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Abstract 

Background: Null Hypothesis Significance Testing (NHST) has been well criticised over the years yet remains a pillar of 
statistical inference. Although NHST is well described in terms of statistical models, most textbooks for non-statisticians 
present the null and alternative hypotheses (H0 and HA, respectively) in terms of differences between groups such as 
(μ1 = μ2) and (μ1 ≠ μ2) and HA is often stated to be the research hypothesis. Here we use propositional calculus to ana-
lyse the internal logic of NHST when couched in this popular terminology. The testable H0 is determined by analysing 
the scope and limits of the P-value and the test statistic’s probability distribution curve.

Results: We propose a minimum axiom set NHST in which it is taken as axiomatic that H0 is rejected if P-value< α. 
Using the common scenario of the comparison of the means of two sample groups as an example, the testable H0 is 
{(μ1 = μ2) and [(x 1 ≠ x 2) due to chance alone]}. The H0 and HA pair should be exhaustive to avoid false dichotomies. 
This entails that HA is ¬{(μ1 = μ2) and [(x 1 ≠ x 2) due to chance alone]}, rather than the research hypothesis (HT). To 
see the relationship between HA and HT, HA can be rewritten as the disjunction HA: ({(μ1 = μ2) ∧ [(x 1 ≠ x 2) not due 
to chance alone]} ∨ {(μ1 ≠ μ2) ∧ [ (x 1 ≠ x 2) not due to (μ1 ≠ μ2) alone]} ∨ {(μ1 ≠ μ2) ∧ [(x  1 ≠ x  2) due to (μ1 ≠ μ2) 
alone]}). This reveals that HT (the last disjunct in bold) is just one possibility within HA. It is only by adding premises to 
NHST that HT or other conclusions can be reached.

Conclusions: Using this popular terminology for NHST, analysis shows that the definitions of H0 and HA differ from 
those found in textbooks. In this framework, achieving a statistically significant result only justifies the broad con-
clusion that the results are not due to chance alone, not that the research hypothesis is true. More transparency is 
needed concerning the premises added to NHST to rig particular conclusions such as HT. There are also ramifications 
for the interpretation of Type I and II errors, as well as power, which do not specifically refer to HT as claimed by texts.

Keywords: Logic, Null hypothesis significance test, Hypothesis testing, Statistical inference, Statistical significance, 
Type I error, Type II error, Power
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Background
Null Hypothesis Significance Testing (NHST1) and the 
Confidence Interval (CI) or estimation method are the 
pillars of statistical inference [1–5]. NHST is perhaps 
the more common of the two for the analysis of research 
questions [6]. In NHST a null hypothesis (H0) is rejected 
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in favour of an alternative hypothesis (HA) only if the 
P-value, P (observed data or more extreme│H0), falls 
below a pre-specified α-level. The latter is the maximum 
probability we are prepared to tolerate of erroneously 
rejecting H0. If the P-value is less than α, then this is called 
a statistically significant result and H0 can be rejected. 
Some familiarity with NHST will be assumed in this 
paper. NHST is a combination of two different statistical 
theories: R. A. Fisher’s P-value significance test, and the 
Neyman-Pearson technique of hypothesis testing. The 
two groups never intended to unite the theories, with 
well-known antagonisms existing between them [7]. How-
ever, NHST gained traction perhaps due to its appeal as a 
mechanical decision tool. Parallel to its popularity is the 
detailed, sharp criticism it has received from several quar-
ters. Problems raised include: the misinterpretation of the 
P-value as P(H0│observed data) rather than P (observed 
data or more extreme│H0); the artificial dichotomous 
nature of statistical significance; and the conflation of sta-
tistical significance with clinical importance [8]. In fact, 
P-values have even been temporarily banned from some 
journals [9]. More recently, the correct level of statistical 
significance (P-value or α cut-off) has again been debated 
[10]. However, rather than cover old ground, we will 
here present a new logical analysis of a popular version 
of NHST presented in textbooks. NHST is perhaps best 
explained in terms of statistical models [11]. However, in 
most popular textbooks for non-statisticians, NHST is 
frequently presented in terms of the difference between 
population or sample groups and framed in reference to 
the research hypothesis. The need for an in-depth focus 
on the logic of NHST when couched in these terms can be 
seen from the following summary.

