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Objective: Hashimoto’s thyroiditis (HT) is a common autoimmune thyroid disorder that 
frequently evolves from asymptomatic, T-cell mediated chronic inflammation toward 
overt hypothyroidism. Previously, we have demonstrated a role for T-bet, a T helper 
1/CD8+ T  cell transcription factor (TF), and FoxP3, a regulatory T  cell TF, in disease 
progression and severity, but the basis behind their altered mRNA expression remains 
unknown. In this study, we aimed to leverage the role for microRNAs, representing neg-
ative transcriptional regulators, across the spectrum of HT clinical presentations using 
the same, well-characterized RNA sample cohort.

Method: Ten hypothyroid, untreated patients (hypoHT), 10 hypothyroid cases rendered 
euthyroid by l-thyroxine therapy (substHT), 11 spontaneously euthyroid HT subjects 
(euHT), and 10 healthy controls (ctrl) were probed for three candidate immunoregulatory 
miRNA (miR-9-5p, miR-29a-3p, and miR-210-3p) using quantitative real-time PCR 
measurements. Data were normalized to U6snRNA and fold difference in expression 
calculated by the efficiency corrected 2−ΔΔCt model.

results: Compared to healthy controls, peripheral blood (PB) T  cells of HT patients 
exhibited significantly diminished miR-29a-3p expression levels [median expression 
levels (IQR), HT vs CTRL, 0.62 (0.44–1.01) vs 1.373 (0.63–2.7), P = 0.046], and a similar, 
but not significant decline in miR-210-3p abundance [HT vs CTRL, 0.64 (0.39–1.31) vs 
1.2 (0.5–2.56), P = 0.24, Wilcoxon test]. A significant inverse correlation was observed 
between the two differentially expressed transcripts, T-bet mRNA and miR-29a-3p. 
Moreover, altered miR-29a-3p/T-bet expression in T cells of untreated HT patients was 
related to low serum FT4, high serum thyrotropin, and decreased thyroid volumes. Of 
note, miR-210-3p expression was positively correlated to HIF1α, and inversely to FoxP3 
mRNA levels, but no evidence of differential expression for any of these miRNA–mRNA 
pairs was observed. Finally, miR-9-5p expression levels were no different in HT vs control 
comparisons, or related to clinicopathological features.

conclusion: T  cell miR-29a-3p is downregulated in HT patients and associated with 
clinical and biochemical parameters of progressive thyroid injury, plausibly subsequent to 
altered control of T-bet expression in PB T cells. As such miR-29a-3p/T-bet axis should be 
further explored as a biomarker or as a plausible target for therapeutic interventions in HT.

Keywords: hashimoto disease, T-lymphocytes, hsa-mir-29a, hsa-mir-210, hsa-mir-9, disease attributes, thyroid 
gland
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inTrODUcTiOn

Hashimoto’s thyroiditis (HT) is a multifactorial, autoimmune 
disorder characterized by the presence of thyroid-specific 
autoantibodies, chronic lymphocytic infiltration of the thyroid 
gland, and, eventually, hypothyroidism (1). Pathologically, HT 
is mediated by aberrant T helper type 1 (Th1), Th17, Treg, and 
cytotoxic (Tc) CD8+ responses, which typically require master 
regulator transcription factors (TFs) T-bet, RORγt, FOXP3, and 
EOMES, respectively, for their development. Of these, T-bet  
(2, 3), RORγt (4–6), and FOXP3 (3, 7, 8) have all been implicated 
in the ontogeny and severity of HT in humans; however, the 
mechanisms beyond the reported deregulated expression of these 
TFs in patients’ T cells remain unclear.

