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Lipid droplet and peroxisome biogenesis occur at
the same ER subdomains
Amit S. Joshi1, Benjamin Nebenfuehr1, Vineet Choudhary1, Prasanna Satpute-Krishnan2, Tim P. Levine 3,

Andy Golden1 & William A. Prinz1

Nascent lipid droplet (LD) formation occurs in the endoplasmic reticulum (ER) membrane but

it is not known how sites of biogenesis are determined. We previously identified ER domains

in S. cerevisiae containing the reticulon homology domain (RHD) protein Pex30 that are

regions where preperoxisomal vesicles (PPVs) form. Here, we show that Pex30 domains are

also sites where most nascent LDs form. Mature LDs usually remain associated with

Pex30 subdomains, and the same Pex30 subdomain can simultaneously associate with a LD

and a PPV or peroxisome. We find that in higher eukaryotes multiple C2 domain containing

transmembrane protein (MCTP2) is similar to Pex30: it contains an RHD and resides in ER

domains where most nascent LD biogenesis occurs and that often associate with peroxi-

somes. Together, these findings indicate that most LDs and PPVs form and remain associated

with conserved ER subdomains, and suggest a link between LD and peroxisome biogenesis.
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Lipid droplets (LDs) play critical roles in cellular metabolism.
They are storage depots containing neutral lipids, primarily
triacylglycerols (TAGs), and steryl esters (SEs), which can be

used for energy production and lipid metabolism. The neutral
lipid core of LDs is covered by a phospholipid monolayer that
contains coat proteins like perilipins and lipid metabolism
enzymes1–6. The formation of nascent LDs occurs in the endo-
plasmic reticulum (ER), but the mechanism remains poorly
understood. Nascent droplets initially form between the leaflets of
the ER membrane and bud from the membrane as they grow6,7.
How sites of LD formation are determined and whether these
sites form stocastically or at stable, specialized regions of the ER is
not known, though there is some evidence that LDs form at
preexisting sites8–10. It is also possible that nascent LDs initially
form stochastically throughout the ER, and then diffuse to spe-
cialized sites where they mature and grow. A few proteins are
thought to play direct roles in LD biogenesis, though their
functions are not well understood. One of these proteins is seipin,
called Sei1 in S. cerevisiae, which is expressed in all cell types and
localizes to ER-LD contacts where it may facilitate membranous
ER-LD connections10–13.

Peroxisome biogenesis also occurs in the ER. Peroxisomes are
single membrane-bound organelles that have important roles in
the metabolism of lipids, polyamines, D-amino acids, and fatty
acid β oxidation14. Vesicles termed pre-peroxisome vesicles
(PPVs) bud from the ER and mature into functional peroxisomes.
There has been disagreement about whether more than one type
of PPV is generated in the ER. There is also evidence that in
mammalian cells some PPV biogenesis occurs in the mitochon-
drial outer membrane15.

Pex3 and Pex19 are two proteins that play a role in targeting
membrane-embedded proteins to PPVs or peroxisomes.
Although it had been thought that cells lacking either of these
proteins were devoid of peroxisomes and PPVs, a few years ago
the van der Klei group showed that yeast cells lacking both Pex3
and Atg1, which is necessary for autophagy, contain a small
number of PPVs16. These PPVs are normally degraded by
autophagy. PPV biogenesis can therefore be studied in cells
lacking Pex3 and Atg1 (pex3Δ atg1Δ). We have previously shown
that these PPVs originate in the ER, probably at ER domains
containing the protein Pex3017.

Pex30 has an N-terminal reticulon homology domain (RHD)
17. Reticulons and reticulon-like proteins are abundant conserved
ER-shaping membrane proteins that stabilize the highly curved
portions of the ER, tubules, and the edges of ER sheets through
the RHDs forming wedge-shaped hydrophobic hairpins18. We
found that overexpression of the RHD domain of Pex30 restores
ER structure in S. cerevisiae cells lacking the reticulons. Endo-
genously expressed Pex30 is in ER subdomains in tubules and the
edges of sheets, as are reticulons17. The function of Pex30 is not
known but it may play a role in peroxisome biogenesis since the
size and number of peroxisomes is altered in cells lacking
Pex3019. Pex30 has also been suggested to reside at ER-
peroxisome contacts20,21.

We wondered whether LD biogenesis occurs at Pex30
domains in the ER for two reasons. First, there are about ten-
fold more Pex30 domains than there are PPVs in cells17, sug-
gesting these domains have other functions. Second, recent
evidence suggests that some proteins play dual roles in the
biogenesis of both LDs and peroxisomes; the Kopito group
found that Pex3 and Pex19 insert membrane-embedded pro-
teins into the surface of LDs at ER subdomains22. Here, we
show that most de novo LD biogenesis occurs at Pex30 sub-
domains. We also demonstrate that in higher eukaryotes, the
protein multiple C2 domain containing transmembrane protein
(MCTP2) has a RHD similar to that of Pex30. Interestingly,

peroxisomes and LDs were frequently found to associate with
Pex30/MCTP2 domains.

