
Hierarchies of Protein Cross-linking in the Extracellular Matrix: 
Involvement of an Egg Surface Transglutaminase in 
Early Stages of Fertilization Envelope Assembly 
David E. Bat tagl ia  and  Bennet t  M. Shapiro 

Department of Biochemistry, University of Washington, Seattle, Washington 98195 

Abstract. The involvement of transglutaminase activ- 
ity in fertilization envelope (FE) formation was inves- 
tigated using eggs from the sea urchin, Strongylocen- 
trotus purpuratus. Eggs fertilized in the presence of 
the transglutaminase inhibitors, putrescine and cadav- 
erine, had disorganized and expanded FEs with inhibi- 
tion of the characteristic I-T transition. The perme- 
ability of the FE was increased by these agents, as 
revealed by the loss of proteins from the perivitelline 
space and the appearance of ovoperoxidase activity in 
supernates from putrescine-treated eggs. [3H]putrescine 
was incorporated into the FE during fertilization in a 
reaction catalyzed by an egg surface transglutaminase 
that could also use dimethylcasein as a substrate in 

vitelline layer-denuded eggs. Egg secretory products 
alone had no transglutaminase activity. The cell sur- 
face transglutaminase activity was transient and maxi- 
mal within 4 min of activation. The enzyme was Ca 2÷ 
dependent and was inhibited by Zn 2+. We conclude 
that sea urchin egg surface transglutaminase catalyzes 
an early step in a hierarchy of cross-linking events 
during FE assembly, one that occurs before ovoperoxi- 
dase-mediated dityrosine formation (Foerder, C. A., 
and B. M. Shapiro. 1977. Proc. Natl. Acad. Sci. USA. 
74:4214--4218). Thus it provides a graphic example of 
the physiological function of a cell surface transglu- 
taminase. 

T 
hE assembly of the sea urchin fertilization envelope 
(FE) z provides a powerful system for analysis of the 
modulation of extracellular matrix (ECM) modifica- 

tions. The process of FE assembly is temporally and spatially 
well controlled. Assembly is initiated by a Ca2+-dependent 
wave of exocytosis from egg cortical vesicles that results in 
the stoichiometric and catalytic conversion of a thin, tightly 
apposed egg glycocalyx, the vitelline layer (VL), to an 
elevated, highly cross-linked, and insoluble fertilization 
envelope (reviewed in Kay and Shapiro, 1985). The sequence 
of events that participate in this process has been partially 
defined biochemically and morphologically including: (a) 
the cleavage of VL attachments to the plasma membrane 
which permits its elevation from the egg surface (Carroll and 
Epel, 1975a); (b) structural rearrangement of the fibrous VL 
network into a trilaminar ECM by the incorporation of mole- 
cules released from cortical vesicles into the VL scaffold 
(Chandler and Heuser, 1980; Chandler and Kazilek, 1986); 
and (c) the ovoperoxidase-catalyzed covalent cross-linking of 
proteoliaisin and other components into the assembled FE 
(Foerder and Shapiro, 1977; Kay and Shapiro, 1987; Weid- 
man et al., 1985; Weidman and Shapiro, 1987). These events 

1. Abbreviations used in this paper: ATA, aminotriazole; ECM, extracellu- 
lar matrix; FE, fertilization envelope; FSW, filtered sea water; TEM, trans- 
mission electron microscopy; VL, vitelline layer. 

construct the hardened, impermeable structure that protects 
the embryo well into the blastula stage of development. 

This assembly sequence has been clarified by recent mo- 
lecular insights which have contributed substantially to the 
classical observations of FE formation. However, certain 
older observations about FE assembly have remained unex- 
plained by the above paradigm. For example, in the early as- 
sembly phase, there is a morphological transition of the 
microvillar casts in the FE from igloo ("I" form) to tent ("T" 
form) structures (Veron et al., 1977), the reason for which 
is unexplained in molecular terms. Additionally, Lallier 
(1970, 1971) discovered that glycine ethyl ester and other pri- 
mary amines inhibit the apparent thickening and hardening 
of the FE. Since primary amines are effective competitive in- 
hibitors of transglutaminases (Lorand et al., 1979), these 
early studies suggested that transglutaminases might be in- 
volved in fertilization envelope assembly. Although the pres- 
ence of intracellular transglutaminase has been confirmed in 
the sea urchin egg (Cariello et al., 1984), no evidence di- 
rectly implicates transglutaminase in a specific step of FE 
assembly. 

