aspect of the membrane within this
angle, as shown in orthogonal transmission electron
microscopy sections (Figs 4C–D, 5B–C arrowheads,
Fig. 7A, left). Both orthogonal and en face views
demonstrate a central density or knob on the SDs 
[7, 10]. Favorable en face views of the SDs (e.g. in
the lung capillaries) show the central knob to be con-
nected to the vesicular neck by very thin fibrils. The
diaphragm is apparently lipid-free, as it does not have
the trilaminar appearance of the plasma membrane
bilayer. It is also destroyed by proteases [20, 21],
which implies its protein nature (reviewed in ref. [16]).

Endothelial fenestrae

Endothelial fenestrae (Figs 2C, 7A, left), the land-
marks of the endothelia of fenestrated type, are 

circular windows resembling 'boat portholes' that cut
through the cell body. They are arranged in ordered
linear arrays within large planar clusters called ' sieve
plates'. Individual fenestral pores have a remarkably
constant diameter (~62–68 nm) [10–12]. Their cir-
cumference is delineated by the fenestral rim that
occurs where the luminal aspect of plasma mem-
brane continues with the abluminal one under a
sharp angle. As in the case of the SDs, electron
dense material has been demonstrated in the cyto-
plasm within the sharp angle formed by the plasma
membrane. The circumference of most fenestral
pores is apparently round, but as demonstrated by
Maul, 20–30% of them have an octagonal symmetry,
which can be photographically enhanced by rotating
the image several times around its center [22]. The
octagonal symmetry has been clearly established by
deep-etch of rapidly frozen specimens [17] and high
resolution scanning electron microscopy [23].

The fenestrae are provided with a Fenestral
Diaphragm (FD) [9] in all cases (i.e. in kidney per-
itubullar capillaries, all endocrine and exocrine
glands, intestinal villi) except in capillaries of kidney
glomerulus [24–27]. Although of a slightly larger
diameter, the fenestral diaphragms are morphologi-
cally similar to the SDs by transmission electron
microscopy (Fig. 7A, left).They appear as thin protein
barriers anchored in the fenestral rim and provided
with a central knob or density, as demonstrated in
parallel and perpendicular sections. Moreover, in en
face views obtained in oblique or grazing sections,
the central density seems to be connected to the fen-
estral rim by thin fibrils [28]. Bearer and Orci exquis-
itely demonstrated the intimate organization of the
fenestral diaphragm [17] (Fig. 2C). In rapidly frozen
deep-etch specimens, they have shown the fenestral
diaphragm to consist of radial fibrils, starting at the
rim and interweaving in a central mesh, the equiva-
lent of the central density/knob seen by transmission
electron microscopy. Unfortunately, the SDs of cave-
olae and TEC could not be resolved in the same
detail due to their smaller size and experimental con-
ditions (i.e. angle of shadowing) [17]. It was readily
apparent that the caveolar diaphragms resembled
those of the TEC both featuring a central particle [17]
(Fig. 7A). Close examination also reveals hints of 
the same radial fibrils pattern as for fenestral
diaphragms (Fig. 7B).

Finally, perfusion fixation of vascular beds provid-
ed with fenestrated endothelia where the fixatives
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Fig. 2 Caveolae with (B) and without (A) stomatal
diaphragms, TEC (C) and Fenestrae (D) as seen in rapidly
frozen deeply etched specimens.The stomatal diaphragms
of caveolae and TEC look alike. Fenestrae have an octago-
nal symmetry, their fenestral diaphragms being constituted
of radial fibrils starting at the rim and interweaving in a cen-
tral mesh. Reproduced from [17] with permission.
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have been dissolved in fluorocarbons (oxygen carri-
ers used as blood plasma expanders) combined with
tannic acid staining, revealed the presence of large
(up to 400 nm) tufts or fascinae fenestrae on the
luminal side of fenestral diaphragms (Fig. 2D) and
their absence from the luminal side of fenestrae [29].
These tufts were absent from the caveolar SDs. The
fibers forming these tufts have been interpreted as
the morphologic equivalent of the heparan sulfate
proteoglycans (HSPGs) shown to reside on the lumi-
nal surface of fenestrae by other means (see below).

Transendothelial channels (TEC)

TEC are patent pores spanning the endothelial cell
body from lumen to ablumen (Fig. 7A, middle). TEC
are rarely found in continuous endothelia where they
seem to be formed by the fusion of either one cave-
ola/plasmalemmal vesicle with both luminal and
abluminal aspects of the plasmalemma or by chains
of usually two to four caveolae [7, 8, 30]. In the fen-
estrated endothelia, TEC occur in the attenuated
part of the endothelial cell and are provided with two
SDs (one luminal and one abluminal) [11, 12, 30,
31]. As in the case of caveolar SDs, the fine struc-
ture of the SDs of TEC could not be clearly resolved
by deep-etch due to technical limitations [17].
However, close inspections of the micrographs
reveal the same pattern of radial fibrils and a central
density (Figs 2B, 7B).

Vesiculo-vacuolar organelles (VVOs)

VVOs are morphologically defined as chains of inter-
connected vesicles of variable size that form intricate
TEC spanning the cytoplasm of the endothelial cells
from one front of endothelial cell to the other [32].
They are usually provided with SDs at the connection
points between vesicles and vacuoles as well as at
the level of their stoma or communication with the
extracellular space [33]. The SDs of the VVOs closely
resemble those of caveolae by transmission electron
microscopy. A recent review discusses the biology of
VVOs in great detail [34], therefore only data with rel-
evance to the SDs will be considered here.