Starting with H0, there are various definitions offered. 
H0 is the hypothesis of no difference or association 
between groups [1, 5, 12–27]. Using population means 
(μ) as an example, this is H0: μ1 =  μ2, meaning there is 
no difference in the population [2, 28–33]. In addition, 
there is the idea that H0 is the opposite/reverse/comple-
ment/negation of the test/experimental/study/research 
hypothesis [1, 3, 6, 25, 27, 28]. In clinical studies, this seg-
ues to the stronger claim that the absence of a difference 
is due to a lack of treatment effect [3, 5, 6, 13, 20, 21, 28, 
31, 34–36]. In contrast to the idea of “no difference” is the 
anticipation that chance or random variation will pro-
duce a difference between the sample means [37]. Some 
texts unite the two ideas about the presence and absence 
of difference into one H0 which states there is no differ-
ence in the population and the difference in the sample 
groups is due to chance [2, 38–41]. Although a symbol 
exists for the mean of the sample group (x) , there was no 

example of this more complex version of H0 translated 
into symbols in any text sampled. In fact, some texts 
mention this more complex H0 only to quickly drop the 
idea and revert to H0: μ1 = μ2 anyway [27, 42].

Moving on to the definition of HA, we find similar  
themes phrased in a contrary fashion. HA is the  
hypothesis that there is a difference or association 
between the groups [12, 13, 22, 23, 32]. Some specify that 
the groups are the populations such that HA: μ1 ≠  μ2 
[2, 4, 24]. This type of difference is described as statis-
tically significant [26] or real [2, 17, 18, 42, 43]. HA is 
elsewhere proposed to be: the experimental/ research/
study hypothesis [3, 5, 6, 28, 36, 43]; or the hypothesis 
that there is a treatment effect [1, 6, 20, 33, 34, 39]; 
or the contradictory or complementary hypothesis to 
H0 [14, 34, 35, 42]. There are attempts to unite claims 
about the population and sample groups, namely that 
the difference in the sample groups is due to the dif-
ference in the population [42]. Again, in the texts sam-
pled, the latter hypothesis was never translated into 
symbols or further pursued.

Another area of disagreement, apart from the content 
of HA, is the strength of the conclusion when rejecting 
H0. Some claim we accept HA as true [1, 5, 16, 20, 23] 
or real [18]. There are also softer versions that state HA 
is just “supported” or is “probably true” [6, 19]. Alter-
natively, conclusions can be framed in terms of the test 
hypothesis being true [2, 15, 16, 20, 27, 29, 33–35, 43, 44], 
or more tentatively, that we gain confidence or support 
for the test hypothesis [6, 25, 28, 31, 41, 42]. More bewil-
dering still are claims suggesting there are multiple other 
hypotheses or explanations! [1, 12, 16, 21, 34, 35, 40]

The interpretation of the phrase “statistically significant” 
[2, 5, 21, 34, 39, 40, 42], often abbreviated to just “signifi-
cant” [21, 25, 27, 28, 30, 33–35], ranges from the claim that 
the data are not due to chance [24, 45] to the weaker claim 
that the data are unlikely to be due to chance [2, 18, 40].

In NHST, H0 and HA are presented as a hypothesis 
pair. A commonly presented pair is H0: μ1 = μ2 and HA: 
μ1 ≠  μ2. This hypothesis pair is mutually exclusive and 
exhaustive which some texts explicitly state are desirable 
characteristics [1, 19, 46]. Elsewhere, however, H0 and 
HA are frequently presented as a non-exhaustive, false 
dichotomy between the test hypothesis and the hypoth-
esis that the results are due to chance [3, 6, 16, 18, 19, 24, 
25, 27, 34, 38, 40, 41, 44].

From the above we see that this family of interpretations 
of NHST provides no consensus on many aspects. This 
poses a challenge to interpreting NHST when expressed 
in this fashion. From within the framework of this popular 
terminology, the purpose of the present paper is to
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1/ define H0, HA, power and type I and II errors,
2/ define the minimum axiom set for NHST and
3/ make transparent which assumptions are needed 
to conclude the research hypothesis is true.