Transglutaminases are thought to play several roles in biol- 
ogy, with substantial evidence in only a few examples. The 
best studied, that of the fibrin clot, involves the transamida- 
tive cross-linking of fibrinogen by secreted factor XIII 
(Lorand, 1972). Similarly, a transglutaminase released from 
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damaged amebocytes is responsible for the coagulation of 
blood plasma in the lobster (Lorand et al., 1963; Fuller and 
Doolittle, 1971). The formation of the copulation plug in the 
guinea pig also depends upon transglutaminase activity 
(Williams-Ashman et al., 1972). Recently, the identification 
of a cell surface transglutaminase in mammalian hepatocytes 
(Slife et al., 1985; Tyrrell et al., 1986) and lung matrices 
(Cocuzzi and Chung, 1986) has led to speculation regarding 
its potential influence on the pericellular environment of 
these systems. However, both the overall biological signifi- 
cance and the specific targets for these cellular enzymes re- 
main obscure. 

To explore the association of transglutaminase in ECM 
modification, we have pursued the initial observations of 
Lallier (1970) and Lorand and Conrad (1984). Here we re- 
port that an egg surface transglutaminase is transiently acti- 
vated at fertilization to catalyze specific structural changes 
in the nascent FE. As such, it acts as an early cross-linking 
event that modulates subsequent FE assembly. Thus, a well- 
coordinated hierarchy of cross-linking events appears to be 
responsible for the efficient assembly of a specialized ECM, 
the FE. 

Materials and Methods 

Gamete Preparation 
Gametes from Strongylocentrotus purpuratus were obtained from mature 
animals collected in the intertidal regions of the Olympic Peninsula, WA. 
Artificial spawning was induced by intracoelomic injection of 0.5 M KCt; 
eggs were collected in filtered sea water (FSW) (Millipore/Continental Wa- 
ter Systems, Bedford, MA) and sperm were collected dry. Spawning was 
allowed to proceed for 1 h after which time the eggs were passed through 
three layers of cheesecloth and dejellied by lowering the pH of the FSW to 
5.5 with gentle stirring for 4 min. The eggs were then washed in several 
changes of fresh FSW, pH 7.8. Gametes were maintained at 10°C at all 
times. 

Transglutaminase Inhibitors and Fertilization 
Envelope Formation 
The effects of the primary amines, pntrescine, cadaverine and glycine ethyl 
ester (Sigma Chemical Co., St. Louis, MO), on the assembly of the fertil- 
ization envelope were examined at the levels of light and electron micros- 
copy. These compounds are potent competitive inhibitors of transglutami- 
nase activity (Lorand et al., 1979). In some experiments the ovoperoxidase 
inhibitor, aminotriazole (ATA; 2 mM) was also included. Control experi- 
ments lacked primary amines or contained the secondary amine, sarcosine 
ethyl ester (Sigma Chemical Co.). 

The ability of the FE to expand from the egg surface was examined by 
light microscopy. Aliquots of eggs were fertilized in 50 mM Tris-FSW, pH 
8.0 containing either putrescine, cadaverine, sarcosine ethyl ester, and/or 
ATA. At 15-min postinsemination aliquots of these suspensions were trans- 
ferred to a temperature-controlled microscope stage (10°C) and the diameter 
of the FE was measured using phase optics and an optical micrometer. At 
least 50 eggs were examined for each sample; each experiment was carried 
out in triplicate with eggs from each of four different females. Photographs 
were obtained using bright field optics and Kodak Plus-X film. 

For scanning electron microscopy, aliquots of the inseminated eggs were 
fixed in 2 % glutaraldehyde (EM grade; Polysciences, Inc., Warrington, PA) 
in FSW containing 50 mM Tris for 1 h at 10°C. They were subsequently 
washed four times in FSW and postfixed for 1 h at room temperature in 1% 
OsO4 in FSW containing 50 mM eacodylate, pH 7.4. Fixed eggs were 
washed three times in distilled H20 and dehydrated in an ascending series 
of EtOH to 100%. After dehydration, they were transferred to envelopes 
made of 53 gM Nitex cloth (Tetko, Inc., Elmsford, NY) and infiltrated with 
Freon 112 (E. I. Du Pont de Nemours & Co., Inc., Antioch, CA) and criti- 
cal point dried in a Bomar CPD (The Bomar Co., Tacoma, WA). The eggs 
were then applied to SEM stubs covered with double sticky tape, coated 

with gold/palladium, examined in an ETEC Autoscan (ETEC Corp., Hay- 
ward, CA), and photographed on Polaroid type 52 EM film. 

For transmission electron microscopy (TEM), the eggs were fixed and 
dehydrated as described for scanning electron microscopy. However, they 
were subsequently washed in two changes of 100% propylene oxide and 
infiltrated at room temperature with Araldite 502 (Ted Pella, Inc., Irvine, 
CA) for 12 h. They were then embedded in EM molds (Ted Pella, Inc.) in 
fresh Araldite 502 at 60°C for 48 h. Ultrathin sections were obtained with 
a diamond knife (DuPont Co., Wilmington, DE) on a ultramicrotome 
(model MT3B; Sorvall Instruments Div., E. I. DuPont de Nemours & Co., 
Inc., Newtown, CT) and affixed to 200 mesh copper grids. Sections were 
examined on a Phillips 201 TEM and photographed on Kodak EM film. 