VVOs have been first described in the tumor
vasculature [35] and are claimed to also occur in the
normal endothelium of the post-capillary venules [32,

35, 36]. The definition of VVOs is purely morphologi-
cal; therefore there is a difficulty in discerning VVOs
from clusters of caveolae that occur in most endothe-
lia [7, 12], which raised doubts as to their status as a
bona fide, novel organelle [31]. This 'novel organelle'
status might be bolstered by recent electron
microscopy data showing that in caveolin 1 –/– mice
(lacking caveolae in all non-muscle cell types,
endothelia included), the venules were still provided
with structures resembling VVOs [37, 38]. However, the
relationship between these structures and VVOs
remains to be clarified following biochemical evaluation.

Endothelial pockets

These are infrequent structures that by electron
microscopy resemble a pocket or a large vacuole
formed by cellular processes that contain fenestrae
with the usual structure. The information on these is
scarce and, so far, they seem to occur in very low
numbers only in the fenestrated endothelia [13].

Structures present in the 

endothelium in neovascularization

Vasculogenesis and

angiogenesis in the embryo

There are no systematic studies documenting the
appearance of caveolae, fenestrations, TEC, pock-
ets, VVO or diaphragms and their specific protein
components during development. Most of the data
available concern the formation of the fenestrae and
their diaphragms.

In the blood island and vascular plexus stage of
vascular development, examination of micrographs
published in various papers shows a continuous
endothelium devoid of fenestrae or TEC. Unfortunately,
the magnification shown is usually too low for a quali-
tative assessment of the presence of caveolae or
VVO and their respective diaphragms, most of the
studies being concerned with the organization of the
vasculature rather than the ultrastructural detail of
endothelial cells.

The rat brain starts developing as an avascular
mass or primordium surrounded by vascularized tissue

© 2007 The Author
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called the perineurium, from where the developing
brain will attract sinusoid-like vessels by sprouting
angiogenesis between ~ E12 and E16. At E12, the
vessels in perineurium, have fenestrated endothelia
[39] but it is not known when precisely fenestrae
appear in these vessels, E12 being the earliest time
point reported in this paper. Interestingly,
diaphragmed fenestrae are present in the vessels
that enter the nervous matter from E12 to E16 by
sprouting angiogenesis but are lost upon the forma-
tion of the blood brain barrier beginning at E16 [39].

The capillaries of rat intestinal mucosa are initially
continuous expressing caveolae and it is not clear
whether the SDs are present. These continuous 
capillaries become fenestrated late in gestation at
E15–E16, when they start to express fenestrae sub-
tended by diaphragms [40, 41]. The reason for the
delayed induction of the fenestrae in the intestine is
not known. A possible explanation could be found by
examining the situation in the adult where the ves-
sels in the intestinal tunica muscularis are continu-
ous and the endothelial cells have caveolae without
SDs. As the vessels enter the mucosa (i.e. the villus),
their endothelium remains continuous in the central
bundle vessels but their caveolae have SDs. The
capillary loops that come in contact with the epitheli-
um are fenestrated and their fenestrae have SDs.
The intestinal mucosa does not fully develop in the
embryo but requires the postnatal establishment 
of the intestinal flora, which leads to the elongation of
the villi and formation of fenestrated vessels by
angiogenesis.

Interestingly, in the rat kidney development, the
earliest fenestral pores appearing in the kidney
glomerular capillaries are subtended by diaphragms.
Moreover, these diaphragms bind cationic ferritin, a
property common to all fenestrae in the adult
embryo, conferred by heparan sulfate proteoglycans
[26]. It is not known, however, at which precise stage
fenestrae appear in the kidney. These diaphragms of
glomerular fenestrae are gradually lost within a week or
two after birth, resulting in the unique non-diaphragmed
phenotype of the adult glomerulus [24–27].

In the liver at E10–E12, during the hematopoietic
stage, the capillaries have a basement membrane
and are fenestrated, but the fenestrae resemble
those of the adult fenestrated endothelium: circular
pores, regular in size (average 60–70 nm) and

subtended by fenestral diaphragms. Starting at E17,
these fenestrae are progressively replaced by larger,
more heterogenous in size fenestrae that are typical
of the adult liver and other sinusoidal endothelial
cells [42, 43].

In summary, it is not known when fenestrae, TEC,
cavolae, VVOs and their respective diaphragms first
appear in different vascular beds. It is tempting to
draw a parallel between the apparition of the
glomerular fenestrae and those of the sinusoids is
tempting to be drawn, as both types of non-
diaphragmed fenestrae seem to be preceded by fen-
estrae subtended by diaphragms.

PV1 (PLVAP) protein is the only known marker
(discussed below) of endothelial SDs and fenestral
diaphragms. The mRNA is definitively expressed in
both mouse and rat embryos by E7 [44], correspon-
ding to the formation of blood islands. PV1 protein is
detectable by E12 in most organs and is lost by E16-
E18 in the brain at the time of blood-brain barrier for-
mation [45]. Moreover, the loss of PV1 expression
correlates with the loss of fenestrae upon BBB for-
mation [46]. In mice at E11.5, PV1 is expressed in
hind limb buds, but not forelimbs by DNA microarray,
but the precise location is not clear [47]. PV1 is also
expressed on bone marrow endothelial progenitor
cells [48] as well as on the endothelial cells that
spontaneously differentiate on embryoid bodies after
5 days outgrowth [49].

Arteriogenesis

Arteriogenesis is defined as development and growth
of collateral arteries [2, 50]. There is little information
regarding the ultrastructure of endothelium in this
process. From the few ultrastructural studies done,
there is no evidence of the occurrence of the
endothelial specific structures on the endothelium
during collateral growth [51, 52].

Angiogenesis in the adult

Angiogenesis in the adult occurs in the ovaries,
uterus and during wound healing. The vasculature of
the ovaries is fenestrated. One of the earliest
observations on the induction of fenestrae is that
during wound healing in regenerating muscle [53] the
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continuous endothelium of muscle capillaries
becomes fenestrated, observation confirmed by dif-
ferent groups [54–56].