Certain microRNAs (miRNAs, miR) act by negatively 
regulating the expression of key master regulators within this 
network (9). miRNAs are a class of single-stranded 19–25 
nucleotide long non-coding RNAs that bind 3′-untranslated 
region of target mRNA and result in either translation inhibition 
or mRNA degradation. Among these, miR-29a-3p limits Th1/
Tc1 bias by targeting interferon (IFN)-γ-inducing TFs EOMES 
and T-bet (10). In Treg cells, miR-9 and miR-210 are markedly 
downregulated in CD4+CD25+CD127low (11) and CD8+CD25+ 
(12) subsets compared to non-Treg T  cells. By contrast, miR-
210, the hypoxia-induced miR, is greatly enhanced in activated, 
effector CD8+ and CD4+ T cells under Treg- > Th17-polarizing 
conditions (13), whereby it inhibits FOXP3 expression and 
impairs the immunosuppressive functions of CD4+ Treg cells. 
HIF1α, a TF-controlling Th17 polarization and CD8+ effector 
differentiation (14), is both an upstream miR-210 regulator and 
a miR-210 target, thus; miR-29, miR-210, and miR-9, all seem 
to affect a broad spectrum of differentiation pathways, including 
those responsible for producing effector and regulatory cells. 
Nevertheless, despite evidence supporting the importance of 
these miRs in controlling disease-associated TFs, their respective 
regulatory networks in the context of HT, disease severity, and 
clinical presentation remain mostly unexplored.

We previously described increments in transcript levels of Th1 
and Treg-associated, T-bet, and FOXP3, but not Th17-related 
HIF1α TF, in peripheral blood (PB) T cells of severely affected HT 
patients. In this study, the same RNA sample cohort was probed 
for expression levels of their respective miRNA pairs. Thus, we 
assessed the transcriptional patterns of miR-29-3p, miR-210-3p, 
and miR-9-5p in bulk PB T cells and attempted to combine the 
selected TFs and miRNAs to study their co-regulatory networks, 
and effects on clinical features of HT patients with distinct pat-
terns of disease severity.

MaTerials anD MeThODs

subjects
In this study, we built upon our previous work by screening 
for selected miRNAs in an established and well-characterized 
cohort of HT cases and healthy controls who had been previ-
ously typed for T-bet, FoxP3, BLIMP1, and HIF1α expression in 
bulk PB T cells. HT was classified as (1) hypothyroid, untreated 
[hypoHT, n  =  10, 2 males], (2) spontaneously euthyroid HT 

[euHT, n = 12, all females], and (3) rendered euthyroid by hor-
mone replacement therapy [substHT, n =  10, 1 male, median 
l-thyroxine (T4) dose 1.13 µg/kg body mass daily, median pre-
treatment serum thyrotropin (TSH) 15.1  mU/L, interquartile 
range 11.5–35.3 mU/L]. HT was defined and exclusion criteria 
applied as previously described (15). Healthy, euthyroid control 
subjects (n  =  10, 1 male), had normal ultrasound findings of 
the thyroid gland and were negative for thyroid autoantibodies. 
All participants were unrelated adults from eastern Croatia. This 
study protocol was reviewed and approved by the institutional 
ethical committee of the Osijek University Hospital, and all 
subjects gave written informed consent prior to the testing.

Thyroid Function Measurement
TSH (normal range: 0.46–4.7 mIU/L, Vitros TSH Reagent Pack), 
free tri-iodothyronine (FT3) (1.9–5.7 pmol/L, Vitros FT3 Reagent 
Pack), and free T4 (FT4, 10–22  pmol/L, Vitros FT4 Reagent 
Pack, all from Ortho-Clinical Diagnostics, Amersham, UK) were 
measured in sera taken between 8 and 12 a.m., according to the 
manufacturer’s instructions. Maximum pretreatment TPOAb-
IgG (50–125  kIU/L) was determined by ELISA kit (Anti-TPO, 
MileniaBiotec, Germany) calibrated against WHO reference 
MRC 66/387a. Hypothyroidism was defined as clinically signifi-
cant when TSH was >4.7 mU/L and FT4 was <10 pmol/L, but it 
was considered subclinical or latent if TSH was >4.7 mU/L and 
FT4 was >10 pmol/L.

Thyroid Volume Measurements
The thyroid volume was sonographically established as the sum 
of the volumes of the two lobes using a 10  MHz linear array 
transducer (Accuson X-150, Siemens, Germany). Each lobe was 
assumed an ovoid (π/6 × length × width × depth) as previously 
specified (16).