Methods
Here we assume the common terminology of expressing 
NHST in terms of differences between populations or 
sample groups and in reference to the research hypoth-
esis. The scope and limits of the P-value, the test statis-
tic and its probability distribution curve (PDC) will be 
used to arbitrate on the correct form of H0 and HA within 
this framework. Propositional calculus will be employed 
to analyse NHST. We also acknowledge multi-factorial 
hypotheses. For example, we can hypothesise that the 
difference between two sample groups is due to bias, 
chance or an intervention. These hypotheses are inde-
pendent which entails that they can act in combination to 
produce the results. To disambiguate between single- or 
multi-factorial hypotheses, the term “alone” will be used 
to refer to the former. For example, “(x 1 ≠ x 2) due to 
chance alone” means chance is the only factor involved in 
the sample group difference, as opposed to chance acting 
in concert with other factors to produce the results.

Results
For consistent vocabulary throughout this paper, we will 
use as our example the common scenario of compar-
ing the means of two sample groups. The appropriate 
test statistic for this is the t-statistic which has its rel-
evant PDC. We will commence by stating the minimum 
axiom set needed for a NHST to function. To this end, 
we accept as axiomatic that if P(observed data or more 
extreme│H0) < α, then reject H0 and accept HA.

The testable H0
In the introduction we saw that H0 had various defi-
nitions including H0: μ1  =  μ2 or the “opposite” of the 
research hypothesis. Understandably, these are H0’s that 
we would like to test, but that does not guarantee that 
these candidates are testable. Here we propose a new 
approach: the decision concerning which is the correct 
H0 should be determined by the scope and limits of the 
actual technique that will be used to reject H0. In our 
example, the decision to reject H0 is based on the P-value 
of the t-statistic read off from its PDC. The PDC yields 

the probability of finding the observed t-statistic value 
(or more extreme) due to chance alone when there is no 
difference in the population means. In symbols, (some-
thing which never appeared in the texts mentioned in the 
introduction), the PDC gives us

Given that the definition of the P-value is

we can now see that the H0 which the P-value and PDC 
can actually test must be

In other words, it is the hypothesis that the finding in 
the sample groups is due to chance or random variation 
alone and does not reflect a difference in the underlying 
population.

Rejecting (μ1 = μ2)
Textbooks often claim that we can use NHST to reject 
(μ1  =  μ2). However, this is not logically possible with 
the minimum axiom set NHST. To demonstrate this, we 
will need to transform (μ1 = μ2) to a logically equivalent 
proposition and use propositional calculus. The proposi-
tion (μ1 = μ2) is a proposition about the equality of the 
population means, but states nothing about the sample 
group means (x) . Using a truth table (Table  1), we can 
rewrite (μ1 = μ2) in a logically equivalent way such that 
the sample group means do appear in the proposition but 
without any claim being made about them.2 Note that 
P(x 1 = x 2) =0, so any proposition containing ( x 1 = x 2) 
can be eliminated from the analysis.

From Table 1, (μ1 = μ2) ≡

Logical equivalence is established because whenever 
(μ1 = μ2) is true, 1 is true too, and whenever (μ1 = μ2) 
is false, 1 is also false. This transformation now allows 
us to see why eliminating the testable H0 does not logi-
cally imply the elimination of (μ1  =  μ2). Let the first 

P observed t − statistic value or more extreme| (µ1 = µ2) and [(x1 �= x2) due to chance alone] .

P(observed t − statistic value or more extreme|H0),

H0 :
{

(µ1 = µ2) and [(x1 �= x2) due to chance alone
}

.

(1)
({

(µ1 = µ2) ∧ [(x1 �= x2) due to chance alone]
}

∨
{

(µ1 = µ2) ∧ [(x1 �= x2) not due to chance alone]
})

.

2 Truth tables analyse the truth of complex propositions based on giving truth 
values of true (T) or false (F) to its elemental components. When propositions 
are subject to logical analysis here, we shall use the symbols of propositional 
calculus: “∧” for “and”; “∨” for “or”; and “¬” for “not” used to express negation. 
“¬X” means “It is not the case that X.” “≡” means “is equivalent to” such that 
“X ≡ Y” means “proposition X is equivalent to proposition Y.”
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disjunct of 1 be called C, and the second disjunct E. 
Thus, 1 becomes the disjunction C v E. We recognise 
C as the testable H0. The PDC can assess C, and so it 
may be possible to reject C depending on the P-value. 
However, the PDC cannot assess E. So even if we do 
reject C, we cannot reject E, and therefore we cannot 
reject the whole proposition C v E. Since 1 is logically 
equivalent to (μ1  =  μ2), we see that we cannot reject 
(μ1 = μ2) using the minimum axiom set NHST. In other 
words, (μ1 = μ2) is not rejected when we reject the test-
able H0: {(μ1 = μ2) ∧ [(x1 ≠ x2 ) due to chance alone]}. To 
reject (μ1 = μ2), a further premise will need to be added, 
namely ¬{(μ1  =  μ2) ∧ [(x1 ≠ x2 ) not due to chance 
alone]}.