Egg Surface Transglutaminase Assay 
The incorporation of [3H]putrescine (30 Ci/mmol; Amersham Corp., 
Arlington Heights, IL) into the FE was measured at 10°C using small 
volumes of eggs (1-3 ml) inseminated in FSW containing 50 mM Tris and 
2 mM ATA. At 15-min postinsemination, 40 mM nonradioactive putrescine 
was added to all samples and the eggs were subjected to five passes through 
an homogenizer (Wheaton Industries, Millville, NJ) with a glass piston to 
remove the FEs. No egg lysis occurred under these conditions and 80% of 
the eggs were denuded of their FE. The eggs settled (1 g) for 5 min, after 
which the supernate containing the FEs was collected. The supernate was 
centrifuged at 500 g for 1 min and the FE pellets were resuspended in 5 
ml of FSW containing 50 mM Tris and 40 mM cold putrescine. A similar 
wash protocol was repeated 10 times, after which aliquots of the FEs were 
examined for radioactivity in a beta counter (model LS 1801; Beckman In- 
struments, Inc., Palo Alto, CA). 

Since it was impractical to obtain large quantities of radiolabeled FEs, 
N,N-dimethylcasein (Sigma Chemical Co.) was used as an artificial sub- 
strate for measurement of egg surface transglutaminase activity. For these 
experiments, unfertilized eggs were denuded of their vitelline layers in 10 
mM dithiothreitol-FSW for 7 min and washed six times in 100 vol of fresh 
FSW. A 20% suspension of the denuded eggs was activated with acetic acid 
(see Weidman and Kay, 1986). Immediately after activation, aliquots of the 
eggs were resuspended 1:1 in FSW containing 50 mM Tris (pH 7.8), 1.0 mg/ 
ml dimethylcasein, 2 mM ATA, and varying concentrations of [3H]pntres- 
cine at 10°C. At intervals after this resuspension, nonradioactive putrescine 
was added to 40 mM, and egg supernates were collected and precipitated 
by 20% cold TCA for 30 min on ice. The pellets were resuspended, washed 
eight times in 10% TCA with centrifugation, one time in 95% cold EtOH, 
and then solubilized in 0.1 N NaOH, and assayed for radioactivity. Protein 
concentrations were assayed by the Lowry (Lowry et al., 1951) or BCA 
procedures (Smith et al., 1985). 

Primary Amine-induced Release of FE or 
Perivitelline Space Proteins 
To ascertain whether the insertion of specific proteins into the FE or 
periviteUine space was altered by primary amines, we assayed for the pres- 
ence of ovoperoxidase in the supernate of fertilized eggs. Suspensions of un- 
fertilized eggs were inseminated in FSW containing varying quantities of 
putrescine and allowed to settle for 15 rain, after which aliquots of the super- 
nates were collected. Supernates were only collected from suspensions in 
which 100% fertilization was achieved. To the supernate was added soybean 
trypsin inhibitor (10 ~tg/rnl; Sigma Chemical Co.) and it was centrifuged 
at 15,000 g for 1 min to remove sperm. Ovoperoxidase activity was assayed 
using the guaiacol assay for peroxidase (Foerder and Shapiro, 1977) and a 
spectrophotometer (model DU-7; Beckman Instruments, Inc.). To deter- 
mine the total quantity of ovoperoxidase that is released during cortical exo- 
cytosis, the supernates from activated, VL-denuded eggs were assayed for 
ovoperoxidase in the same manner. As a control, the effect of up to 40 mM 
putrescine on ovoperoxidase activity in these supernates was also analyzed. 
To correlate the quantity of ovoperoxidase released from the VL-denuded 
and intact egg suspensions, the quantity of eggs in suspension was deter- 
mined for each experiment. 

Results 

Morphological Effects of Primary Amines 
The fully assembled FE has several characteristics as viewed 
by light microscopy. It expands to an average diameter of 106 
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Figure L Bright field micrographs of eggs photographed 15 min after insemination in buffered sea water (a) and in buffered sea water 
containing 40 mM putrescine (b). The structure of the fertilization envelopes (arrow) differ greatly; the normal FE is highly refractile 
and appears to be '~5 gm thick, while the putrescine-treated FE is less refractile and has expanded further from the egg surface than normal. 
Note that the putrescine-treated egg occupies an eccentric location within the perivitelline space, unlike normal eggs which are centrally 
located. The hyaline layers (arrowhead) are visible on both eggs, with this layer forming a cast over the site formerly occupied by the 
fertilization cone at the 11 o'clock position in b. Bar, 8 Ixm. 