Peripheral Blood Mononuclear cells 
(PBMc) isolation
Peripheral blood mononuclear cells were isolated from freshly 
collected heparinized blood samples using density gradient 
centrifugation on LymphoPrep (Axis Shield, Oslo, Norway) as 
described in details elsewhere (16). Briefly, 10 mL initial volume 
of whole blood was diluted with 0.9% (w/v) NaCl in 1:1 ratio, 
carefully layered over 20  mL LymphoPrep medium and sedi-
mented into fractions during 20 min centrifugation at 800 × g. 
Fraction of mononuclear cells retained at the plasma/medium 
interface was harvested, rinsed with saline, and spun down for 
10 min at 550 × g. Pooled cells were further rinsed in two succes-
sive wash cycles. Final PBMC pellet was resuspended with 1 mL 
of isolation buffer (PBS without Ca2+ i Mg2+ with 0.1% (v/v) BSA 
and 2 × 10−3 mol/dm3 EDTA) and cells were counted after trypan-
blue staining using the Bürker–Türk counting chambers and light 
microscope. A minimum of 1 × 107 purified PBMCs were used in 
the following isolation step.

lymphocyte subsets separation
Peripheral T-lymphocytes were separated from PBMCs by 
immunomagnetic depletion of non-CD3+ cells in cell suspen-
sion using DynaMag magnet and Dynabeads Untouched 
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TaBle 1 | List of TaqMan assays of investigated miRNA.

assay iD mirBase iD mirBase accession  
number

Mature mirna sequence Function Target

000583 hsa-miR-9-5p MIMAT0000441 UCUUUGGUUAUCUAGCUGUAUGA Downregulate NF-κB, enhances  
IL-2 production in activated  
human CD4(+) T cells

BLIMP1

002112 hsa-miR-29a-3p MIMAT0000086 UAGCACCAUCUGAAAUCGGUUA Inhibitor of Th1 development  
and interferon (INF)-γ expression

INF-γ, T-bet, EOMES

000512 hsa-miR-210-3p MIMAT0000267 CUGUGCGUGUGACAGCGGCUGA Negative regulator of Th17  
immune response

HIF1α, CTLA4, FOXP3

001006 RNU48 NR_002745 AGTGATGATGACCCCAGGTAACTC 
TGAGTGTGTCGCTGATGCCATCAC 
CGCAGCGCTCTGACC

Control miRNA assay

001973 U6 snRNA NR_004394 GTGCTCGCTTCGGCAGCACATATACT 
AAAATTGGAACGATACAGAGAAGATTA 
GCATGGCCCCTGCGCAAGGATGACAC 
GCAAATTCGTGAAGCGTTCCATATTTT

Control miRNA assay
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Human T  cell Isolation Kit (Invitrogen, Paisley, UK), as 
described previously (3). In the first 20  min incubation step, 
1 × 107 PBMCs resuspended in 100 µL isolation buffer enriched 
with 20% (v/v) FBS, were labeled with mouse monoclonal 
antibodies specific for CD14, CD16, CD19, CD36, CD56, 
CDw123, and CD235 markers. Antibody-labeled cells and 
unstained CD3+ T-lymphocytes were rinsed, carefully mixed 
by tilting, and pooled down by centrifugation for 8 min at 300 g. 
Pelleted cells were resuspended in 100  µL of isolation buffer 
and incubated for 15  min with pre-washed magnetic beads, 
coated with human anti-mouse IgG antibody. Bead-bound cells 
adhered to the polypropylene tube walls when exposed to the 
DynaMag stationary magnetic field, leaving cell suspension free 
from B-lymphocytes, natural killer cells, monocytes, platelets, 
dendritic cells, granulocytes, and erythrocytes. Non-adherent 
CD4+ and CD8+ T cells were gently removed by pipetting to a 
new tube. Cell separation procedures were repeated in two suc-
cessive cycles of immunomagnetic selection and washing. The 
final T cell collection was purified from the residual Dynabeads 
by placing the tube in a magnet for 2 min and then transferring 
the supernatant to a fresh tube.