Pathologic angiogenesis

Electron microscopy studies documented pathologi-
cal conditions where the continuous endothelium
becomes fenestrated in cases such as the aberrant
capillary loops that appear in the neovasculature of
psoriatic lesions in skin [57] in the chronic inflamma-
tion of gingiva [58] during lung fibrosis [59], chronic
allergic encephalomyelitis [60], delayed radiation
necrosis [61], experimental lead encephalopathy
[62], diabetic retinopathy [63], rheumatoid arthritis
[64, 65] and especially the neovasculature of many
solid tumours (reviewed in ref. [31]) [35, 62, 66–76].

Components of the stomatal and

fenestral diaphragm

Plasmalemma vesicle associated 

protein (gp68, PV-1, PV1)

Recently, the stomatal and fenestral diaphragms
were shown to share at least one biochemical mark-
er, namely PV1 [77, 78]. PV1 protein was discovered
as the antigen of a novel endothelial antibody (21D5
mAb) [79], which co-localized strictly on endothelial
caveolae from rat lung immunoisolated on anti-cave-
olin 1 antibodies [80].

Gene features and expression of mRNA
PV1 gene product is encoded by Plasmalemmal
Vesicle Associated Protein gene in humans (HUGO
symbol PLVAP) and its presence has been docu-
mented in several other mammalian species includ-
ing mouse, rat, bovine and chicken [16]. The gene
and significant protein homologues are absent from
the completed genomes of yeast (Saccharomyces
cerevisiae) as well as worms (Caenorhabditis
elegans) where the SDs and fenestral diaphragms
are not present. The presence of the gene could not
be confirmed so far in lower vertebrates such as
amphibians (Xenopus laevis) or fish (Danio reiro and

Fugu rubriprens), which might be due to the incom-
plete sequencing of these genomes or absence of the
diaphragms in their vasculature. It is not clear
whether the diaphragms are present in these species.
In mammals, PV1 mRNA is expressed in most
organs and tissues with the highest levels in lung,
kidney, spleen, all endocrine glands and digestive
tract [44, 77, 78].

Protein features and properties 
PV1 is a single span, type II membrane glycoprotein
that forms homodimers in situ [77, 79]. The size of
the monomer lacking posttranslational modifications
is 50 kD and 60 kD in its N-glycosylated, mature
form. The N-linked glycans form ~15% of the PV1
mass and contain terminal non-reducing Gal or
GalNAc, GlcNAc as well as sialic acid in both �2–3
and �2–6 linkage [78]. The monomer has a very
basic calculated pI (~9.1) and the determined pI of
the dimer in glycosylated form is still shifted to the
basic (pI ~7.8). PV1 binds avidly to heparin at physi-
ological pH [81].

In humans PV1 has a short (27 aa) intracellular
tail and a long (358 aa) extracellular C-terminal
domain, topology that was confirmed with peptide
antibodies directed against the C-terminus [44, 77,
78]. The intracellular domain does not contain any
conserved known consensus site across mammalian
species. It contains, however, two short identical
stretches of amino acids. One is next to the trans-
membrane region (8 aa) and contains a putative
caveolin 1 binding domain [16]. The other one at the
extreme N-terminus (7 aa), and might play a role in
the biology of PV1.The extracellular domain contains
a regular spacing of nine cysteines, the odd number
showing the possibility of dimer formation. It also
contains four consensus N-glycosylation sites near
the membrane, a proline-rich region near the C-ter-
minus and two large coiled-coil domains. The sec-
ondary structure is predicted to be mostly alpha hel-
ical [44, 77]. This is sustained by the presence of two
large consensus coiled-coil domains that are obligate
alpha helix formers [82]. Every seventh amino acid of
the alpha helix of the coiled-coil domain is hydropho-
bic, which results in a spiral hydrophobic interface
through which one coiled-coil domain interacts with
the hydrophobic interface on the cognate coiled-coil
facilitating the formation of an intermolecular superhe-
lix [82]. Moreover, seven of the cysteines are situated
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within the predicted coiled-coil domains. This would
suggest that the coiled-coil mediated interaction
between two monomers of a dimer would be 'rein-
forced' by several disulfide bonds. All these data sug-
gest that PV1 might adopt a rod-like shape. The fact
that the PV1 dimers can be solubilized in SDS sug-
gests that the putative protein-protein interactions
between adjacent dimers and other putative interact-
ing proteins (e.g. other PV1 dimers or other
protein(s)) are non-covalent in nature.

Localization
At protein level, PV1 was confirmed to be present in
the organs where the mRNA is present [16, 78]. PV1
seems to be endothelium-specific, [78] and, more-
over, to be restricted to a subset of endothelia such
as the capillaries of the lung, choroid plexus, retina,
adrenals, pancreas, intestinal villi, peritubular capil-
laries in the kidney, liver and spleen. PV1 is absent
from the large vessels of the lung, aorta, vena cava
and coronary artery as well as capillaries in the
heart, skin, skeletal muscle, intestinal smooth mus-
cle (where caveolae do not have SDs) and kidney

glomerulus (where fenestrae do not have fenestral
diaphragms). All in all, the pattern of expression of
PV1 correlates well with the pattern of expression of
fenestral and SDs ([78] and our unpublished data).

By immunocytochemistry (Fig. 3), PV1 was found
to be specifically associated with the SDs of caveo-
lae and TEC and the fenestral diaphragms, at both
fronts of endothelial cells [77, 78], this being the first
demonstration of a protein with such localization.The
label was absent from other microdomains of the
endothelial cells as well as from any other cell type in
the organs investigated, bolstering the claims of
endothelial specificity.