Results
Most nascent LDs are associated with Pex30 subdomains. To
determine whether nascent LDs mature at Pex30 subdomains, we
visualized LD biogenesis in a S. cerevisiae strain in which LD
formation can be controlled. Four enzymes produce neutral lipids
in this yeast: Are1 and Are2, which generate SE, and Lro1 and
Dga1, which synthesize TAG. Cells lacking all four proteins lack
neutral lipids and LDs23. We used a strain in which the galactose
regulatable promoter GAL1 controls expression of LRO1 and the
other three neutral lipid-synthesizing enzymes are not produced
(GAL1-LRO1 3Δ). When this strain is grown in a medium con-
taining raffinose, it lacks LDs but begins to produce them when
galactose is added23. The strain also expressed Pex30-2xmCherry
and Erg6-GFP, a LD marker. Before LRO1 induction, Erg6-GFP is
on the ER, but it localizes to LDs after galactose addition (Fig. 1a;
Supplementary Fig. 1c). About 70% of Erg6-GFP punctae colo-
calize or are closely associated with Pex30-2xmCherry (Fig. 1b).
Similar results were obtained when nascent LDs were visualized
with the lipophilic dye BODIPY (Supplementary Fig. 1A).

To verify that most nascent LDs mature at Pex30 subdomains,
we induced LD production with a second method. When oleic
acid is added to growing cells, they begin to produce new LDs
within 30–60 min. We added oleic acid to cells expressing Dga1-
GFP from a high copy plasmid and endogenously expressed
Pex30-2xmCherry. In growing cells, Dga1-GFP is in the ER, but it
relocates to the surface of LDs when LD production is
induced23,24. We found that all Dga1-GFP puncta colocalize
with Pex30-2xmCherry within 1–2 h after oleic addition (Fig. 1c).
Lro1-GFP similarly accumulates at sites containing Pex30-
2xmCherry after oleic acid addition. (Supplementary Fig. 1B).
Together, these findings indicate that most nascent LDs colocalize
with Pex30 subdomains in the ER.

LD induction alters lipid composition at Pex30 subdomains. If
Pex30 subdomains are sites of LD biogenesis, we speculated that
they might become enriched in neutral lipids or their precursors,
such as diacylglycerol (DAG), when LD production is induced.
To investigate this possibility, we used an ER-DAG sensor to
measure the distribution of DAG in the ER that we have
described and characterized in a previous study25. The ER-DAG
sensor has the DAG-binding tandem C1 domains of protein
kinase D (C1a/b-PKD) fused to GFP and the transmembrane
domain of Ubc6, a tail-anchored ER protein. The sensor localizes
to the ER and becomes enriched in puncta in the ER that colo-
calize with Yft2, an ER protein that becomes enriched at LD
biogenesis sites when LD production is induced25. Previous stu-
dies have shown that C1a/b-PKD binds specifically to DAG
in vitro and in cells26–28. In addition, we found that ER-DAG
sensor enrichment at ER puncta during LD biogenesis is blocked
by a point mutation in C1a/b-PKD known to ablate DAG-
binding in vitro, suggesting that membrane-binding by the sensor
in cells is responsive to DAG levels25,26.

When the cells were grown in regular media, the sensor was
uniformly present in the ER, but it became highly enriched in
portions of the ER within 1–2 h after oleic acid addition, forming
bright puncta. About 65% of the ER-DAG sensor puncta
colocalized with Pex30-2xmCherry (Fig. 1d). This finding
indicates that some Pex30 subdomains become highly enriched
in DAG when LD formation is induced, consistent with the idea
that the subdomains are regions where LDs formation occurs
when it is induced. It should be noted that it remains possible that
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C1a/b-PKD binds TAG as well as DAG, which could contribute
to enrichment of the ER-DAG sensor to LD biogenesis sites.

Pex30 subdomains associate with LD biogenesis proteins. Since
most nascent LDs are associated with Pex30 domains when LD
production is induced, we wondered whether LDs remain asso-
ciated with Pex30 in cells when LD production has not been
stimulated. Using Pearson’s co-efficient, we determined whether
Pex30 colocalized with two proteins known to be at or near sites
of LD biogenesis. One such protein is Nem1, which is part of a
phosphatase complex that regulates Pah1, a phosphatidic acid
phosphatase that is an important regulator of lipid metabolism
and TAG production in cells29–31. Nem1 forms puncta on the ER
that are near sites of LD biogenesis32,33. We found that Nem1-
GFP punctae partially co-localized with Pex30-2xmCherry
(Fig. 2a, d), suggesting these proteins are in close proximity,
consistent with the idea that most Pex30 subdomains remain
associated with growing and mature LDs. We confirmed
Pex30 subdomains and ER exit sites (ERES) are distinct regions of
the ER, as a previous study has shown21; there was little colo-
calization of Pex30-2xmCherry and the ERES marker Sec13-
GFP34 (Fig. 2b, d).