Total rna extraction
Extraction of total RNA was performed with the use of TRI 
REAGENT (Sigma, USA) following the single-step technique as 
described by Chomczinsky and Sacchi (17). The RNA integrity 
was examined by ethidium bromide staining in 2% agarose gel 
electrophoresis. Quantity and purity of RNA samples was checked 
by NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, 
USA) and verified by OD260/OD280 ratio >1.8 measurements.

reverse Transcription and microrna 
real-Time Pcr Quantification
Sequence-specific stem loop reverse transcriptase (RT) primers 
and TaqMan MicroRNA Reverse Transcription Kit were used 
for cDNA synthesis of three candidate miRNA (miR-9-5p, miR-
29a-3p, and miR-210-3p) and two reference small nuclear RNA 

(U6snRNA and RNU48) according to the TaqMan MicroRNA 
assay protocol (PE Applied Biosystems, Foster City, CA, USA). 
Reverse reactions were performed with 50 ng of total RNA in a 
15 µL final volume comprising 1× RT buffer, 1 mM dNTP each, 
3.33 U/μL MultiScribe RT, 0.25 U/μL RNase inhibitor, and 3 µL 
of 5× RT primer. Reaction mixture was incubated for 30 min at 
16°C, 30 min at 42°C, and 5 min at 85°C, next diluted eightfold 
and stored in aliquotes at −20°C until use.
miRNA transcript levels were measured using the Rotor Gene 
3000 instrument (Corbett Research, USA) in triplicate 15  µL 
quantitative real-time PCR (qRT-PCR) reactions containing 
5.0 µL of cDNA, 7.5 µL of TaqMan Universal PCR Master Mix 
II kit, and 0.75 µL of pre-developed TaqMan miRNA expression 
assay (Applied Biosystems). The cycling conditions were set 
according to the guidelines in the manufacturer’s leaflet and the 
list of assays is given in Table 1.

Ct values were collected at the fractional cycle number at which 
fluorescence passes fixed threshold of 0.05. The linear regres-
sion coefficient (R2) and amplification efficiency were assessed 
through five-point fourfold serial dilutions of the arbitrary 
standards prepared individually for each miRNA assay, and final 
values ranged between 0.994–0.998 and 92–100%, respectively. 
Intra-assay variability was less than 1.12%, and less than 2.01% 
variation was achieved between different PCR experiments. 
Prior to qPCR data normalization, two small nuclear RNA were 
tested for stability using geNorm and NormFinder algorithms. 
Both U6snRNA and RNU48 endogenous controls expressed the 
same measure of stability (M = 1.046), but U6snRNA was used 
for miRNA gene normalization due to the lower inter-group 
variability (SD ± 0.15) when compared to RNU48 (SD ± 0.22). 
Fold difference in miRNA expression was calculated using effi-
ciency corrected model of 2−ΔΔCt method as described by Pfaffl 
(18). Data are presented as relative quantity of target miRNA, 
normalized with respect to U6snRNA and a control group (19).  
A detailed description of T-bet, FoxP3, BLIMP1, and HIF1α 
mRNA quantification analysis, together with PCR efficiency 
results and stability measurements of validated housekeeping 
genes, can be found elsewhere (3).
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TaBle 2 | Descriptive analysis of clinical and biochemical characteristics of patients and healthy controls.

hYPO hashimoto’s thyroiditis (hT) sUBsT hT eU hT cTrl P*

Subjects (n) 10 10 12 10 –
Age (years) 45 (26–56) 64 (61–65) 51 (41–60) 44 (36–59) 0.069
Gender (F/M) 8/2 9/1 12/0 9/1 –
FT4 (pmol/L) 11.4 (10.2–12.5)** 15.4 (12.2–17.6)# 11.8 (11.3–13) 13.8 (12.4–14.6) 0.000054
FT3 (pmol/L) 2.92 (2.46–3.14) 2.83 (2.43–3.55) 2.9 (2.45–4.04) 3.38 (2.75–3.87) 0.173
TSH (mIU/L) 9.6 (5.59–13.1) 2.6 (1.19–3.25)## 3.11 (1.65–4.04)## 1.65 (0.98–2.62)## <0.000001
Volume (mL) 16 (14.1–19.4) 11.1 (6.9–13.9) 14.6 (11.2–20.5) 11.9 (10.2–12.8) 0.136
TPOAb (kIU/mL) 155 (61–3,000) 260 (150–1,355) 690 (272–2,528) Neg –