The real HA
We take it as axiomatic that H0 and HA are mutually exclu-
sive: the hypotheses should not overlap in the sample 
space. An issue identified in the introduction was whether 
the hypothesis pair should also be exhaustive. There are 
serious consequences when the pair are made into a false 
dichotomy. An obvious criticism is that other possibili-
ties are simply ignored. Furthermore, it opens a Pandora’s 
box of candidates for HA. Frequently the research or test 
hypothesis (here HT) is proposed as HA. This is the prop-
osition that there is a difference in the population due to 
the study intervention or treatment and the finding in the 
sample groups is due to this difference alone. In symbols

However, if false dichotomies are allowed, what is to pre-
vent other hypotheses being proposed as HA? Such as the 
hypothesis that bias or confounding produced the results, or 
some other hypothesis, or even combinations of hypotheses 

HT : {(µ1 �= µ2) ∧ [(x1 �= x2) due to (µ1 �= µ2) alone]}.

given that they are all independent propositions. In a false 
dichotomy the selection of HA is subject to prejudice.

The above problems are avoided by forming an exhaus-
tive hypothesis pair. To avoid logical errors of negation, 
it is critical to note that HA must be the negation of the 
entire proposition represented by H0, not just a nega-
tion of part of H0. So HA must be ¬H0 and the real HA: 
¬{(μ1 = μ2) and [(x1 ≠ x2 ) due to chance alone]}. There-
fore, the only justifiable exhaustive hypothesis pair is

The relationship between HA and HT
HA is a more complex proposition than HT. Once again, we 
can transform HA into a logically equivalent proposition 
which has HT as a component. Let HA be represented by ¬(G 
∧ J), where G is “μ1 = μ2”, and J is “ (x 1 ≠ x 2) due to chance 
alone.” The truth table for ¬(G ∧ J) is shown in Table 2.

Table 2 shows that ¬(G ∧ J) is true (bold T in last col-
umn) when G and ¬J are true (the second row), or ¬G 
and J are true (the third row), or ¬G and ¬J are true (the 
last row). This allows us to formulate a disjunction logi-
cally equivalent to ¬(G ∧ J). Thus ¬(G ∧ J) ≡ (G ∧ ¬J) ∨ 
(¬G ∧ J) ∨ (¬G ∧ ¬J). Now ¬J ≡ {(x 1 = x 2) ∨ [(x 1 ≠ x 2) 
not due to chance alone]}. However, as stated previously, 
we can eliminate ( x 1 = x 2) making ¬J ≡ [(x 1 ≠ x 2) not 
due to chance alone]. Substituting back, HA ≡

Furthermore, the second disjunct is a contradiction 
and can be eliminated giving

Where does HT lie in 2? HT is contained within the 
last disjunct of 2, {(μ1 ≠  μ2) ∧ [(x 1 ≠ x 2) not due to 
chance alone]}. The latter disjunct expresses the propo-
sition that there is a difference found in the population 
and also that the sample group difference is not due to 

H0 :
{

(µ1 = µ2) and [(x1 �= x2) due to chance alone]
}

,

HA : ¬
{

(µ1 = µ2) and [(x1 �= x2) due to chance alone]
}

.

(
{(

�1 = �2

)

∧
[(

x1 ≠ x2

)

not due to chance alone
]}

∨
{(

�1 ≠ �2

)

∧
[(

x1 ≠ x2

)

due to chance alone
]}

∨
{(

�1 ≠ �2

)

∧
[(

x1 ≠ x2

)

not due to chance alone
]}

).

(2)
HA ∶

{(

�1 = �2

)

∧
[(

x1 ≠ x2

)

not due to chance alone
]}

∨
{(

�1 ≠ �2

)

∧
[(

x1 ≠ x2

)

not due to chance alone
]}

.