We also determined whether Sei1, the yeast homolog of seipin,
colocalizes with Pex30 subdomains. Similar to Nem1-GFP, we
found that Sei1-GFP puncta partially co-localized with Pex30-
2xmCherry domains (Fig. 2c, d); ~40% of the Sei1-GFP were
associated with Pex30-mCherry. It may be that the Sei1 puncta
away from Pex30 puncta are those not associated with nascent
LDs, since a previous study found that only some seipin puncta
are associated with growing LDs35. To test this, we visualized cells
expressing Pex30-2xmCherry, Sei1-GFP, and the LD marker

Erg6-BFP. We found when Pex30-2xmCherry and Sei1-GFP are
associated, they were also associated with Erg6-BFP about 95% of
the time (Fig. 2e, f). In addition, when Sei1-GFP and Erg6-BFP
puncta are associated, about 60% were also associated with
Pex30-2xmCherry (Fig. 2e, f). This suggests that when Sei1 is
together with Pex30 they are often associated with sites of LD
biogenesis.

To estimate how often Pex30 domains remain associated with
mature LDs, we determined the percent association of Pex30-
2xmCherry and Erg6-GFP (Fig. 2g). We found about 70% of
Erg6-GFP puncta were associated with Pex30-2xmCherry,
consistent with idea that mature LDs often remain close to
Pex30 domains. Taken together, these findings suggest that
Pex30 subdomains frequently remain associated with growing
and mature LDs.

LD biogenesis is altered in cells lacking Pex30. To investigate
the role of Pex30 in LD biogenesis, we examined LDs in cells
lacking Pex30 (pex30Δ). LDs were examined by BODIPY staining
(Fig. 3a) and by EM (Fig. 3b–f). LDs in pex30Δ cells were often
more clustered and smaller than those in wild-type (WT) cells.
The decrease in LD size is probably not caused by a change in the
level of neutral lipids in pex30Δ cells (Fig. 3g, h) or in the rate of
neutral lipid synthesis in pex30Δ cells (Supplementary Fig. 2A, B).
Although these cells had a small but significant decrease in TAG
levels, this change is probably not large enough to decrease LD
size. The change in LD size in pex30Δ cells could be because
Pex30 affects membrane surface tension at sites of LD biogenesis.
A similar role has been proposed for REEP1, a mammalian
reticulon-like ER-shaping protein36,37.
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Fig. 1 Most nascent LDs are associated with Pex30 subdomains. a GAL1-LRO1 3Δ cells expressing endogenously tagged Erg6-GFP and Pex30-2xmCherry
were visualized growing in a medium containing raffinose (uniduced) or 30min after galactose addition (induced). White arrows indicate association of
Erg6-GFP and Pex30-2xmCherry puncta. b Percent of Erg6-GFP punctae that are associated with Pex30-2xmCherry after galactose addition. Values are
mean+/– s.d. of three independent experiments. cWild-type cells expressing endogenously tagged Pex30-2xmCherry and containing the plasmid Yep181-
Dga1-GFP were grown to stationary growth phase in SC medium (glucose). The cells were washed, incubated with fresh SC containing 1 mM oleic acid, and
imaged after 1 h (Oleic acid). d Wild-type cells expressing endogenously tagged Pex30-2xmCherry and the ER-DAG sensor were grown as in C. Bars= 3
μm. White arrows indicate colocalization of Pex30-2xmCherry and ER-DAG sensor punctae
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Four proteins in yeast contain RHDs similar to that of Pex30:
Pex28, Pex29, Pex31, and Pex32. We determined whether
mutants lacking these proteins had changes in LD size, LD
clustering, or neutral lipids levels but found they did not, though
there was some LD clustering in cells lacking Pex29 (Fig. 3d, h
and Supplementary Fig. 3A-H). These findings suggest the
functions of Pex30 do not overlap with those of similar RHD-
containing proteins.

We found that production of nascent LDs is slower in cells
lacking Pex30. To determine the rate of LD production, nascent
LD formation was induced in GAL1-LRO1 3Δ cells and the same
strain also lacking Pex30 (GAL1-LRO1 3Δ pex30Δ). These strains
lack LDs when grown in media with glucose, but begin to produce
LDs when shifted to media that contains galactose and lacks
glucose. When LD biogenesis was induced, there was a significant
delay in the production of LDs in the cells lacking Pex30 (Fig. 3i).
We confirmed this finding by inducing LD production by a
second method. When cells are in stationary growth phase, the
TAG synthase Dga1 is in the ER but when cells are diluted into
fresh media and begin to grow, Dga1 relocalizes to regions in the
ER where LD biogenesis occurs23,24,38. We found that in cells
lacking Pex30, there was a significant delay in the re-localization

Dga1 to LDs (Fig. 3j), consistent with the idea that there is a delay
in LD production in cells lacking Pex30.