*Kruskal–Wallis test.
**P < 0.05 vs CTRL.
#P < 0.05 vs HYPO HT and EU HT.
##P < 0.05 vs HYPO HT.
FT4, free thyroxine; FT3, free tri-iodothyronine; TSH, thyroid stimulating hormone; TPOAb, thyroid peroxidase antibodies.
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difference 0.62 [IQR (0.44–1.01), P  =  0.046, Wilcoxon test, 
Figure 1A, n = 32]} when compared to their healthy counterparts 
[1.373 (0.63–2.7), n  =  10]. A similar, but not significant trend 
was observed for miR-210-3p in HT vs control comparison [HT 
vs ctrl; 0.64 (0.39–1.31) vs 1.2 (0.5–2.56), P = 0.24, Figure 1B]. 
Finally, no change in expression levels of miR-9-5p was seen 
between HT cases [0.64 (0.49–1.02) vs 1.08 (0.54–1.92), P = 0.26, 
Figure 1C] and healthy subjects.

mirna–mrna Target Pairs  
in PB T cells From hT Patients
To gain further insight into the miRNA-target RNA dynamics, 
we integrated data from previously collected mRNA measure-
ments with the newly obtained miRNA findings. A number of 
significant correlations were observed in pooled HT and control 
samples, majority of which was consistent with the previously 
reported post-transcriptional mechanisms of miR-29 (10) and 
miR-210 (11) action. Importantly, T-bet (Spearman’s correlation 
coefficient, ρ = −0.389, P = 0.011, n = 42, Figure 2A) mRNA lev-
els increased with declining miR-29a-3p levels, whereas FOXP3 
transcript abundance increased with diminished miR-210-3p lev-
els (ρ = −0.409, P = 0.0071, n = 42, Figure 2B). The associations 
persisted upon exclusion of control samples (data not shown); 
thus eliminating the confounding by case–control status. In addi-
tion, miR-210-3p seemed to be associated with HIF1α regulatory 
circuits, being positively related to HIF1α transcript abundance 
in the HT group (ρ = 0.397, P = 0.025, n = 32, Figure 2C).

T-bet, mir-29a-3p, and mir-210-3p 
Transcript levels are associated  
With the clinical Features of hT
In HT patients, residual thyroid volume was negatively asso-
ciated with increase in T-bet (ρ  =  −0.417, P  =  0.02, n  =  32, 
Figure 3A) and BLIMP1 mRNA transcript levels (ρ = −0.389, 
P = 0.03, n = 32, Figure 3B) of PB T cells, particularly in euthy-
roid (euHT  +  substHT) cases [ρ(T-bet)  =  −0.483, P  =  0.027; 
ρ(BLIMP1)  =  −0.558, P  =  0.0085]. Moreover, increased T-bet 
mRNA expression was associated with reduced serum FT4 levels 
(ρ = −0.45, P = 0.036, n = 22, Figure 3C) and increased TSH  
levels (ρ = 0.554, P = 0.0075, Figure 3D) among the therapeutically 

statistical analysis
Normality of distributions was tested by Shapiro–Wilk test. Given 
that data used in this study were often not normally distributed, 
nonparametric approaches were selected, in general. Propor-
tions and median with interquartile range (IQR) were used for 
presentation of data. Exact binomial test, Wilcoxon test, and 
Kruskal–Wallis test with Bonferroni-corrected Dunn’s post  hoc 
analysis were used for group comparisons. Correlations between 
paired datasets were determined by Spearman rank-test. Two-
tailed P < 0.05 was considered significant. If not otherwise stated, 
statistical analyses were performed with NCSS2007 program 
(v07.1.20, NCSS LLC, Kaysville, UT, USA).