There is some controversy as to the endothelial
specificity of PV1 protein [81, 83–85], these reports
claiming that PV1 is expressed in scores of different
cell types. However, the data in these reports were
obtained using novel antibodies that have not been
validated by other groups. The data showing
endothelial cell specificity are quite vast by compari-
son. Our data supporting endothelial specificity of
PV1 have been independently confirmed by other
groups [79, 86–91]. Moreover during the last few
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Fig. 3 Immunolocalization of PV1 by immunodifussion to stomatal diaphragms of caveolae in lung (A–B, E), stomatal
diaphragms of TEC (D–E) and fenestral diaphragms (C–D, F), as detected with anti-PV1 antibodies directed against
its C-terminus. (A–B) lung, C–E) kidney, (F) intestine. The label was found specifically associated with the stomatals
and fenestral diaphragms at both fronts of the cell. No label was found on the plasmalemma proper, clathrin-coated
pits and vesicles, intercellular junctions as well as non-endothelial cellular types. Bars 100 nm.
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years it became apparent that PV1 protein is the anti-
gen of two antibodies (i.e. MECA-32 and PAL-E) that
were used for more than two decades as classical
endothelial specific markers. An in depth discussion
of this matter is found in ref. [38].

PV1 is necessary and sufficient to form

fenestral and stomatal diaphragms
Besides being morphologically similar, the SDs and
the fenestral diaphragms are biochemically related
by sharing at least one protein namely PV1. Apart
from PV1, there are no data on other specific compo-
nents of the diaphragms. PV1 could function either
as a structural component, function modulator com-
ponent, or both, within these diaphragms. Recent
data from our laboratory strongly suggest that PV1 is
a key structural component of both the SDs and fen-
estral diaphragms, necessary and sufficient for
diaphragm expression [92]. This is based on several
lines of evidence: (i) PV1 forms homodimers in situ,
[93]; (ii) several PV1 homodimers reside in close
proximity within the same diaphragm as shown by
cross-linking experiments of PV1 carried out in situ in
rat lung and kidneys [93]; (iii) de novo formation of
fenestral and SDs, correlates with de novo PV1
expression. As expected, PV1 could be found in the
newly formed fenestral and SDs (Fig. 4A-E); (iv) PV1
knockdown by siRNA prevents the formation of both
fenestral and SDs (Fig. 4F). Actually, this last
approach prevented the formation of fenestrae and
TEC as a whole. This finding suggested that both
TEC and fenestrae require PV1 for their biogenesis,
a point which was recently and independently con-
firmed [91]; (v) Overexpression of tagged PV1 in cell
types lacking PV1 expression and diaphragms, led to
the formation of caveolar SDs. This result shows that
either PV1 forms the diaphragms by itself or the
other components of the diaphragms are ubiquitous-
ly expressed, PV1 being the limiting factor [92].

Other components

The chemical components of the SDs of caveolae
and TEC and those of the fenestral diaphragms have
been investigated with 'general', nonspecific probes
such as lectins [94–97] and cationic molecules [21,
98–101]. It has been shown that SDs and fenestral

diaphragms behave differently: the former bind
lectins avidly and lack anionic sites, while the latter
do not [94] or poorly [95] bind lectins and have multi-
ple anionic sites conferred by HSPGs [20]. The pres-
ence of the lectin binding sites on SDs and fenestral
diaphragms, combined with their protein nature (sen-
sitive to protease degradation) [20] suggest the pres-
ence of glycoproteins in their structure.The HSPGs are
present only on the luminal side of fenestral diaphragms
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Fig. 4 PMA induces TEC (B, I), fenestrae (A, B, G, I) as
well as caveolar stomatal diaphragms (C, D, I) only in
endothelial cells and not in non-endothelial cell types
such as fibroblasts (F). Non-treated control endothelial
cells (H) as well as fibroblasts (E) contain only caveolae
devoid of stomatal diaphragms. PMA also upregulates
PV1, which is found in the newly formed stomatal
diaphragms and fenestral diaphragms as demonstrated
by immunogold labeling (G, I). (J) PV1 mRNA silencing
with siRNA prevents the formation of stomatal
diaphragms of caveolae as well as the TEC and fenes-
trae altogether in HUVEC (lower panels) while the
scrambled siRNA counterpart does not (scr, upper pan-
els). Bars 100 nm.
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[99], which correlates with the data obtained by fixa-
tion in the presence of fluorocarbons [29].

Working model of PV1 integration

in the structure of the diaphragms

Based on the data in the literature a working hypoth-
esis has been formulated (depicted in Fig. 7D) in
which both SDs and fenestral diaphragms consist of
a common framework of radial fibrils inserted in the
rim of a pore (i.e. caveolar or TEC introit or fenestral
pore) and interweave in the center of the diaphragm
(Fig. 7D). The fibrils would consist of PV1 dimers
whose C termini would form the central density of the
diaphragm [44]. The dimers could be ‘kept afloat’ by

the heavy (~15% of the PV1 mass) glycosylation that
occurs nearby the membrane (see Fig. 7C and ref.
[44]). The diaphragm structure could be stabilized 
via interactions between PV1 C termini themselves
or with another putative diaphragm stabilizing 
extracellular protein. Alternatively or in addition, the
diaphragm could be stabilized by the existence of a
rigid structure on the cytoplasmic face of the rim pre-
sumably connected to the cytoskeleton. This latter
assumption seems to be sustained by data obtained
with affinity chromatography and yeast two-hybrid
screening using the intracellular domain of PV1, by
which assays cytoskeletal linker molecules interact
with PV1 (R. Stan, unpublished observations).

The HSPGs could interfere with the binding of the
lectins in fenestrae, to explain the lack of fenestral
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Fig. 5 Transfection of PV1 in HUVEC leads to de novo formation of stomatal diaphragms of caveolae. No TEC or 
fenestrae are formed. (A) control HUVEC (B–C) HUVEC transfected with PV1-HA and stained with anti-HA gold (B).

Fig. 6 PV1 (red) is expressed in tumor vessels where it colocalizes with CD31 (green).