Since LD biogenesis is altered in cells lacking Pex30, we
wondered whether membrane protein diffusion between the ER
and the surface of LDs is reduced in these cells; this diffusion rate
is known to decrease in cells lacking seipin10,11. We used
fluorescence recovery after photo-bleaching to estimate the rate of
Dga1-GFP diffusion from the ER to LDs. LDs that have Dga1-
GFP on the surface were bleached and the rate of fluorescence
recovery determined. There was no significant difference in the
rate of recovery of WT and cells lacking Pex30 (Supplementary
Fig. 3I), indicating that ER-LD connections are normal in cells
lacking Pex30.

Genetic interaction of PEX30 and SEI1. Since seipin has been
suggested to localize to sites where LDs are associated with the
ER12,13, we wondered how LD biogenesis would be affected in cell
lacking both Pex30 and seipin (Sei1). Surprisingly, these cells
(sei1pex30Δ) have a substantial growth defect (Fig. 4a). The defect
was corrected when the RHD-containing N-terminal 234 residues
of Pex30 were expressed in the sei1pex30Δ cells, indicating that
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the membrane-shaping function of Pex30 is necessary to support
optimal growth of cell lacking seipin (Fig. 4a). Interestingly,
elimination of seipin causes a profound redistribution of Pex30 in
the ER; Pex30-2xmCherry accumulates in a single punctum that
localizes with the LD marker Nem1-GFP (Fig. 4b), indicating that
seipin affects the distribution of Pex30 subdomains.

It is not clear why sei1pex30Δ cells have a growth defect. We
found that sei1pex30Δ cells form large clusters of small and large
LDs, and the ER associated with the LDs is highly proliferated
around the LDs (Fig. 4c, d). These changes could affect the ER
function and cause a growth defect. Alternatively, Pex30 and
seipin may modulate ER structure or surface tension at LD
biogenesis sites, which could affect lipid metabolism. Together,
these findings provide additional evidence that Pex30 plays an
important role in LD biogenesis and function, and suggest that
Pex30 and seipin may have partially overlapping functions.

MCTP2 has a C-terminal ER-shaping RHD. Pex30 does not
have a mammalian homolog39 that can be identified using protein
BLAST, but we wondered whether there is an RHD-containing
protein in higher eukaryotes that plays a similar role. Using the
structural homology prediction program HHpred40, we identified
the protein MCTP2 as the closest human homolog of Pex30
(Fig. 5a). MCTP2 is an 878-amino acid ER-resident protein with
a membrane-embedded domain related to RHDs near the C-
terminus41,42. It has four domains: three C2 domains (defined by
Pfam) and a domain similar to a Pex24 domain, which is the
umbrella name for a domain common to the peroxins Pex24/28/
29/30/31/32 (defined by the more sensitive tool HHpred). We
have previously shown that the Pex24 domain is related to the
hydrophobic region of reticulons, for example sharing a func-
tionally important tryptophan (W684 in MCTP2). Using
HHpred, we found that the C-terminal 272 residues of MCTP2
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highlighted in yellow
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(607–878) were related to membrane-embedded portions of the S.
cerevisiae proteins Pex28-32 and the two reticulon proteins in this
yeast (Rtn1 and Rtn2; Supplementary Fig. 4). MCTP proteins are
conserved in higher eukaryotes. Drosophila and C. elegans have
one MCTP, whereas humans contain MCTP1 and MCTP241.

To determine whether the C-terminal portion of MCTP2
contains an ER-shaping RHD, we expressed the C-terminal 237
amino acids of human MCTP2 fused to YFP, YFP-MCTP2

(RHD), in S. cerevisiae under the strong RTN1 promoter (Fig. 5a).
The fusion complements the growth defect of sei1pex30Δ cells, as
does Pex30, Pex31, and Rtn1 (Fig. 5b, Supplementary Fig. 5A).
Cells lacking the reticulons, Rtn1 and Rtn2, and the reticulon-like
protein Yop1 (rtn1rtn2yop1Δ), have a defect in ER structure43

that is corrected by overexpression of Pex3017. We found that
YFP-MCTP2 (RHD) similarly restores ER structure (Fig. 5c). The
cortical ER forms large sheet-like structures in rtn1rtn2yop1Δ
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cells that are not present in WT cells, which contain largely
tubular ER in the cortex. We found that cortical ER structure in
rtn1rtn2yop1Δ cells becomes tubular when YFP-MCTP2 (RHD)
is expressed in these cells (Fig. 5c). We previously found that
rtn1rtn2yop1Δ cells that also lack the lipid regulator Spo7 are not
viable but grow when Pex30 is overexpressed17. Similarly,
overexpression of YFP-MCTP2 (RHD) also rescued the
rtn1rtn2yop1spo7Δ mutant (Supplementary Fig. 5B). Together,
these findings indicate that the C-terminal domain of MCTP2 is
an ER-shaping region, probably an RHD, that can functionally
replace Pex30 in yeast.