resUlTs

hT Patients characteristics:  
Biochemical and clinical Data
Patients and healthy controls were matched for sex and age 
(Table 2). No difference in FT3 or TSH serum levels was observed 
between healthy controls, euthyroid, and L-T4 treated HT sub-
jects; however, LT4-receiving patients required higher serum 
FT4 levels to attain comparable serum FT3 levels. Untreated, 
hypothyroid subjects demonstrated the opposite trend showing 
lower FT4, but higher serum TSH levels in comparison to control 
and LT4 substituted group. FT3 levels increased with the serum 
FT4 (ρ = 0.313, P = 0.043) concentrations in pooled sample of 
HT patients and controls, and declined with age in HT cases 
(ρ = −0.358, P = 0.045).

PB T cells From hT Patients Display 
reduced expression of mir-29a
We analyzed the expression levels of miR-29a, miR-210, and 
miR-9 using RNA bank from the prior cohort as well as using 
published qRT-PCR data on selected target mRNAs from our 
previous study (3). Because no difference in expression levels of 
candidate miRNAs was present across different HT stages, we 
further analyzed HT data as one group.

Subsequently, miR-29a-3p expression levels were significantly 
diminished in bulk PB T  cells of HT patients {median fold 
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FigUre 1 | Relative expression levels of miR-29a-3p, miR-210-3p,  
and miR-9-5p in Hashimoto’s thyroiditis (HT) patients and healthy controls. 
Compared to controls, (a) miR-29a-3p levels were significantly reduced  
in bulk peripheral blood T cells of HT patients [HT (n = 32), P = 0.046, 
Wilcoxon test, Bonferroni–Dunn’s post hoc comparison]. A non-significant 
decrease in (B) miR-210-3p levels was noted in HT vs control comparisons (HT 
vs controls; 0.64 vs 1.2, P = 0.24). Conversely, no difference in (c) miR-9-5p 
expression levels was found across the studied groups. Transcriptional 
changes were measured by RT-qPCR and normalized against U6snRNA. 
Within each box, the horizontal line represents the median value, and the first 
and third quartiles are the ends of the box. The whiskers extend to 1.5× 
(interquartile range).

5
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upon correction for FT4 levels [partial ρ(miR-29a-3p) = 0.337, 
P = 0.031, ρ(T-bet) = −0.39, P = 0.012] and age [partial ρ(miR-
29a-3p)  =  0.428, P  =  0.0052, ρ(T-bet)  =  −0.374, P  =  0.016].  
No relationship was seen between miR-9 and any of the tested 
clinical features. Furthermore, TPOAb levels and LT4 replace-
ment dose were not related to any miRNA or mRNA analyzed.

DiscUssiOn

We previously observed high T-bet and FoxP3 mRNA expression 
in PB T cells from HT patients relative to age-matched healthy  
control individuals. In this study, we looked for evidence of cor-
related changes in miRNA-target mRNA profile by measuring 
transcript levels of miR-9-5p, miR-29a-3p, and miR-210-3p in 
an identical RNA sample set. We could now demonstrate that 
miR-29a-3p may be involved in the imbalance of T-bet through 
decreased miR-29a-3p expression in T cells of HT patients, which 
may play an important role in the development of HT. In parallel, 
negative miR-210-3p/FoxP3 and positive miR-210-3p/HIF1α 
circuits were also noted, possibly reflecting postranscriptional 
dynamics previously described in activated CD4+ and CD8+ effec-
tors under conditions of low oxygen tension (14). Nevertheless, 
underlying miR-210-3p mechanisms in HT autoimmunity 
remain unclear, since we found no difference in miR-210-3p 
expression between HT and control subjects; a result supporting 
redundant or possibly diluted effects of miR-210-3p in mixed 
PB cell populations of HT patients. In contrast, downregulated 
miR-29-3p levels suggest a dysregulation of the miR-29/T-bet 
feedback loop, which may bias Th1 and Tc1 cell differentiation 
and contribute to chronic inflammation in HT.