~tm (with an approximate surface area of  3.54 x 104 i.tm2), 
thereby creating a perivitelline space 29 ~tm deep. Because 
of  its refractile properties, the FE appears to be 4-5  lxm thick 
in the light microscope (Fig. 1 a). FEs formed in the pres- 
ence of ATA have similar characteristics. However, FEs 
formed in the presence of  exogenous primary amines, such 
as putrescine or cadaverine, expanded to a significantly 
greater extent, reaching a maximal diameter of 122 I~m (with 
an approximate surface area of  4.65 x 104 ~tm 2) in the pres- 
ence of  40 mM putrescine (Fig. 2). This effect was slightly 
more pronounced in the presence of  the ovoperoxidase inhib- 
itor, ATA. In addition, the refractility of  these FEs was al- 
tered, so that they appeared to be thinner than control FEs 
(Fig. 1 b). This refractile difference may be an optical effect 
and not reflect an actual thinning of  the FE matrix since it 
appears to be of similar thickness by TEM (e.g., Fig. 4). It 
was also observed that the primary amine-treated eggs 
resided in an eccentric location within the perivitelline 
space, in contrast to controls where the eggs were centrally 
located (Fig. 1). Putrescine or cadaverine had identical 
effects on postfertilization morphology, whereas sarcosine 
ethyl ester-treated eggs looked like the controls. The lowest 
concentration of  putrescine at which an effect was observed 
was 5 mM. 

Ultrastructurally, the FE of S. purpuratus possesses some 
distinct characteristics. We examined the "I" to "T" transition 
of  eggs via SEM, an event that occurs in control eggs within 
2 min of  insemination (Fig. 3 a). Eggs inseminated in the 
presence of  ATA (2 mM) also underwent this process (Fig. 
3 b). However, eggs inseminated in the presence of putres- 
cine or cadaverine failed to accomplish the I - T  transition: 

50 

' 8  

o 42 

38 

3 
o ; ;o 2b 20 a'o 

Putrescine (raM) 

Figure 2. Measurement of the extensibility of the FE as a function 
of putrescine concentration. FE diameters were measured at 15 min 
postinsemination using bright field optics (see Materials and 
Methods) and the approximate surface areas were calculated. The 
surface area of the FE increased under the influence of putrescine 
alone (solid circles) with maximal expansion occurring at 40 mM. 
FEs formed in the presence of putrescine and 2 mM aminotdazole 
(open circles) were slightly larger, but also achieved maximal ex- 
pansion at 40 mM putrescine. 
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Figure 3. Scanning electron micrographs of FE surfaces exhibiting varying morphology of the mierovillar casts. (a) An FE at l-min postin- 
semination. Note the transition of cast morphology from I form (double arrow) to T form (double arrowhead) in a process that is normally 
completed over the entire surface of the FE within 2-min postinsemination. (b) An FE assembled in the presence of ATA (2 mM) and 
fixed 15-min postinsemination. The I-T transition is not prevented by this ovoperoxidase inhibitor. (c and d) FEs assembled in the presence 
of 40 mM putrescine and obtained 15-min postinsemination. In the presence of putrescine, the I-T transition is completely inhibited, I 
form morphology is permanently maintained. Note that the distribution of microvillar casts varies from areas of normal density (c) to regions 
of very high density of casts (d). Bar, 1.0 I~m. 

I-form morphology was maintained (Fig. 3 c), even if they 
were examined up to 20 min after insemination. Moreover, 
FEs formed in the presence of primary amines had a hetero- 
geneous distribution of I-form casts, with areas of low and 
high density (compare Figs. 3, c and d). In control eggs, the 
I- (or T)-form casts were homogeneously distributed. Sarco- 
sine ethyl ester had no effect on FE morphology. 

By TEM, several characteristics of FE assembly were ob- 
served to be altered in the presence of putrescine, in addition 

to the inhibition of the I-T transition (Fig. 4). The ordered 
structure of the normal FE matrix (Fig. 4 a) was disrupted 
in eggs fertilized in the presence of exogenous primary amine 
(Fig. 4 b), although FE thickness was approximately the 
same as that of control eggs. The perivitelline space of con- 
trol eggs contains a high concentration of flocculant material, 
probably protein, that can be observed by TEM (Fig. 4 a); 
this material was almost completely absent in putrescine- 
treated eggs (Fig. 4 b). 
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Figure 4. Transmission electron micrographs of a normal FE (a) and an FE assembled in the presence of 40 mM putrescine (b) fixed at 
15-min postinsemination. (a) The normal FE (arrow) exhibits T form morphology and its matrix is highly ordered. The periviteUine space 
(P) has collapsed in size due to preparation for TEM (compare with Fig. 1), but contains a high density of ttocculant material, probably 
proteins from the cortical vesicle secretion. The region beneath the perivitelline space is the hyaline layer (H) where sections of egg 
microvilli can be seen (arrowhead). (b) The FE assembled in the presence of 40 mM putrescine (arrow) retains I form morphology and 
its matrix appears to be disorganized, but it is approximately the same thickness as the normal FE. Note that the perivitelline space (P) 
is practically devoid of the dense, flocculant material. The hyaline layer (H) and sections of microvilli (arrowhead) can be observed beneath 
the perivitelline space. Bar, 0.1 Jam. 