YFP-MCTP2 (RHD) localizes to sites of LD biogenesis. We
found that YFP-MCTP2 (RHD) localizes to ER subdomains in
mammalian cells. YFP-MCTP2 was transiently expressed in
COS7 cells together with the ER marker Sec61-mCherry. When
YFP-MCTP2 (RHD) was expressed at low levels, it was found in
puncta in the ER (Fig. 5d, e). The YFP-MCTP2 (RHD) puncta are
stable and remain associated with the same region of the ER over
time (Supplementary movie 1). When expressed at high levels,
YFP-MCTP2 (RHD) localized all over ER tubules and at the
edges of ER sheets (Supplementary Fig. 5C), a localization shared
with the reticulons18 and consistent with the idea that the C-
terminal region of MCTP2 contains a RHD.

We next determined whether MCTP2-subdomains are sites of
LD biogenesis and associate with LDs. COS7 cells were transiently
transfected with YFP-MCTP2 (RHD) and LiveDrop-mCherry, a
fusion protein demonstrated to target nascent LDs forming in the
ER and mature LDs10. We found that most YFP-MCTP2 (RHD)
and LiveDrop-mCherry punctae colocalized (Fig. 5e, f). Full-
length MCTP2 (GFP-MCTP2) has a similar localization (Fig. 5e,
g). LiveDrop-mCherry punctae that did not colocalize with YFP-
MCTP2 (RHD) was largely not associated with the ER (Fig. 5f).
These findings indicate that MCTP2 localizes to ER sites where
new LDs form and suggest that MCTP2 is not associated with
mature LDs.

YFP-MCTP2 (RHD) puncta are not at ERES. The punctate
distribution of YFP-MCTP2 (RHD) puncta throughout the ER
suggests that they could be at ERES, where coatomer (COPII)
vesicles are generated. We have previously shown that the COPII
component Sec23 fused to mCherry (Sec23-mCherry) localizes to
ERES in COS7 cells; confirmation that Sec23-mCherry marks
ERES) was obtained by co-expressing YFP-PrPC179A, a mutant
variant of prion protein, previously shown to move into ERES en
route to the Golgi within minutes of ER stress44. There was no
colocalization of Sec23-mCherry and YFP-MCTP2 (RHD) puncta
(Supplementary Fig. 5D), indicating that YFP-MCTP2 (RHD)
does not localize to ERES.

Human MCTP2 and C. elegans MCTP play a role in LD bio-
genesis. If MCTP2 has a function similar to that of Pex30,
depletion of MCTP2 might alter LD size or number. We used
siRNA to reduce the expression of MCTP2 in HeLa cells (Fig. 6a)
and found a significant decrease in the diameter of LDs (Fig. 6b,
c). Depletion of seipin (Fig. 6a) affected LD size (Fig. 6b, c), but
the effects of depleting seipin and MCTP2 were not additive.
Depletion of MCTP2 in HeLa cells had no effect on peroxisome
number (Supplementary Fig. 5E).

We also generated a C. elegans strain with a complete deletion
of the gene encoding the single MCTP in this animal [mctp-1
(av112)]. The number and size of LDs in the intestines of the
mctp-1(av112) animals were significantly decreased compared to
WT animals (Fig. 6d–f). The mctp-1(av112) animals had no
decrease in embryo viability (Fig. 6g). Together, these findings

suggest that MCTP proteins play a role in LD biogenesis similar
to that of Pex30 in S. cerevisiae.

Pex30/MCTP2 sites associate with LDs and peroxisomes/PPVs.
Previous studies have suggested that Pex30 may reside at contact
sites with peroxisomes20. We wondered whether Pex30/
MCTP2 sites in the ER might not only associate with LDs but also
with PPVs and peroxisomes, since we previously found that
PPVs, are generated at the Pex30 subdomain17. YFP-MCTP2
(RHD), LiveDrop-mCherry, and CFP-SKL (a peroxisome mar-
ker) were expressed in COS7 cells. About 30% of peroxisomes
were associated with YFP-MCTP2 (RHD) that colocalized with
LiveDrop-mCherry (Fig. 7a). This association was not random
since clockwise rotation of the CFP-SKL image by 90 degrees
caused the percent associated to decrease to 7%. Interestingly,
peroxisomes are either transiently (Supplementary movie 2) or
stably (Supplementary movie 3) associated with the ER sub-
domains containing MCTP2 and LiveDrop-mCherry.

Similar results were obtained in yeast expressing Pex30-
2xmCherry, Erg6-BFP, and the peroxisome marker Pex14-GFP;
about 60% of peroxisome were associated with Pex30 domains
and LDs (Fig. 7b,c). To visualize PPVs in S. cerevisiae, we used
strains that lack the proteins Pex3 and Atg1 (pex3atg1Δ). The
PPVs contain Pex14-GFP and there are typically one or two PPVs
per cell. We found that some Pex14-GFP puncta are on vesicles,
while others are on the ER, at Pex30 subdomains17. To colocalize
PPVs, LDs, and Pex30 subdomains, we expressed Pex14-GFP,
Pex30-2xmCherry, and the LD marker Erg6-BFP in pex3atg1Δ
cells. Remarkably, most Pex14-GFP puncta are closely associated
or colocalize with Pex30 subdomains and LDs (Fig. 7b, c). These
Pex14-GFP puncta could either be present on the ER membrane
or PPVs. The association between PPVs and LDs was even more
pronounced in pex3atg1Δ cells that also lack seipin (Supplemen-
tary Fig. 6). This is probably due to the redistribution of Pex30 to
a single punctum in sei1Δ cells (Fig. 4b). Altogether, these results
suggest that LDs and peroxisomes or PPVs are associated with the
same Pex30 ER subdomain over time.