The functional relevance of this altered T-bet/miR-29a-3p 
axis is further highlighted by finding that our untreated HT 
cohort with high T-bet/low miR-29a-3p expression had showed 
increased predisposition to develop thyroid insufficiency and 
primary hypothyroidism. Mechanistically, T4 and T3 synthe-
sis are inhibited by cytokines directly on the level of thyroid 
epithelial cells (20): TSH-R gene is downregulated, and the 
expression of deiodinases (D)1 and D2, which convert T4 into 
the most active metabolic form, T3, is altered (21). INFγ, a pro-
totypical T-bet/miR-29 target, is the cytokine most clearly asso-
ciated with thyroid injury, especially hypothyroidism (22, 23).  
Increased serum interleukin (IL)-2, TNFα, and IFNγ have been 
reported in subjects with overt hyopothyroidism due to HT 
(24, 25). Hashimoto’s thyroids are enriched in intraglandular 
CD4+IFNγ+ and CD8+IFNγ+ T cells (26) and TPOAbs enhance 
the autoantigen-elicited production of IFNγ by MNCs in a 
dose- and Fcγ-receptor dependent manner (27). In addition, 
IL-12, which controls IFNγ and T-bet expression in activated 
T cells, is another miR-29a target (28) that has been linked to 
hypothyroidism in AITD (29). Alternatively, or in addition; 
TSH, T4, and T3, in their own turn, can play an important role 
in T cells and thymus and regulate their functions via TSH, D2, 
and T3 receptors. No difference, however, in T-bet/miR-29a 
expression was observed between LT4-treated and untreated 
hypothyroid HT in this study, suggesting that the correction of 
FT4 by hormone replacement therapy alone does not prevent 

naive patients, both spontaneously euthyroid and hypothyroid 
ones, independently of the individual thyroid volume [partial 
ρ(FT4) = −0.518, P = 0.016] and age [partial ρ(FT4) = −0.435, 
P = 0.049]. Conversely, miR-29a transcript levels were positively 
related to serum FT4 values (ρ = 0.473, P = 0.026) in untreated 
HT cases (n = 22, Figure 3E), whereas miR-210 levels were posi-
tively associated with FT3 levels (ρ = 0.44, P = 0.041). Age and 
thyroid volume did not alter the relation.

By univariate analysis, serum FT3 levels were associated 
with miR-29a-3p (ρ  =  0.39, P  =  0.0099) expression and T-bet 
(ρ = −0.439, P = 0.0037) transcript abundance in pooled dataset 
of HT cases and controls (n  =  42). The associations persisted 
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FigUre 2 | Spearman pair-wise correlation analysis of miRNA-mRNA target pairs in pooled samples (N = 42). Declining (a) miR-29a-3p expression levels  
was associated with increments in T-bet transcript abundance. Similar, negative relationship was also noted between (B) miR-210-3p and FOXP3 mRNA levels. 
Conversely, (c) miR-210-3p was positively correlated with HIF1α gene expression. Spearman rank-test, solid line: the least square estimate. ρ—Spearman 
correlation coefficient; global significance P < 0.05.
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T-bet/miR-29a alterations in T cells from end-stage HT. Taken 
together, our data are in comply with studies showing no effect 
of low thyroid hormone levels on T  cell cytokine production 
(30), but instead support a role for deregulated T-bet/miR-29a 
immunologic background in HT state.