J. Cell. Mol. Med. Vol 11, No 4, 2007

631© 2007 The Author
Journal compilation © 2007 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

Fig. 7 Proposed model for PV1 integration in the structure of the diaphragms. (A) Perpendicular sections of a caveo-
la provided with stomatal diaphragm (left), TEC (middle) and fenestra (right). (B) En face views of stomatal diaphragms
(left) and fenestral diaphragms (right), as shown by deep-etch rapid–freeze techniques, demonstrating the fibrils in the
fenestral diaphragms and the hints of fibrils in their stomatal diaphragms counterparts. Reprinted from Bearer and
Orci, JCB, 1985, with permission. (C) Schematic of the membrane insertion and features of the PV1 monomer. (D)
Model of PV1 integration in the endothelial diaphragms: PV1 dimers participate in the formation of the fibrils inserted
in the rim (via PV1 N-terminus) and interweaving in the central mesh (via PV1 C terminus). The glycan antennae
(accounting for ~15% of PV1 mass) are situated near the membrane, which would keep the protein ‘afloat’ by prevent-
ing collapse on the plasma membrane.



632

binding [94] or poor binding [102] of lectins. PV1
binds most of the lectins that were shown to bind to
the SDs [94] (e.g. WGA, GS I, RCA, Concanavalin A
etc) [77] and unpublished data). Regarding the lack
of anionic sites on SDs, PV1 protein backbone has a
highly basic pI (~9.0). Even with glycosylation, the pI
of the native protein is still slightly basic (~7.8) [77],
which explains the absence of binding of cationized
ferritin [20, 21] by the SDs of caveolae and TEC.
Since caveolae are dynamic structures, it is conceiv-
able that the protein lifetime is too short for binding
circulating HSPGs.

The presence of the HSPGs on the luminal side of
fenestrae could be explained by the following possi-
bilities: (i) the caveolae from the opposite fronts of
the endothelial cells fuse and form TEC that collapse
to the minimal path length and form fenestrae. The
HSPGs on fenestrae are a filtration residue [31, 103].
Or (ii) a different biogenetic pathway between fenes-
trae and caveolae with the HSPGs as a filtration
residue or (iii) a different biogenetic pathway between
fenestrae and caveolae by which HSPGs are specif-
ically targeted to the fenestral pore.

The first hypothesis was proposed in an attempt to
provide an explanation for the morphological similar-
ity between the SDs and fenestral diaphragms and
their apparent chemical differences (i.e. lectin bind-
ing and anionic sites). And this within the following
paradigm of fenestrae biogenesis: TEC would arise
by fusion of caveolae/plasmalemmal vesicles from
both fronts of endothelial cells and fenestrae would
be formed through the collapse of TEC to minimal
path length [31]. As fenestrae were considered rela-
tively stable structures spatially and temporally, the
HSPGs could be added to their structure as a filtra-
tion residue, in view of their function as a permeabil-
ity site [104]. The endothelial cells are know to shed
HSPGs [105] although the extremely low levels of
GAG chains or HSPGs circulating in blood plasma
[105, 106], could be inconsistent with this hypothesis.
However, if the fenestrae exist for a long enough
time, PV1 could bind the necessary HSPGs.

Keeping the above caveat in mind, the second
hypothesis seems more likely. This is supported by
the fact that in caveolin 1 null mice, which complete-
ly lack endothelial caveolae, the TEC and fenestrae
(both subtended by a fenestral diaphragm or not) are
present at surface densities similar to those in the
wild-type [[37, 107] and R.V. Stan, manuscript sub-

mitted]. Incidentally, the newly induced fenestrae in
vivo by topical application of VEGF as well as those
in the capillaries of VEGF-producing tumours seem
to have either decreased or not to have anionic sites
[108, 109]. Although cationized ferritin was shown to
bind to the fenestrae imaged by rapid-freeze deep-
etch [17], the tufts seen by fixation in presence of flu-
orocarbons [29] were lost. The reason for this dis-
crepancy is not clear.

The third hypothesis is very attractive as it would
be in agreement with the data from caveolin 1 –/–
mice and it would lend some order to the control of
permeability through fenestrae. It might also explain
the ordered patterns seen in grazing sections in tis-
sues fixed in presence of fluorocarbons [29]. The
only observation here is that the targeting of HSPGs
to fenestrae would occur only after the collapse of
TEC. The HSPGs involved will most likely need to be
expressed in polarized manner only on the luminal
side of the endothelium.

Undoubtedly, most of this paradigm awaits further
experimental confirmation. What the data have
proven so far is that PV1 is present in both stomatal
and fenestral diaphragms and that it is necessary for
diaphragm formation.

PV1 and the endothelial

diaphragms in ontogeny 

Most of the data available concern the formation of
the fenestrae in ontogeny, while little attention paid to
TEC, caveolar SDs and VVOs. Milici and Bankston,
showed that the fenestrated capillaries of intestine
mucosa express fenestrae subtended by fenestral
diaphragms only late in the gestation at E15–E16
[40, 41]. However, in the developing rat brain, the
vessels present in the perineurium at E12 had
endothelia that were all fenestrated [39]. Moreover,
the fenestrae (provided with fenestral diaphragms)
were present in the sinusoid-like vessels that entered
the nervous matter by sprouting angiogenesis and
were lost upon the formation of the blood brain
beginning with E16. This is in keeping with the data
obtained with the MECA32 mAb in mouse [45], as
already noted. The reason for the delayed induction
of fenestrae in the intestine is not known.
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Interestingly, the first glomerular fenestrae that
appear in ontogeny are subtended by fenestral
diaphragms that bind cationized ferritin [26]. These
fenestral diaphragms are lost after birth this resulting
in the phenotype found in adult [24–27]. The liver fen-
estrae are also subtended by fenestral diaphragms
at E10–E12 during the hematopoietic stage. They
are progressively replaced by larger, more irregular
fenestrae of the adult liver starting with E17 [42, 43].