Table 1 Truth table for (μ1 = μ2) and its logical equivalent

μ1 = μ2 (x 1 ≠ x 
2) due to 
chance 
alone

(x 1 ≠ x 2) 
not due 
to chance 
alone

{(μ1 = μ2) 
∧ [(x 1 ≠ 
x 2) due 
to chance 
alone]}

{(μ1 = μ2) 
∧ [(x 1 ≠ x 
2) not due 
to chance 
alone]}

({(μ1 = μ2) 
∧ [(x 1 ≠ 
x 2) due 
to chance 
alone]} ∨ 
{(μ1 = μ2) 
∧ [(x 1 ≠ x 
2) not due 
to chance 
alone]} )

T T F T F T

T F T F T T

F T F F F F

F F T F F F

Table 2 Truth table for ¬(G ∧ J)

G ¬G J ¬J G ∧ J ¬(G ∧ J)

T F T F T F

T F F T F T
F T T F F T
F T F T F T
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chance alone, but instead is due to some other alterna-
tive. The other alternatives include the test intervention 
or bias or some other unknown or even a combination 
of these given that the alternatives are independent 
hypotheses. Taking this into account we can rewrite 2 
such that HA ≡

The last disjunct of 3 is HT (in bold), indicating that 
HT is just one sub-hypothesis of HA.

Finally, the answer to the question “What do we accept 
when we reject H0?” is: we accept the real HA or its logical 
equivalent (3). Therefore, a statistically significant finding, 
expressed in these common terms, should be interpreted as 
meaning that the data is not due to chance alone. Statistical 
significance is not a licence to accept HT.

The effect of further premises on the minimum axiom set 
NHST
It is only by adding premises to NHST that we can 
conclude anything other than the real HA. The dan-
ger with this strategy is that of partially assuming 
what is being proved. Table  3 presents examples of 
premises that if added to NHST would rig different 
conclusions.

(3){(

�1 = �2

)

∧
[(

x1 ≠ x2

)

not due to chance alone
]}

∨
{(

�1 ≠ �2

)

∧
[(

x1 ≠ x2

)

not due to
(

�1 ≠ �2

)

alone
]}

∨
{(

�𝟏≠�𝟐

)

∧
[(

x𝟏≠x𝟐

)

𝐝𝐮𝐞 𝐭𝐨
(

�𝟏≠�𝟐

)

𝐚𝐥𝐨𝐧𝐞
]}

.

Some texts claim that all that is needed to conclude HT 
when H0 is rejected is the assumption that there is no 
bias [35, 47]. However, Table 3 illustrates exactly which 
premises are needed in order to conclude HT. Apart 
from assuming no bias, it is also necessary to assume 

there are no combination hypotheses in which chance 
plays a role. A corollary is that if NHST could lead us 
to conclude HT of its own accord, no further prem-
ises would be required. What would the conclusion be 
if indeed we only assumed that there was no bias? The 
middle column of  Table  3 shows the conclusion.  In a 
model which stipulates that the possible causes of the 
sample group difference are chance, bias or the interven-
tion (or combinations thereof ), the conclusion would be

 The first disjunct in bold is HT, showing that the conclusion 
is more complex than HT alone. The last column demonstrates 
that a different package of additional premises can be tailored 
to reach a different conclusion such as the hypothesis that bias 
produced the results, here represented as HB: {(μ1 = μ2) ∧ [(x 1 
≠ x 2) due to bias alone]}. Similar to arithmetic, the process 
in Table 3 is commutative. The same results are achieved if 
we were to make the assumptions first and then do the 
NHST or vice versa ― the order does not matter.

{(µ1 �= µ2) ∧ [(x1 �= x2) due to (µ1 �= µ2) alone]}∨{[(µ1 �= µ2)∧ [(x1 �= x2) due to (µ1 �= µ2) and chance]}.

Table 3 Adding premises to NHST to conclude HT. Comparison of group means is used as an example. HT (in bold) is defined in the 
text

Perform NHST: if P-value ≥ α, then fail to reject H0. 
If P-value < α, H0 is rejected and conclude
HA: ¬{(μ1 = μ2) ∧ [(x  1 ≠ x  2) due to chance alone]}

Further steps Aim to conclude HT Assume “there is no bias” Aim to conclude HB

Additional 
premises

(1) ¬{(μ1 = μ2) ∧ [(x 1 ≠ x 2) not due to 
chance alone]}
(2) ¬{(μ1 ≠ μ2) ∧ [(x 1 ≠ x 2) not due to 
(μ1 ≠ μ2) alone nor chance alone]}