Ovoperoxidase Release from Transglutaminase- 
inhibited FEs 
To examine whether specific proteins, normally present in 
the fertilization envelope or perivitelline space, were 
released from FEs assembled in the presence of primary 
amines, we assayed for ovoperoxidase activity in supernates 

from fertilized eggs. We discovered that, after normal activa- 
tion, , ',45-17% of the total ovoperoxidase that is secreted 
during the cortical reaction passes through the assembling 
FE into the surrounding seawater (as compared to its release 
from VL-denuded eggs). Transglutaminase inhibitors led to 
an augmented release of  ovoperoxidase. For example, an in- 
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Figure 5. The supernates from eggs fertilized in the presence of in- 
creasing concentrations of putrescine were assayed for the presence 
of ovoperoxidase activity (see Materials and Methods). This activ- 
ity was compared to the quantity released from activated, VL- 
denuded eggs, which was assumed to represent the maximal ovo- 
peroxidase release possible with these eggs. Values are given as a 
percentage of maximal ovoperoxidase release. 

creasing amount of ovoperoxidase was found in the sur- 
rounding seawater as a function of increasing concentrations 
of putrescine, with up to ,~40--45 % of the total ovoperoxi- 
dase from the FE and perivitelline space being released (Fig. 
5). This interference with normal ovoperoxidase localization 
occurred over the same concentration range as the increase 
in envelope surface area, with an effect first being found at 
5 mM putrescine. In addition to ovoperoxidase release, 
numerous other proteins, probably from the perivitelline 
space, also appeared in the supernate of putrescine-treated 
eggs as confirmed by SDS-PAGE (data not shown). 

Egg Surface Transglutaminase Activity 
Putrescine was incorporated into the FE when eggs were in- 
seminated in the presence of [3H]putrescine (Fig. 6). At the 
low concentrations shown, which are far below the K~ for 
putrescine (see below), the incorporation was linear. This in- 
corporation was diminished by excess cold putrescine, but 
not by sarcosine ethyl ester. It was impractical to collect large 
quantities of radiolabeled FEs with which to examine charac- 
teristics of the enzyme involved in putrescine incorporation. 
Hence, we relied upon the use of VL-denuded eggs for this 
purpose, as described in Materials and Methods. 

By activating VL-denuded eggs in FSW containing di- 
methylcasein we were able to observe the incorporation of 
[3H]putrescine into the exogenous acceptor protein (Table 
I). We observed that unactivated eggs possessed low activity 
which increased up to fourfold after activation. The egg it- 
self, and not its secretory products, was responsible for 
[3H]putrescine incorporation into casein; no incorporation 
was seen by incubation of egg cortical vesicle secretion prod- 
uct (see Materials and Methods) in casein-containing FSW. 
The incorporation of [3H]putrescine was inhibited by excess 
unlabeled putrescine or cadaverine, low levels of Zn 2+, and 
was Ca 2+ dependent (Table I). Sarcosine ethyl ester was 
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Figure 6. Incorporation of [3H]putrescine into the FE during fer- 
tilization. Eggs were fertilized in the presence of [3H]putrescine 
and 2 mM aminotriazole. At 15-min postinsemination the FEs were 
stripped from the eggs, extensively washed, and assayed for radio- 
activity. 

ineffective as an inhibitor of this reaction. The apparent Km 
for putrescine in this assay was 12 ~tM. 

The above data strongly suggested the presence of an egg 
surface transglutaminase. To explore the kinetics of its activ- 
ity after egg activation, we artificially activated eggs and 
measured [3H]putrescine incorporation into casein as a 
function of time. As shown in Fig. 7, the low transgluta- 
minase activity seen with unactivated eggs increased twofold 
at ,x,1 min after activation, and reached a maximum at "~4 
min, after which it gradually decreased to the unactivated 
level. This transient activation of transglutaminase occurred 
concomitantly with cortical vesicle exocytosis, i.e., at the 
time the vitelline layer would be detaching from the plasma 
membrane of eggs under physiological conditions. 