By Northern blotting of RNA obtained from whole
mouse embryos, PV1 mRNA is definitively
expressed in both mouse and rat embryos by E7
[44], corresponding to the formation of blood islands.
The only survey of the presence of PV1 protein
reports that PV1 is detectable by E12 in most organs
and is lost by E16-E18 in the brain when the blood-
brain barrier develops [45]. Although no direct 
PV1-diaphragm correlation has been made (i.e.,
immunocytochemistry at the electron microscopy
level with MECA-32 mAb at different developmental
stages), the loss of PV1 expression correlates with
the loss of fenestrae upon BBB formation [46].
Interestingly, in a comparison of the genes expressed
in the mouse forelimb and hind limb buds at E11.5 by
SAGE, PV1 is expressed only in the latter [47].

PV1 is also expressed on bone marrow endothe-
lial progenitor cells [48] as well as on the endothelial
cells that spontaneously differentiate on embryoid
bodies after 5 days outgrowth [49]. It would be inter-
esting to investigate embryos earlier than E12 for
PV1 expression to see which of the diaphragms are
present and when.

Regulation of

endothelial specific structures

PV1 and diaphragms are lost upon

endothelial cell dedifferentiation in

cell culture 

The phenotypic drift suffered by primary endothelial
cells in culture is well established [110, 111]. This is
shown by the differences in the surface density of
endothelial cell specific structures as well as expression

of gene products. Endothelial cells from bovine adrena-
ls (BAEC) lose their fenestrae and TEC once in culture
[112, 113]. Likewise, the number of caveolae and their
SDs is drastically reduced in lung microvascular
endothelial cells from both human and rat (HLMVEC
and RLMVEC, respectively), in which case PV1 expres-
sion is also lost [92]. Also VVOs are lost in culture and
need special treatment to be reinduced [114].

The diaphragms are inducible structures

Matrix components
The first demonstration of fenestrae and TEC induc-
tion in vitro was done by Milici et al. [14] who showed
regeneration of bovine adrenal endothelial cell fenes-
trae and TEC when cultured onto a matrix deposited
by MDCK cells. This suggested a role in fenestrae
and TEC induction for a matrix component and/or a
soluble factor that was deposited by the MDCK cells.
This correlates well with the tightly controlled spatial
distribution of fenestral sieve plates and TEC in situ
where they are expressed on the attenuated part of
endothelium, always toward the neighboring epitheli-
um. It looks like the epithelium secretes either a
matrix component(s) or soluble factors (or both) that
dictate the spatial distribution of these structures. As
discussed under the function heading of this review,
this is in keeping with the presumed role of fenestrae
in reabsorbing of water and solutes from the intersti-
tium into the blood stream [115].

Phorbol esters 
In a series of papers during the 1980s, Lombardi et
al. [113, 116, 117] showed that bovine adrenal
endothelial cells in culture could be induced to form
fenestrae and TEC de novo upon treatment with
nanomolar concentrations of phorbol myristate
acetate (PMA). The formation of fenestrae was
accompanied by dramatic changes in the morpholo-
gy of endothelial cells from cobblestone to fibroblast-
like shape with extreme thinning of the endothelial
cell periphery. This presumed extensive cytoskeletal
rearrangements of which lamellipodia formation was
one of the most prominent features.

However, the formation of fenestrae took approxi-
mately 3 days of PMA treatment, which is a rather
long time. The fenestrae formed by PMA had all the
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[It should be noted that the lack of fenestral
diaphragms in the glomerular fenestrae is contested
by few reports in the literature (Rhodin 1962, [28]) the
reason for this not being clear.]
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structural characteristics of the fenestrae in situ
(clusters arranged in sieve plates, radial fibrils inter-
weaving in a central mesh) as shown by deep-etch
rapid freeze [113]. Most importantly, fenestral and
TEC induction by PMA also occurred in endothelial
cells that did not have SDs or fenestral diaphragms
in situ, such as HUVEC or bovine pulmonary artery
endothelial cells [117]. Moreover, the induction of
fenestrae was endothelial cell specific and could not
be achieved in non-endothelial cell types [117]. This
modulation of fenestral and TEC numbers by PMA
was enhanced by trans-retinoic acid and dimethylfor-
mamide and was decreased by TGF� [116]. These
results have been confirmed in situ where the induc-
tion of fenestrae and TEC by either retinoic acid or
PMA has been shown also in the capillaries of the
cerebral cortex that were infused for 4 weeks with the
use of an osmotic pump (117).

Although demonstrating the possibility of fenes-
trae and TEC induction, PMA did not give clear 
indications as to the extracellular physiological fac-
tors involved in their formation. PMA, an analog of
the second messenger diacylglycerol (DAG), has
been shown to activate several classes of proteins
including PKC, PKD, Munc, Ras-GRP (an activator of
Ras) as well as chimaerin (activator of Rac1)
(reviewed in ref. [118]). This occurs by PMA binding
to the C1 domains of these proteins that targets them
to the membranes where they carry out their biologi-
cal activity. In an attempt to understand the pathways
involved in the induction of the diaphragms by PMA,
in this system, it was found that besides TEC and
fenestrae, PMA also induced SDs of caveolae in a
variety of human endothelial cells, such as dermal
microvascular and lung microvascular endothelial
cells, as well as HUVEC [92]. The induction of SDs
occurred much faster (12–24 hrs after treatment) than
the induction of fenestrae or TEC (~72 hrs) and was
paralleled by induction of PV1 mRNA and protein in
a dose and time-dependent manner. Moreover, the
upregulation of PV1 is not PKC dependent but
depends on the activation of a C1 domain containing
protein and on the function of the Erk1/2 MAPK path-
way. The upregulation is blocked by TGF�1, which
inhibits the induction of fenestrae and TEC by PMA
[116]. Surprisingly, these effects occurred only in
human and bovine cells, as several rat and mouse
endothelial cell types do not respond even to micro-
molar doses of PMA (Stan RV, unpublished observa-
tions). Likewise, treatment of human endothelial cells

with retinoic acid alone did not induce either stomatal
or fenestral diaphragms and did not upregulate PV1
(Stan RV, unpublished observations) in our hands.