(1) ¬{(μ1 = μ2) ∧ [(x 1 ≠ x 2) due to bias]} (1) ¬ {(μ1 = μ2) ∧ [(x 1 ≠ x 2) not due to bias 
alone nor chance alone]}
(2) (μ1 = μ2)

Reasoning HA: ¬{(μ1 = μ2) ∧ [(x 1 ≠ x 2) due to 
chance alone]} ≡
HA: ({(μ1 = μ2) ∧ [(x 1 ≠ x 2) not due to 
chance alone]} ∨ {(μ1 ≠ μ2) ∧ [(x 1 ≠ x 
2) not due to (μ1 ≠ μ2) alone nor chance 
alone]} ∨ {(μ1 ≠ μ2) ∧ [(x  1 ≠ x  2) due to 
(μ1 ≠ μ2) alone]}).
Use 2 steps of disjunction elimination 
with (1) and (2)

HA: ¬{(μ1 = μ2) ∧ [(x 1 ≠ x 2) due to 
chance alone]} ≡
HA: ({(μ1 = μ2) ∧ [(x 1 ≠ x 2) not due to 
bias nor chance alone]} ∨ {(μ1 = μ2) ∧ [(x 1 
≠ x 2) due to bias]} ∨ {(μ1 ≠ μ2) ∧ [(x  1 ≠ 
x  2) due to (μ1 ≠ μ2) alone]} ∨ {(μ1 ≠ μ2) 
∧ [(x 1 ≠ x 2) not due to (μ1 ≠ μ2) alone]}).
Use disjunction elimination with (1)

HA: ¬{(μ1 = μ2) ∧ [(x 1 ≠ x 2) due to chance 
alone]} ≡
HA: ({(μ1 = μ2) ∧ [(x 1 ≠ x 2) due to bias 
alone]} ∨ {(μ1 = μ2) ∧ [(x 1 ≠ x 2) not due to 
bias alone nor chance alone]} ∨ (μ1 ≠ μ2)).
Use 2 steps of disjunction elimination with 
(1) and (2)

Conclusion Therefore {(μ1 ≠ μ2) ∧ [(x  1 ≠ x  2) due to 
(μ1 ≠ μ2) alone]}, i.e., HT

Therefore ({(μ1 = μ2) ∧ [(x 1 ≠ x 2) not due 
to bias nor chance alone]} ∨ {(μ1 ≠ μ2) ∧ 
[(x 1 ≠ x 2) not due to (μ1 ≠ μ2) alone]} ∨ 
{(μ1 ≠ μ2) ∧ [(x  1 ≠ x  2) due to (μ1 ≠ μ2) 
alone]})

Therefore {(μ1 = μ2) ∧ [(x 1 ≠ x 2) due to 
bias alone]}, i.e., HB
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Application to other statistical problems
So far we have focused on the comparison of sample group 
means. However, with appropriate changes in vocabulary 
we can define the real H0 and HA for other scenarios ― 
mutatis mutandis, as they say. As illustrations, H0 and HA 
in general form, for the comparison of sample group pro-
portions, and for correlation are presented in Table 4.

Failure to reject H0
What are we to conclude if we fail to reject H0? The axiom 
of NHST states that we reject H0 if P-value < α. This does 
not logically imply that if P-value ≥ α we must accept H0 
― the axiom and the claim about accepting H0 are logi-
cally distinct ideas. So if P-value ≥ α, we should merely 
state we have failed to reject H0 rather than we accept H0.

Power (1-β), type I (α) and type II (β) errors
Textbooks which express NHST in terms of the research 
hypothesis also tend to carry this over to descriptions of 
Type I and II errors, as well as power calculations. However, 
this is fraught with error as can be seen when we apply the 
real definitions of H0 and HA. Type I error is the probability 
of eliminating H0, and accepting HA, when in fact H0 is true. 
Using the real definitions of H0 and HA gives us type I error:

Importantly, type I error is not the probability of 
accepting HT when H0 is true. Since HA is a disjunction, 
there are multiple propositions that can make it true, 
with HT being just one of these. So P(HA) >  P(HT) and 
P(mistakenly accepting HT) >  P(mistakenly accepting 
HA). The conflation of HT with HA results in underesti-
mating the probability of mistakenly accepting HT.

Similarly for type II error which is the probability of not 
rejecting H0, and not accepting HA, when H0 is false and 
should have been rejected. Namely,

Type II error is not the probability of not accepting HT 
when H0 is false. A low probability of not accepting HA 
does not logically imply a low probability of not accepting 
HT. P(not accepting HT) >  P(not accepting HA) because 
more propositions need to be rejected in order to accept 
HT. The conflation of HT with HA results in underestimat-
ing the probability of not accepting HT when H0 is false.