Discussion
In this study, we demonstrate that conserved ER subdomains
with specialized RHD-containing proteins are sites where nascent
LDs mature. Consistent with this, we found that these sites, in S.
cerevisiae, are enriched in the TAG precursor DAG and are often
associated with Nem1 and Sei1, proteins previously shown to be
enriched at sites of LD biogenesis13,32,33. The RHD-containing
protein at LD biogenesis sites in S. cerevisiae is Pex30; and we
show that MCTP2 in higher eukaryotes also has an RHD and
localizes to ER subdomains containing nascent LDs.

The early steps of LD biogenesis and how sites of LD biogenesis
in the ER are determined is not well understood. One question
has been whether LDs are generated at defined zones in the ER
and whether new sites are generated when LD biogenesis is
induced. Since Pex30/MCTP2 sites are relatively stable and exist
before LD biogenesis is induced, we propose that they are sites
where proteins that mediate LD production can assemble when
LD biogenesis is stimulated. Whether the earliest steps of LD
biogenesis, probably the formation of small (<50 nm) lenses of
neutral lipid in the ER bilayer, occur at these sites remains to be
determined. It is more likely that nascent LDs formation occurs
throughout the ER and the nascent LD lenses diffuse in the ER to
Pex30/MCTP2 sites where they grow and eventually emerge into
the cytoplasm. Although Pex30/MCTP2 sites seem to facilitate
LD growth, we find they are not required since some LDs mature
outside of these sites and elimination or depletion of Pex30 or
MCTP2 does not block LD biogenesis. An important question for
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the future is to determine how the protein and lipid composition
of Pex30/MCTP2 domains differ from the rest of the ER and what
role the RHD plays in establishing these domains.

Our findings suggest that, in S. cerevisiae, most mature LDs
remain associated with Pex30/MCTP2 domains. MCTP2
domains may similarly remain associated with some mature LDs
in mammalian cells. In S. cerevisiae, LDs do not completely
detach from the ER23 and our findings suggest that mature LDs
remain associated with the ER at Pex30 subdomains. The con-
nections between mature LDs and Pex30 subdomains may allow
these domains to regulate mature LDs in addition to playing a
role in nascent LD formation.

We have previously found that PPVs may be generated at
Pex30 subdomains17, which suggests that these subdomains play
a role in both peroxisome and LD biogenesis. Although this is
surprising, it has previously been found that Pex3 and Pex19,
which are required for peroxisome biogenesis, also insert
membrane-embedded proteins into the surface of LDs at ER
subdomains22. Perhaps there are other proteins that play a role in
the biogenesis of both organelles at Pex30/MCTP2 sites. It
remains unknown whether the same Pex30 or MCTP2 site can
simultaneously give rise to both organelles.

Interestingly, individual Pex30/MCTP2 subdomains often
remain associated with both mature LDs and peroxisomes. This
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finding is consistent with earlier work that suggests Pex30 is
present at sites of ER-peroxisome contact. Whether the organelles
are associated because they remain in contact with the ER-
domain where they were generated remains to be determined.
Our finding that PPVs also often remain associated with LDs and
Pex30 subdomains suggests that PPVs and perhaps mature per-
oxisomes remain near their site of origin. As LDs and peroxi-
somes are also known to make close contacts45,46, Pex30/
MCTP2 subdomains may facilitate intracellular signaling between
the ER, peroxisomes, and LDs.

Methods
Yeast strains and plasmids. The strains and plasmids used in this study are listed
in Tables S1 and S2. Deletion strains were constructed by mating or PCR-based
targeted homologous recombination to replace the ORF of genes of interest with
cassettes (Longtine et al., 1998). PCR-based targeted homologous recombination
was also used to generate endogenously expressed C-terminally tagged fusion
proteins. The 2xmCherry-URA3 and GFP-HIS3MX6 cassettes were obtained from
O. Cohen-Fix (National Institutes of Health/National Institute of Diabetes and

Digestive and Kidney Diseases, Bethesda, MD), YFP-KanMX6 from J. Cooper
(National Institutes of Health/National Cancer Institute, Bethesda, MD), and
yEmCherry-HIS5MX6 and pRS305-PHO8-3xBFP from J. Nunnari (University of
California, Davis, Davis, CA).