Growth factors—the role of VEGF
The most extensive literature related to the induction
of fenestrae in vivo deals with their occurrence in the
neovessels of tumours and wound healing. In 1992,
W. Risau's group [119] made the observation that in
adult tissues vascular endothelial growth factor
(VEGF) was expressed in cell types adjacent to fen-
estrated endothelium (e.g. epithelial cells of the
choroids plexus). As VEGF was also described as a
permeability increasing agent [65, 120], they hypoth-
esized that it would be responsible for maintaining
fenestrations. Several years later, the same group
showed that bovine adrenal endothelial cells could
be induced to form fenestrae, TEC and VVOs in co-
culture with EpH4 cells (mammary epithelial) stably
expressing distinct isoforms of VEGF [121]. The
presence or absence of caveolar SDs was not
assessed. It also suggested that other components
in the system such as matrix and/or the state of dif-
ferentiation of endothelial cells are equally important.

In a separate effort, Roberts et al. demonstrated
that topical application of VEGF to the rat cremaster
muscle as well as by subcutaneous injection in the
skin induced fenestrae, plasmalemma vesicles
(caveolae) clusters (VVOs) and transendothelial
gaps in situ after only 10-min exposure [108] as com-
pared to heat inactivated VEGF, saline and histamine
controls.This showed for the first time that: (i) the fen-
estrae could be induced by a physiological relevant
factor in situ; (ii) components for forming the
diaphragms were already present in the endothelial
cells, the exposure time being too short for de novo
protein synthesis. Moreover, the fenestrae induced in
tumor vessels as well as those induced by chinese
hamster ovary cells (CHO) stably expressing VEGF
(VEGF:CHO) had a decreased or no binding of
cationized ferritin, showing decreased occurrence of
HSPGs on their luminal side. Based on purely mor-
phological data, it was concluded that the VVOs 
were actually clusters of fused caveolae and the
endothelial gaps were interpreted as openings of the
intercellular junctions. The induction of both struc-
tures was considered to provide the structural 
basis of increased microvascular permeability
caused by VEGF [35, 65].
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Subsequent studies [103] showed that several
tumours grown in nude mice had a significant num-
ber of the neovessels provided with fenestrated
endothelium. Moreover, tumours formed by
VEGF:CHO cells had fenestrae. Finally, slow releas-
ing pellet implants placed on top of the cremaster,
induced fenestrae at VEGF doses too low to induce
angiogenesis [122]. The same tumours induced the
formation of fenestrae also when implanted in the
brain although the occurrence of VVOs and endothe-
lial gaps were drastically reduced compared to ves-
sels of tumours implanted in the flank [109], showing
the importance of the host environment. Very strong
evidence of the importance of VEGF in fenestrae
induction came from another paper demonstrating
that the vasculature of the tumours that were null for
the VEGF locus, had continuous endothelia com-
pletely lacking fenestrae [123].

The induction of fenestrae by VEGF is also sus-
tained by data showing that in a corneal angiogene-
sis assay only the endothelium of the neovasculature
induced by VEGF is fenestrated as compared to that
induced by basic FGF (FGF-2), another potent
angiogenic factor [124] that does not induce fenestrae
nor increase leakage of tracers. Interestingly, only
fenestrae were induced in this assay by VEGF, the
authors reporting a complete lack of transendothelial
gaps. As a following, the increased permeability
caused by VEGF (as demonstrated by tracer leakage
into the interstitium) was linked to the formation of
fenestrae. Dominant negative Rac1 GTPase rapidly
and dramatically blocked both fenestral induction and
the increase in tracer leakage when delivered as a
transducible TAT-fusion protein (TAT-Rac1DN) con-
comitantly with VEGF. TAT peptides enable protein to
cross the cell membrane-also called transduction-
from the extracellular medium into the cytoplasm of
cells via a yet unknown mechanism (for a review of
the technology see ref. [125]). More importantly, TAT-
Rac1DN did not block the angiogenic effects of
VEGF, confirming that the permeability effects of
VEGF could be separated at least in part from its
angiogenic effect (for a review see ref. [126]). The
role of Rac1 in forming fenestrae is not at all unex-
pected as these structures occur in very attenuated
parts of the endothelial cells and their induction in
culture is accompanied by cell thinning due to
lamelipodia formation [113, 116, 117] where Rac1 is
known to have a major role (for review see ref. [127]
and references therein). In this system, PMA/DAG

could activate Rac1 via chimaerin [118]. Finally,
VEGF seems to activate Rac1 via PLC� and PI3-
kinase as determined using endothelial cells in cul-
ture stably expressing VEGF-R2.The requirement for
both DAG and PLC� is also supported by experi-
ments in isolated frog capillaries, showing an inhibi-
tion of VEGF-induced permeability by PLC�
inhibitors as well as an increase of permeability by
DAG analogs such as OAG [128].

Another paper [129] has shown an increase of both
fenestrae and possibly VVO formation in endothelial
cells (e.g. HUVEC and immortalized renal arteriolar
endothelial cells) upon VEGF treatment when these
cells are cultured on a matrix laid down by glomerular
epithelial cells. This further sustains the requirement
of both matrix/growth factor components.

With the availability of VEGF loxP mice [130] clear
genetic evidence was obtained in support of VEGF
requirement for fenestrae maintenance in normal tis-
sues in mice both from pancreas islets capillaries
[131] as well as kidney glomerular capillaries [132].
These papers both demonstrated that conditional
deletion of VEGF switched the fenestrated pheno-
type to a continuous type.