Power (1- β) refers to the probability of rejecting H0 
and accepting HA given H0 is false. Specifically, power is

P
(

rejecting
{(

�1 = �2

)

and
[(

x1 ≠ x2

)

due to chance alone
]}

|

{(

�1 = �2

)

and
[(

x1 ≠ x2

)

due to chance alone
]})

.

P
(

not rejecting
{(

�1 = �2

)

and
[(

x1 ≠ x2

)

due to chance alone
]}

|it is not the case that
{(

�1 = �2

)

and
[(

x1 ≠ x2

)

due to chance alone
]})

.

P
(

rejecting
{(

�1 = �2

)

and
[(

x1 ≠ x2

)

due to chance alone
]}

|it is not the case that
{(

�1 = �2

)

and
[(

x1 ≠ x2

)

due to chance alone
]})

.

However, it does not refer to P(accepting HT│HT). The 
power to conclude HT < the power to conclude HA. The 
conflation of HT with HA results in overestimating the 
power to conclude HT because HT is just one part of HA.

Discussion
NHST has been well described in terms of statistical 
models. However, it is also commonly presented in terms 
of group comparisons and with reference to the research 
hypothesis. Despite this being a popular interpretation, 
there is currently no standardised approach. The variation 
in definitions of H0 and HA, how they should be paired 
and conclusions that can be drawn by eliminating H0 
motivated this new logical analysis. Looking at the con-
ditions of the P-value we can see that there can be only 
one testable H0. Presenting H0 and HA as a false dichot-
omy is common but unjustifiable. Combining these two 
ideas entails that HA is ¬H0. Texts should acknowledge 
this and also make transparent any premises added in 
order to reach a conclusion other than ¬H0 when H0 is 
rejected.

It may be thought that using the estimation or CI 
method can avoid the problems of expressing NHST 
in these terms. However, this is not true if the estima-

tion method is used as a de facto NHST. The estima-
tion method can be used as a NHST because the CI is 
mathematically related to the α-level and the P-value 
such that if the CI does not cross zero (or 1 for ratios), we 
can claim statistical significance. In the context of using 
CI as a NHST, the conclusions of the present paper are 
relevant. Consequently, when using the CI method, the 
correct interpretation of statistical significance would 
be to accept the real HA and not claim that HT is true. 
Of course, there are other appealing features of the CI 

method and the present discussion is limited only to its 
use as a significance test.

A limitation of the present paper is that we have not 
questioned the axiom of NHST that we reject H0 if the 
P-value < α. An analysis of this axiom deserves a paper in 
its own right which discusses inductive logic and defines 
the conditions under which the axiom is reliable. The 
issue in the present paper has been solely that if we are 
to use NHST as it is commonly presented it should at 



Page 7 of 9McNulty  BMC Medical Research Methodology          (2022) 22:244  

Ta
bl

e 
4 

H
0 a

nd
 H

A
 fo

r c
om

m
on

 s
ce

na
rio

s. 
H

A
 h

as
 a

ls
o 

be
en

 tr
an

sf
or

m
ed

 in
to

 it
s 

lo
gi

ca
l e

qu
iv

al
en

t t
o 

id
en

tif
y 
H

T (
in

 b
ol

d)

Sc
en

ar
io

G
en

er
al

 F
or

m
Co

m
pa

ri
ng

 p
ro

po
rt

io
ns

 (C
hi

-s
qu

ar
ed

 te
st

)
Co

rr
el

at
io

n

H
0 

an
d 
H

A
H

0: 
th

er
e 

is
 n

o 
fin

di
ng

 in
 th

e 
po

pu
la

tio
n 

an
d 

th
e 

fin
di

ng
 in

 
th

e 
sa

m
pl

e 
gr

ou
p 

is
 d

ue
 to

 c
ha

nc
e 

al
on

e
H

A
: i

t i
s 

no
t t

he
 c

as
e 

th
at

 H
0, 

th
er

ef
or

e
H

A
: i

t i
s 

no
t t

he
 c

as
e 

th
at

 (t
he

re
 is

 n
o 

fin
di

ng
 in

 th
e 

po
pu

la
-

tio
n 

an
d 

th
e 

fin
di

ng
 in

 th
e 

sa
m

pl
e 

gr
ou

p 
is

 d
ue

 to
 c

ha
nc

e 
al

on
e)