Discussion 

The above data indicate that an egg surface transglutaminase 
participates in an early event of fertilization envelope assem- 

Table I. Cell Surface Transglutaminase Activity of 
VL-denuded Eggs 

Transglutaminase activity 
Preparation (nmol 13H]putrescine/g casein) 

Activated eggs 
Complete FSW 1.60 
Ca2+-free FSW 0.01 
FSW + 50 ~M Zn 2+ 0.01 
FSW + 200 m M  PUTR 0.01 
FSW + 200 mM SEE 1.50 

Unactivated eggs 0.40 

Egg secretory products 0.15 

The incorporation of [aH]putrescine into casein was mediated by VL-denuded 
eggs under varying conditions. Activated or unactivated VL-denuded eggs, or 
egg secretory products were suspended for 5 rain in normal or Ca2+-free FSW 
containing N,N-dimethylcasein (0.5 mg/ml), [3H]putrescine, and other re- 
agents as listed. The supemates were isolated and assayed for TCA- 
precipitable radioactivity. PUTR, nonradioactive putrescine; SEE, sarcosine 
ethyl ester. 
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Incorporation of [3H]putrescine incorporation into 
dimethyl casein as a function of time as promoted by activated, VL- 
denuded eggs. Denuded eggs were suspended in dimethylcasein and 
[3H]putreseine containing sea water at varying intervals after acti- 
vation. After 2 min of incubation, supernates from the suspensions 
were obtained and assayed for TCA-precipitable radioactivity. Ac- 
tivity was measured in terms of the amount of [3H]putrescine in- 
corporated per gram casein. 

bly. We have shown that the FE is abnormally expanded 
when it is assembled in the presence of transglutaminase in- 
hibitors. These inhibitors block the I-T transition and lead 
to an asymmetric distribution of microvillar casts on the fer- 
tilization envelope. Transglutaminase-inhibited FEs have an 
altered laminar appearance and permit leakage of proteins, 
including ovoperoxidase, from the perivitelline space. In ad- 
dition, the transglutaminase substrate, putrescine, is incor- 
porated into elevating fertilization envelopes during fertiliza- 
tion. The activity of the responsible enzyme appears to be 
transiently increased, with maximal levels occurring within 
4 min after egg activation. 

Transglutaminases are Ca 2÷ dependent (Lorand and Con- 
rad, 1984) and inhibited by specific exogenous primary 
amines (Lorand et al., 1979) or very low concentrations of 
Zn ~÷ (Lorand and Conrad, 1984). The egg surface enzyme 
has all of these characteristics. Hence, these data lend strong 
support to the hypothesis of Lallier (1970, 1971) that normal 
fertilization envelope assembly is dependent upon transglu- 
taminase activity. A cytosolic transglutaminase has been 
shown to be activated in the sea urchin egg after fertilization 
(Cariello et al., 1984), but its potential relationship to FE 
formation was not discussed. Indeed, the cytosolic enzyme 
may have no relationship to FE assembly, since we have 
found an egg cytosolic transglutaminase with properties dis- 
tinct from those of the egg surface enzyme (Battaglia, D. E., 
unpublished data). Certain previous data, presented only in 
abstract or thesis form (Campbell-Wilkes, 1973), have sug- 
gested that transglutaminase might play a role in fertilization 
envelope formation, however, these data were presented in 
too little detail to compare with the present work. 

The most striking conclusion from our studies is that a hi- 
erarchy of cross-linking events appears to be operative dur- 
ing the FE assembly process. It was previously established 
that the ultimate cross-linking of dityrosine residues by 

ovoperoxidase happens 7-10 min after fertilization (Foerder 
and Shapiro, 1977), whereas the transglutaminase activation 
observed here occurs within the first 4 min. Transglutamin- 
ase is therefore active while the cortical reaction initiates 
vitelline layer elevation and the modifications of this glyco- 
calyx are just beginning. Just after this the VL matrix is dra- 
matically altered via the insertion of paracrystalline materials 
(Chandler and Heuser, 1980) along with the proteoliaisin- 
ovoperoxidase complex (Weidman et al., 1985; Weidman and 
Shapiro, 1987). If transglutaminase activity is interfered 
with, subsequent steps proceed less effectively, as evidenced 
by the ultrastructural appearance of the FE and the abnormal 
release of ovoperoxidase and other proteins into the sur- 
rounding medium. The inhibitory effects of primary amines 
can not be due to an effect on ovoperoxidase, because 
ovoperoxidase activity is not inhibited by 40 mM putrescine. 
Moreover, the phenomena described above were seen even 
in the presence of the ovoperoxidase inhibitor, aminotri- 
azole. 

The timing of transglutaminase activity probably explains 
the hyperextension of the FE and its associated structural ab- 
normalities in the presence of primary amines. Elevation and 
expansion of the VL matrix from the egg surface is induced 
by the osmotic pressure created by the secretion of cortical 
vesicle contents into the perivitelline space (Loeb, 1908; 
Hiramoto, 1955c) concomitant with the cleavage of its at- 
tachment sites to the plasma membrane by a cortical protease 
(Carroll and Epel, 1975a, b; Alliegro and Schuel, 1988). 
The egg then becomes suspended by the colloid-like nature 
of the fluids in the perivitelline space (Hiramoto, 1955a, b). 
Inhibition of transglutaminase activity could permit VL ex- 
pansion to exceed normal limits. This effect, most marked 
in certain zones, could cause the asymmetric distribution of 
microvillar casts on the FE (e.g., Fig. 1, c and d), abnormal 
insertion of secreted proteins into its matrix, its excessive 
permeability to perivitelline proteins, and the eccentric loca- 
tion of the egg within the perivitelline space. 