In a series of very elegant papers [133–137],
D. McDonald's group has demonstrated the critical
role of VEGF in maintaining the endothelial cell phe-
notype. Transgenic overexpression of VEGF 165 iso-
form in the airway epithelium leads to increased vas-
cular density and fenestrae formation [137]. Inhibition
of VEGF signaling via different means such as small
molecule inhibitors or VEGFR2 or VEGF-Trap, a sol-
uble form of VEGFR1, demonstrated that VEGF sig-
naling is required for maintenance of a fenestrated
phenotype of normal and tumour vessels [133-136].

Recently, Madden et al., showed by SAGE that PV1,
the protein component of the diaphragms, was one of
the most upregulated endothelial cell genes in glioblas-
toma vessels and that PV1 mRNA was induced by
seeding human dermal endothelial cells onto Matrigel
[138]. Next, it was shown that PV1 is upregulated by
VEGF in HUVEC in culture via its VEGFR2 and that
PV1 was expressed on endothelial cells from a multi-
tude of tumours [139]. These findings were subse-
quently confirmed by data showing that PV1 is upreg-
ulated in endothelial cells by tumour cell conditioned
medium, VEGF as well as HGF [140]. Moreover, PV1
was shown to facilitate endothelial cell migration, due
to which it was proposed as a novel anti-angiogenic tar-
get [140].However, there are other opinions on this [141]
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Moreover, PV1 was also identified [142] as the anti-
gen of PAL-E, a widely used human endothelial specif-
ic monoclonal antibody [143] shown to be expressed 
on endothelium in wound healing [144, 145], tumours
[146–148] such as angiosarcoma [149, 150], Kaposi
sarcoma [150–153], Wilm's tumour [154], brain tumours
[155, 156], colorectal adenocarcinoma [144], melanoma
[157, 158], hepatocellular carcinoma [159], breast can-
cer [160] and hemangiomas [161]. The presence of
PV1 in tumour endothelium is illustrated in Figure 6.

The induction of fenestrae by VEGF is not a mat-
ter of general agreement, however. The neovascula-
ture of some VEGF-producing tumours was found
devoid of fenestrae while they are present in other
tumours [34, 35, 162]. Moreover, the numbers of fen-
estrated vessels in transgenic mice overexpressing
VEGF in skin is not increased as compared to con-
trols as reported in a review [34], citing unpublished
observations. Also, the injection of VEGF in monkey
eyes promotes formation of neovessels that are not
fenestrated. The increased leakiness of these latter
vessels was suggested to occur by increased vesi
cular transport [163].

A model for VVO induction in cells in culture was
also reported [114]. In this model, bovine adrenal
endothelial cells were cultured on floating Matrigel/
Type I collagen matrices in presence of 500 ng/ml of
VEGF, which concurred to the formation of VVOs. In
contradistinction to the model of Esser et al., the
VVO clusters stained with caveolin 1. However, the
authors also report an increased expression of cave-
olae. This suggests that the difference between
VVOs and caveolar clusters might be not be easy to
make by morphology only, in absence of specific
VVO biochemical markers to be used for double label
immunocytochemistry. Another interesting finding
was that VEGF did not increase the number of fenes-
trae over control adrenal endothelial cells (n.b. a
small number of fenestrae were present in both con-
trol and VEGF treated samples) [114]. This is differ-
ent from the data of Esser et al., noted above. The
endothelial cells used by both groups were from
bovine adrenal, a vascular bed provided with fenes-
trated endothelium. Therefore, the difference in
VEGF effects reported by the two groups, must be
explained by the factors secreted by the epithelial
cells (i.e. soluble factors or matrix components) that
enable induction of fenestrae by VEGF.

In a series of papers [83–85], Hnasko, et al, claim
that PV1 is actually downregulated by VEGFR2 sig-

naling in immortalized endothelial cells (MS-1 cells)
or in the lungs of caveolin1 KO mice, whereas no
effect was seen on the caveolin-2 KO or WT lungs.
These data are in sharp contrast with the data
obtained in cells in culture [138–140]. It is not clear
whether this is specific to the lung, whether it is due
to the side effects of the VEGF inhibitors used or, as
discussed above, that the antibodies used by these
investigators are not fully validated.

Other angiogenic factors that

induce diaphragms 
Leptin, a hormone with angiogenic activity secreted
by the adipocytes, also causes fenestration of
endothelia [164] in situ. In normal ovaries, human
choriogonadotropin (hCG) was linked to the forma-
tion of fenestrae whereas interleukin 8 does not
seem to have this function [165].

Function of endothelial diaphragms

in normal vessels and angiogenesis

The precise function of the stomatal or fenestral
diaphragms in normal vessels is not known. One of
the hurdles in assessing their function is their occur-
rence in at least four different endothelial structures
(caveolae, TEC, fenestrae and VVOs). However, by
their localization at presumed sites of transendothe-
lial exchange one could assume a sieving function
for the diaphragms. The passage of select molecules
from the blood plasma to the interstitial fluid could be
either inhibited or facilitated (for reviews see refs. [16,
38, 166, 167]).

With respect to angiogenic vessels, the function of
these structures becomes even more elusive as the
newly formed capillaries, with very few exceptions,
are usually immature, tortuous and leaky due to
large gaps in the vessel wall [168–170].

Conclusions 

From all these data a model emerges in which
endothelial cells would be capable of forming highly
ordered structures such as the SD or the fenestral
diaphragm. An exciting development is that all of
these structures are expressed by vessels in angio-
genenesis as demonstrated by electron microscopy
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as well as by PV1 staining. Thus, PV1, the structural
component of these differentiated microdomains of
the endothelial cells, joins the widening ranks of
novel tumour endothelium markers. Moreover, by its
postulated function in endothelial cell migration PV1
might be a putative therapeutic target [140] although
its presence in the normal endothelium from several
organs would not recommend it [141].

We are far from having a clear understanding of
how these endothelial structures come into being
and what clear purpose(s) they serve. With a bio-
chemical definition of the components of these enti-
ties all the striking images obtained by researchers in
the past will truly come to life.
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