 ≡
[(t

he
re

 is
 n

o 
fin

di
ng

 in
 th

e 
po

pu
la

tio
n 

an
d 

th
e 

fin
di

ng
 in

 th
e 

sa
m

pl
e 

gr
ou

p 
is

 n
ot

 d
ue

 to
 c

ha
nc

e 
al

on
e)

 o
r (

th
er

e 
is

 a
 fi

nd
-

in
g 

in
 th

e 
po

pu
la

tio
n 

an
d 

th
e 

fin
di

ng
 in

 th
e 

sa
m

pl
e 

gr
ou

p 
is

 n
ot

 d
ue

 to
 th

e 
po

pu
la

tio
n 

fin
di

ng
 a

lo
ne

) o
r (

th
er

e 
is

 a
 

fin
di

ng
 in

 th
e 

po
pu

la
ti

on
 a

nd
 th

e 
fin

di
ng

 in
 th

e 
sa

m
pl

e 
gr

ou
p 

is
 d

ue
 to

 th
e 

po
pu

la
ti

on
 fi

nd
in

g 
al

on
e)

]

H
0: 

(p
1̂ =

 p
2̂)

 ∧
 [(

p 1 ≠
  p

2)
 d

ue
 to

 c
ha

nc
e 

al
on

e]
H

A
: ¬
H

0, 
th

er
ef

or
e

H
A
: ¬

{(p
1̂ =

 p
2̂)

 ∧
 [(

p 1 ≠
  p

2)
 d

ue
 to

 c
ha

nc
e 

al
on

e]
} ≡

H
A

: (
{(p

1̂ =
 p

2̂)
 ∧

 [(
p 1 ≠

  p
2)

 n
ot

 d
ue

 to
 c

ha
nc

e 
al

on
e]

} ∨
 {(

p 1̂ 
≠

 p
̂ 2) 
∧ 

[(p
1 ≠

  p
2)

 n
ot

 d
ue

 to
 (p

̂ 1 ≠
 p

2̂)
 a

lo
ne

]} 
∨ 

{(p
1̂ 
≠

 p
2̂)

 
∧ 

[(p
1 
≠

 p
2)

 d
ue

 to
 (p

̂ 1 ≠
 p

2̂)
 a

lo
ne

]})

H
0: 

(ρ
 =

 0
) ∧

 (r
 ≠

 0
 d

ue
 to

 c
ha

nc
e 

al
on

e)
H

A
: ¬
H

0, 
th

er
ef

or
e

H
A
: ¬

[(ρ
 =

 0
) ∧

 (r
 ≠

 0
 d

ue
 to

 c
ha

nc
e 

al
on

e)
] ≡

H
A

: (
[(ρ

 =
 0

) ∧
 (r

 ≠
 0

 n
ot

 d
ue

 to
 c

ha
nc

e 
al

on
e)

] ∨
 {(
ρ 
≠

 0
) ∧

 
[r 
≠

 0
 n

ot
 d

ue
 to

 (ρ
 ≠

 0
) a

lo
ne

]} 
∨ 

{(ρ
 ≠

 0
) ʌ

 [r
 ≠

 0
 d

ue
 to

 
(ρ

 ≠
 0

) a
lo

ne
]})



Page 8 of 9McNulty  BMC Medical Research Methodology          (2022) 22:244 

least be with justifiable definitions of H0 and HA, trans-
parent assumptions and valid deductions from the given 
premises.

Conclusions
NHST is commonly expressed in terms of differences 
between groups and with reference to the research 
hypothesis. Within this framework, logical analysis 
reveals that the minimum axiom set NHST (for comparing 
sample means) is as follows:

H0: {(μ1 = μ2) and [(x1 ≠ x2) due to chance alone]},
HA: ¬{(μ1 = μ2) and [(x1 ≠ x2) due to chance 
alone]}.
If P-value ≥ α, then fail to reject H0.
If P-value < α, reject H0 and conclude HA.

At best, it can be concluded that if H0 is rejected, the 
data were not due to chance alone. Texts should also be 
transparent about which assumptions have been added 
to rig a conclusion such as HT. Care should also be 
exerted to avoid misinterpreting type I and II errors, as 
well as power, in terms of the research hypothesis.
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