The Km for [3H]putrescine incorporation into casein by 
VL-denuded eggs is two to three orders of magnitude lower 
than that required for the induction of hyperextensibility of 
the matrix (Fig. 2) or leakage of ovoperoxidase (Fig. 5). A 
reasonable explanation for this difference is that the gly- 
cocalyx substrates are intimately positioned near the activated 
transglutaminase; thus, exogenous inhibitors could be needed 
at extremely high concentrations to match the effective con- 
centrations of the endogenous substrate in the VL. 

The transient nature of transglutaminase activity suggests 
several possibilities for its control. By analogy to blood 
coagulation factor XIII (Lorand, 1972), the activation mech- 
anism may be proteolytic in nature, since proteases are in- 
cluded in the cortical granule contents (Carroll and Epel, 
1975b; Alliegro and Schuel, 1988). Alternatively, since it is 
known that the egg surface greatly increases in surface area 
during cortical exocytosis, followed by internalization of 
significant portions of the plasma membrane within 5 rain af- 
ter activation (Schroeder, 1979), management of plasma 
membrane domains may control its presentation to its sub- 
strate. These points will be better addressed with subcellular 
systems and isolated enzyme preparations. 

Evidence for other cell surface transglutaminases, possi- 
bly integral or peripheral membrane proteins, has been 
provided in mammalian hepatocytes (Tyrrell et al., 1986) 
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and pulmonary tissue (Cocuzzi and Chung, 1986), although 
recent evidence suggests that their surface localization may 
be an artifact of the cell homogenization procedures that 
were used to localize the enzymes (Juprelle-Soret et al., 
1988). Our studies with intact eggs do not suffer from this 
difficulty. Investigations on cell surface transglutaminases 
are directed towards the possibility that they may be involved 
in intercellular adhesion or modification of fibrous extracel- 
lular matrices. Such a role is shown here directly in the sea 
urchin egg which possesses one of the few cell surface trans- 
glutaminases with a known biological function. We believe 
that egg surface transglutaminase activity represents the ini- 
tial stage in a hierarchy of cross-linking activity that is inte- 
gral to the modification of an extracellular matrix, the fertil- 
ization envelope. 

We thank Dr. Karen Holbrook and the Department of Biological Structure 
for generously providing assistance and equipment for the electron micros- 
copy portion of this study. 

This work was supported by grunts GM 23910 and HD 06967 from the 
National Institutes of Health. 

Received for publication 6 June 1988, and in revised form 17 August 1988. 

References 

Alliegro, M. C., and H. Schuel. 1988. Immunocytochemical localization of the 
35-kDa sea urchin egg trypsin-like protease and its effects upon the egg sur- 
face. Dev. Biol. 125:168-180. 

Campbell-Wilkes, L. K. 1973. Calcium-dependent transamidating enzymes and 
their involvement in protein assembly. Development of new methods of 
study and the application of these methods to various transamidases with the 
goal of elucidating physiological function. Ph.D. thesis. Northwestern 
University. Evanston, IL. 1-291. 

Cariello, L., J. Wilson, and L. Lorand. 1984. Activation of transglutaminase 
during embryonic development. Biochemistry. 23:6843-6850. 

Carroll, E. J., and D. Epel. 1975a. Elevation and hardening of the fertilization 
membrane in sea urchin eggs: role of the soluble fertilization product. Exp. 
Cell Res. 90:429--432. 

Carroll, E. J., and D. Epcl. 1975b. Isolation and biological activity of the pro- 
teases released by sea urchin eggs following fertilization. Dev. Biol. 44:22- 
32. 

Chandler, D. E., and J. Heuser. 1980. The vitelline layer of the sea urchin egg 
and its modification during fertilization. A freeze fracture study using quick- 
freezing and deep-etching. J. Cell Biol. 84:618-632. 

Chandler, D. E., and C. J. Kazilek. 1986. Extracellular coats on the surface 
of Strongylocentrotuspurpuratus eggs: stereo electron microscopy of quick- 
frozen and deep-etched specimens. Cell Tissue Res. 246:153-161. 

Cocuzzi, E. T., and S. I. Chung. 1986. Cellular transglutaminase. Lung matrix- 
associated transglutaminase: characterization and activation with sulf- 
hydryls. J. Biol. Chem. 261:8122-8127. 

Foerder, C. A., and B. M. Shapiro. 1977. Release of ovoperoxidase from sea 
urchin eggs hardens the fertilization membrane with tyrosine crosslinks. 
Proc. Natl. Acad. Sci. USA. 74:4214-4218. 

Fuller, G. M., and R. F. Doolittle. 1971. Studies of invertebrate fibrinogen. 