The important role of T-bet in controlling HT symptoms in 
target organs is further complemented by observation linking 
transcriptional heterogeneity of T-bet and BLIMP1 gene in HT 
PB T cells with inter-individual variations in thyroid volume, 
which may also contribute to the progression of thyroid insuffi-
ciency and the development of hypothyroidism. Mechanistically, 
both BLIMP1 and T-bet are crucial factors for the development 
of short-lived effector cells (SLEC) and cytotoxic T lymphocyte 
(CTL) (31). In this context, a co-associated TF, BLIMP1, has 
been considered a major TF for the generation and function 
of cytotoxic CD4/CD8 and effector T  cells. BLIMP1 acts by 
promoting the binding of T-bet to the promoters of cytolytic 
genes in CD4+ T cells and is required for the cytolytic function 
and effector differentiation of CD4+ T  cells and CD8+ CTLs, 
its expression peaking in antigen-experienced T  cells (32).  
In vivo, inhibition of BLIMP1 reduces the production of auto-
antibodies and alleviates organ damage in selected autoimmune 
pathologies (33). By contrast, BLIMP1-deficient effector 
CTLs have impaired cytotoxicity, owing to their impaired 

expression of multiple cytotoxic molecules, including granzyme  
B and IFNγ, as well as the TF T-bet (34). Currently, however, 
the experimental link with thyroid injury yet remains to be 
established. Adding to the complexity of T-bet regulation, the 
transcriptional permissibility of Tbx21 promoter has also been 
described in non-Th1/Tc1 subsets, including Th17 as well as 
iTreg cells. Several reports thus indicate that T-bet expression 
is essential for generation of Th17 cells and their switch from 
Th17 to highly pathogenic Th1-like exTh17 cells as well (35, 36). 
The tight regulation of T-bet is, therefore paramount, but little 
understood aspect of HT.

Regarding the potential source, miRNA expression levels 
dynamically change between naïve, effector, and memory T cell 
subsets (37). A global downregulation of miRNA, including 
miR-29a, has been seen in effector T  cells, compared to naïve  
T precursors, and tends to increase back in memory T cells (38). 
SLEC are particularly sensitive to graded expression of T-bet and 
BLIMP1, and the formation of terminal effector cells is largely 
dependent on the IL-12/T-bet axis, which drives their generation 
in a dose-dependent manner (31). Thus, a more precise analysis 
of T  cell subpopulations would offer a better definition of the 
miR-29a activity in HT T cells.

Hashimoto’s thyroiditis is also characterized by altered com-
position of both FoxP3+ and Th17  cell compartments. HIF1α 
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was reported to control the balance of Th17/Treg differentiation 
through direct transcriptional activation of RORγt; in addition, 
HIF1α targets FOXP3 for proteasomal degradation, thereby 
inhibiting Treg development (14). HIF1α acts partially by 
increasing the expression of miR-210 as well, which subsequently 
functions to inhibit both FoxP3 and HIF1α in a negative feedback 
loop (13, 14). Consistent with these results, we observed a modest, 
but significant miR-target pairing in coexpression correlations, 
coupled to a non-significant decrease of miR-210 expression in 
PB T cells from HT patients. These moderate effects might never-
theless be sufficient to contribute to the regulatory alterations 

behind HT, as exemplified by fine-tuning quantitative effects 
typically exhibited by miRNAs (39). Positive or negative correla-
tions alone, of course, do not prove causality, since there can be 
a plethora of different factors involved in mRNA degradation. 
One must also take into account that the comparison was made 
using an entire PB T cell population, so it is possible that dilution 
and confounding by mixed cell populations, notwithstanding a 
wide array of post-transcriptional mechanisms, may have acted 
to weaken the relation specific to a high-expressing fraction of 
PB cell population. Finally, it is possible that the repressive effect 
of selected miRs is more pronounced on the translational level.

FigUre 3 | Association of T cell miRNA and mRNA transcript levels with Hashimoto’s thyroiditis (HT) clinical features. In HT patients (n = 32), thyroid volume was 
inversely related to increments in (a) T-bet and (B) BLIMP1 transcript abundance in peripheral blood T cells. In untreated HT patients (euthyroid + hypothyroid, 
n = 22), upregulated (c) T-bet expression was associated with declining FT4 and (D) increasing TSH serum levels. (e) miR-29-3p expression exhibited opposite, 
positive effects in relation to serum FT4 levels. Transcriptional changes of mRNA and miRNA were measured by quantitative real-time PCR and normalized against 
TBP and U6snRNA, respectively.
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