The plasmid encoding ER-DAG sensor was constructed by fusing the portion of
the human protein kinase D gene encoding amino acids 136–343 (obtained from
Tamas Balla, National Institute of Child Health and Human Development, NIH) to
genes encoding GFP and the tail-anchored transmembrane domain of S. cerevisiae
Ubc6 under the ADH1 promoter in the plasmid YEplac181. The plasmids used in
live-cell imaging of COS7 cells were Sec61-mCherry from T. Rapoport (Harvard
University), YFP-MCTP2 from T. Sudof (Stanford University), LiveDrop-mCherry
from T. Walther (Harvard University), Sec23-mCherry from P. Sengupta (Janelia
Research), and CFP-SKL and RFP-SKL from J. Lippincott-Schwartz (Janelia
Research). The full-length GFP tagged MCTP2 was cloned into pEGFP-C1 plasmid
at Xho1/KpnI restriction sites using CloneEZ PCR cloning kit (catalog # L00339)
from Genscript.

Media and growth conditions. Yeast cells were grown at 30 °C, unless otherwise
indicated, in YPD medium (1% Bacto yeast extract, 2% Bacto Peptone, and 2%
glucose) or in synthetic complete (SC) media containing 2% glucose, 0.67% yeast
nitrogen base without amino acids (United States Biological), and an amino acid
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mix (United States Biological). In some cases the glucose in SC was replaced with
2% raffinose or 2% galactose. When inducing LD production, cells were washed
with sterile water twice and transferred to SC containing 1 mM oleic acid and 1%
Brij58. Images were taken within 1–2 h.

COS7 cells (ATCC, CRL-165) were cultured in DMEM (Gibco) supplemented
with 10% FBS (Gibco) and 2 mM L-glutamine (Gibco) at 37 °C in humidified air
containing 5% CO2. Prior to live-cell imaging, the medium was replaced with CO2-
independent medium (Gibco) containing 10% FBS and 2 mM L-glutamine.

Generation of mctp-1(av112) C. elegans. mctp-1(av112), which has complete
deletion of the gene encoding MCTP, was generated by following the non-cloning
Co-CRISPR conversion technique47 using dpy-10 as the co-conversion marker47.
Strains were cultured using standard conditions.

siRNA treatment and real-time quantitative PCR. Specific sets of 4 siRNAs to
silence human MCTP2 (MU020810010002) and Seipin (MU016749000002) were
purchased from Dharmacon. The negative control siRNA was obtained from
Thermofisher (Catalog # 4390843). For siRNA transfections, Hela cells were plated
at 50% confluency in six-well plates and left overnight at 37 °C in DMEM along
with 10% FBS. The next day, cells were transfected with 50 pmol control, MCTP2
or Seipin siRNA using DharmaFECT transfection reagent according to the man-
ufacturer’s instructions. 40 h posttransfection, cells were used for real-time quan-
titative PCR or live-cell imaging.

Total RNA was isolated from control, MCTP2, Seipin, and both MCTP2 and
Seipin siRNA–treated Hela cells using PureLink RNA Mini kit (Ambion) according
to the manufacturer’s instructions. cDNA was synthesized from 1.5 μg total RNA
with qScript cDNA SuperMix (Quanta Biosciences) in 20 μl reaction volume
according to the enzyme supplier’s instructions. Quantitative real-time PCR was
performed in a 10 μl reaction mixture containing 1 μl cDNA, primers, and SYBR
Green mix (FastStart Universal, Roche). The sequences of primers used are,
GAPDH (5’ CTTCGCTCTCTGCTCCTCCTGTTCG 3′, 5′ ACCAGGCGCCCAAT
ACGACCAAAT 3′) MCTP2 (5′ CCAGTGGGAATCCACATTAAGA, TGTACC
GCAGTGGAATGAAATA 3′), Seipin (5′ TTCCTCTATGGCTCCTTCTACT 3′, 5′
GACCAAGAACATGCCCAAATC 3′). The enzyme was activated at 95 °C for 20 s.
After activation, the reaction mixture was amplified for 40 cycles under the
following conditions: denaturing for 1 s at 95 °C and annealing and extension for
20 s at 60 °C. Real-time PCR analysis was done on Real-Time PCR system (Applied
Biosystems). Gene expression was normalized to that of GAPDH and data are
presented as the “fold change” relative to the corresponding siRNA for control,
MCTP2 and Seipin according to the 2-ΔΔCT (change in cycling threshold)
method.

BODIPY staining in yeasts, HeLa cells, and C. elegans. When staining LDs with
BODIPY, yeasts cells in early stationary growth phase were washed with phosphate
buffered saline and incubated with 0.5 μg/ml BODIPY 493/503 (Invitrogen) for 10
min.

To induce LDs, Hela cells were incubated with 300 μM BSA-oleic acid (Sigma #
O3008) for 14–18 h, stained with 5 μg/ml BODIPY for two h and washed with PBS.
Cells were shifted to CO2-independent medium (Gibco) containing 10% FBS and 2
mM L-glutamine before live-cell imaging.