II. Transformation of lobster fibrinogen into fibrin. Biochemistry. 10:1311- 
1315. 

Hiramoto, Y. 1955a. Nature of the perivitelline space in sea urchin eggs I. Jap. 
J. Zool. 11:227-243. 

Hiramoto, Y. 1955b. Nature of the perivitteline space in sea urchin eggs I L Jap. 
J. Zool. 11:333-344. 

Hiramoto, Y. 1955c. Nature of the perivitteline space in sea urchin eggs III. 
On the mechanism of membrane elevation. Annot. Zool. Jap. 28:183-193. 

Juprelle-Soret, M., S. Wattiaux-De Coninck, and R. Wattiaux. 1988. Subcellu- 
lar localization of transgtutaminase. Biochem. J. 250:421-427. 

Kay, E. S., and B. M. Shapiro. 1985. The formation of the fertilization mem- 
brane of the sea urchin egg. In Biology of Fertilization. Vol. 3. A. Monroy, 
editor. Academic Press, Inc., NY. 45-80. 

Kay, E. S., and B. M. Shapiro. 1987. Ovoperoxidase assembly into the sea ur- 
chin fertilization envelope and dityrosine crosslinking. Dev. Biol. 121:325- 
334. 

Lallier, R. 1971. Effects of various inhibitors of protein cross-linking on the 
formation of fertilization membrane in the sea urchin. Experientia. 27:1323- 
1324. 

Lallier, R. A. 1970. Formation of fertilization membrane in sea urchin eggs. 
Exp. Cell Res. 63:460--462. 

Loeb, J. 1908. Uber die osmotischen eigenschaften und die entstehung der 
befruchtungsmembran beim seeilgelei. Arch. Entw. Mech. Org. 26:82-88. 

Lorand, L. 1972. Fibrinoligase: the fibrin-stabilizing factor system of blood 
plasma. Ann. NY Acad Sci. 202:6-30. 

Lorand, L., and S. M. Conrad. 1984. Transglutaminases. Mol. Cell. Biochem. 
58:9-35. 

Lorand, L., R. F. Doolittle, K. Konishi, and S. K. Riggs. 1963. A new class 
of blood coagulation inhibitors. Arch. Biochem. Biophys. 102:171-179. 

Lorand, L., K. N. Parameswaran, P. Stenberg, Y. S. Tong, P. T. Velasco, 
N. A. Jonsson, L. Mikiver, and P. Moses. 1979. Specificity of guinea pig 
liver transglutaminase for amine substrates. Biochemistry. 18:1756-1765. 

Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein 
measurement with the folin phenol reagent. J. Biol. Chem. 193:265-275. 

Schroeder, T. E. 1979. Surface area change at fertilization: resorption of the 
mosaic membrane. Dev. Biol. 70:306-326. 

Slife, C. W., M. D. Dorsett, G. T. Bouquett, A. Register, E. Taylor, and S. 
Conroy. 1985. Subcellular localization of a membrane-associated trans- 
glutaminase activity in rat liver. Arch. Biochem. Biophys. 241:329-336. 

Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, 
M. D. Provenzano, E. K. Fujimoti, N. M. Goeke, B. J. Olson, and D. C. 
Klenk. 1985. Measurement of protein using bicinchoninic acid. Anal. Bio- 
chem. 150:76-85. 

Tyrrell, D. J., W. S. Sale, and C. W. Slife. 1986. Localization of a liver trans- 
glutaminase and a large molecular weight transglutaminase substrate to a dis- 
tinct plasma membrane domain. J. Biol. Chem. 261:14833-14836. 

Veron, M., C. Foerder, E. M. Eddy, and B. M. Shapiro. 1977. Sequential bio- 
chemical and morphological events during assembly of the fertilization mem- 
brane of the sea urchin. Cell. 10:321-328. 

Weidman, P. J., and E. S. Kay. 1986. Egg and embryonic extracellular coats: 
isolation and purification. Methods Cell Biol. 27:113-133. 

Weidman, P. J., and B. M. Shapiro. 1987. Regulation of extracellular matrix 
assembly: in vitro reconstruction of a partial fertilization envelope from iso- 
lated components. J. Cell Biol. 105:561-567. 

Weidman, P. J., E. S. Kay, and B. M. Shapiro. 1985. Assembly of the sea ur- 
chin fertilization membrane: isolation of proteoliasin, a calcium-dependent 
ovoperoxidase binding protein. J. Cell Biol. 100:938-946. 

Williams-Ashman, H. G., A. C. Notides, S. S. Pabalan, and L. Lorand. 1972. 
Transamidase reactions involved in the enzymatic coagulation of semen: iso- 
lation of gamma-glutamyl-epsilon-lysine dipeptide from clotted secretion 
protein of guinea pig seminal vesicle. Proc. Natl. Acad. Sci. USA. 69:2322- 
2325. 

The Journal of Cell Biology, Volume 107, 1988 2454 