Worms were age matched to 23 h post-L4 stage, 10–15 worms were incubated
in BODIPY493/503 (Invitrogen) at 6.7 ug/mL in M9 Buffer for 20 min, followed by
3 wash cycles in M9 Buffer. They were immediately mounted in M9 Buffer for
confocal imaging on a Nikon (Garden City, NY) E800 spinning disk confocal
microscope using MetaMorph imaging software.

LD quantification. The Z-stacks images of LDs in Hela cells were collapsed using
maximum projection. The LD diameter (μm) was measured using “measure dis-
tance” tool (Softworx, Applied Precision Ltd.). In C. elegans, imaging experiments
were repeated a minimum of three times. Using FIJI, Z-stacks were selected to
cover most of the worm intestine and collapsed by maximum signal projection The
intestine was cropped out of these images and subjected to a Macro that sets a
threshold for the image at 70 intensity units using the “MaxEntropy” setting, makes
the image binary, performs a watershed calculation to isolate overlapping signals,
and then uses the “Analyze Particle” function to count and measure individual
signals (bounds: size 20-Infinity pixels2, circularity 0.2–1.0). All the values were
recorded using Microsoft Excel and analyzed in Prism 7.0a.

Fluorescence microscopy. For Fig. 3, Fig. 5c, and Supplementary Fig. 3, cells were
imaged live in growth media using a BX61 microscope (Olympus) with a UPla-
nAPO Å~100/1.35 lens and a Retiga EX camera (QImaging) and processed using
iVision software (version 4.0.5). For Figs. 1, 2, 4, 5D, 5F, 5G, 6, and 7 and Sup-
plementary Figs. 1, 5, and 6, imaging was performed at 30 °C in an Environmental
Chamber with a DeltaVision Spectris (Applied Precision Ltd.) comprising a wide-
field inverted epifluorescence microscope (IX70; Olympus), a 100 Å~ NA 1.4 oil
immersion objective (UPlanSAPO; Olympus), and a charge-coupled device Cool-
Snap HQ camera (Photometrics). For COS7 cells imaging, cells were cultured in
MatTek 35 mm petri dish, 14 mm microwell, No. 1.5 coverglass, (0.16–0.19 mm).
Cells were transfected with indicated plasmids using Lipofectamine 2000

(Invitrogen) according to the manufacturer’s instructions. Time-lapse images were
acquired every 60 s for 10 min for Supplementary Fig. 2 and every 12 s for 2.5 min
for Supplementary Fig. 3. Images were deconvolved (conserved ratio method) and
Pearson’s coefficient was measured using SoftWorx (Applied Precision Ltd.).
Brightness and contrast were adjusted using Photoshop CC (Adobe Systems).

Electron microscopy (EM). Yeast cells were grown to mid-logarithmic growth
phase, and 10 OD600 units of cells were pelleted and fixed in 1 ml of fixative media
(2.5% glutaraldehyde, 1.25% PFA, and 40 mM potassium phosphate, pH 7.0) for
20 min at room temperature. Cells were pelleted, resuspended in 1 ml fresh fixative
media, and incubated on ice for 1 h. The cells were pelleted, washed twice with
0.9% NaCl, once with water, incubated with 2% KMnO4 for 5 min at room tem-
perature, centrifuged, and resuspended in 2% KMmO4 for 45 min at room tem-
perature for en-bloc staining48. The cells were dehydrated using ethanol, embedded
using Spurr’s resin (Electron Microscopy Sciences), and polymerized. Semi- and
ultrathin sections were produced with a diamond knife (DiATO ME) on an ultra-
microtome (Ultracut UCT; Leica Biosystems), collected on 200 mesh copper grids
(Electron Microscopy Sciences), poststained with uranyl acetate and lead citrate,
and visualized with a Tecnai T12 transmission electron microscope (FEI), oper-
ating at 120 kV. Pictures were recorded on a bottom-mounted 2k Å~ 2k CCD
camera (Gatan). Brightness and contrast were adjusted to the entire images using
Photoshop (version CC 2014).

Neutral lipids detection. To measure the rate of neutral lipid synthesis, strains
were grown to 1 OD600 per ml, 10 μCi/ml [3H] acetate (American Radiolabeled
Chemicals) was added. Cells (10 OD600 units) were harvested at indicated times. To
measure the neutral lipids at steady state, 10 OD600 units of cells were harvested at
early stationary growth phase in SC glucose containing 10 μCi/ml [3H] acetate. To
extract neutral lipids, cells were lysed using a Precellys24 homogenizer, and lipids
were extracted49. To quantitate TAG and SE, the lipids were spotted onto silica gel
60 TLC plates (EMD Millipore) and developed with hexane-diethylether-acetic
acid (80:20:1). Lipids on TLC plates were quantified with a RITA Star Thin Layer
Analyzer (Raytest).

Dga1-GFP localization assay. Cells expressing Dga1-GFP from the DGA1 pro-
moter in the centromeric plasmid YCplac111 were grown in SC. These cells were
diluted in fresh medium and incubated for 24 h followed by dilution to 0.3 OD600

units/ml. These cells were then imaged at the indicated times to determine the
localization of Dga1-GFP.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its supplementary information files.
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