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Abstract

Viral phylogenetic methods contribute to understanding how HIV spreads in populations, and thereby help guide the
design of prevention interventions. So far, most analyses have been applied to well-sampled concentrated HIV-1 epi-
demics in wealthy countries. To direct the use of phylogenetic tools to where the impact of HIV-1 is greatest, the
Phylogenetics And Networks for Generalized HIV Epidemics in Africa (PANGEA-HIV) consortium generates full-genome
viral sequences from across sub-Saharan Africa. Analyzing these data presents new challenges, since epidemics are
principally driven by heterosexual transmission and a smaller fraction of cases is sampled. Here, we show that viral
phylogenetic tools can be adapted and used to estimate epidemiological quantities of central importance to HIV-1
prevention in sub-Saharan Africa. We used a community-wide methods comparison exercise on simulated data, where
participants were blinded to the true dynamics they were inferring. Two distinct simulations captured generalized HIV-1
epidemics, before and after a large community-level intervention that reduced infection levels. Five research groups
participated. Structured coalescent modeling approaches were most successful: phylogenetic estimates of HIV-1 inci-
dence, incidence reductions, and the proportion of transmissions from individuals in their first 3 months of infection
correlated with the true values (Pearson correlation> 90%), with small bias. However, on some simulations, true values
were markedly outside reported confidence or credibility intervals. The blinded comparison revealed current limits and
strengths in using HIV phylogenetics in challenging settings, provided benchmarks for future methods’ development, and
supports using the latest generation of phylogenetic tools to advance HIV surveillance and prevention.

Key words: HIV transmission and prevention, molecular epidemiology of infectious diseases, viral phylogenetic
methods validation.

Introduction

Recent breakthroughs in human immunodeficiency virus
type 1 (HIV-1) prevention and treatment have provided a
range of tools to reduce HIV-1 transmission (WHO 2015).

Incorporating these strategies into routine care services and
delivering on the commitment to end the HIV-1 epidemic by
2030 remains a major challenge (UNAIDS 2014), particularly
in sub-Saharan Africa where the burden of HIV-1 is greatest.
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This region suffers 75% of all new HIV-1 infections worldwide,
with adult HIV-1 prevalence exceeding 25% in some regions,
and averaging�5% overall (UNAIDS 2015). To sustain public
health interventions at this scale with limited resources, a
sufficiently detailed understanding of the local and regional
drivers of HIV-1 spread is often indispensable. Universal pre-
vention packages (Iwuji et al. 2013; Hayes et al. 2014) benefit
from data that allows monitoring incidence trends and driv-
ers of residual spread, whereas more targeted prevention
approaches (Vassall et al. 2014) by definition require a de-
tailed knowledge of at-risk populations.

The Phylogenetics And Networks for Generalized HIV
Epidemics in Africa (PANGEA-HIV) consortium aims to pro-
vide viral sequence data from across sub-Saharan Africa, and
to evaluate their viral phylogenetic relationship as a marker of
recent HIV-1 transmission dynamics (Pillay et al. 2015).
Previous molecular epidemiological studies indicate that
this approach can characterize transmission landscapes
across a diverse array of epidemic contexts in order to guide
prevention efforts (Fisher et al. 2010; Kouyos et al. 2010; von
Wyl et al. 2011; Stadler et al. 2013; Volz et al. 2013; Grabowski
et al. 2014; Bezemer et al. 2015; Ratmann et al. 2016). Rather
than the partial gene sequences frequently used, the consor-
tium is generating near full-length HIV-1 sequences in order
to further increase the resolution and power of viral phylo-
genomic methods (Dennis et al. 2014). Indeed, such increases
in power are needed to disentangle signal from noise in ep-
idemic settings with frequent co-infection and recombination
events (Grabowski et al. 2014), and to shift focus to recent
transmission dynamics (Dennis et al. 2014).

Available viral phylogenetic techniques can provide esti-
mates of key epidemiological quantities of concentrated
HIV-1 epidemics (Brenner et al. 2007; Fisher et al. 2010;
Stadler and Bonhoeffer 2013; Volz et al. 2013; Bezemer
et al. 2015; Ratmann et al. 2016). But the generalized epi-
demics in sub-Saharan Africa and sequence availability in
these resource-poor settings differ fundamentally from
well sampled concentrated epidemics in wealthy countries,
where viral phylogenetic tools have been proven to be most
effective to date (Dennis et al. 2014). To strengthen the
application of viral phylogenetics in sub-Saharan Africa, in
October 2014 PANGEA-HIV invited research groups to par-
ticipate in a blinded methods comparison exercise. Two
individual-level HIV epidemic models were used to simu-
late generalized HIV-1 epidemics. From these, we gener-
ated corresponding viral sequence datasets comprising
simulated pol, gag and env genes (which we refer to as
full genome sequences for brevity), as well as basic
individual-level epidemiological data on those infected
individuals that were sequenced in the simulations.
External research groups then analyzed the blinded data.

Overall, we aimed to evaluate if the most recent genera-
tion of viral phylogenetic tools could be adapted and used to
estimate epidemiological quantities of central importance to
HIV-1 prevention in sub-Saharan Africa. The specific objec-
tives were inspired by current HIV-1 prevention trials in sub-
Saharan Africa (Iwuji et al. 2013; Moore et al. 2013; Hayes et al.
2014). The primary goal of these trials is to achieve substantial

reductions in HIV-1 incidence over a short period. Viral phy-
logenetics could be an effective tool to measure similar re-
ductions, especially in contexts where incidence cohorts do
not exist, and thereby contribute to monitoring the impact of
prevention strategies. First, participants were asked to esti-
mate recent reductions in HIV-1 incidence resulting from a
simulated community-based intervention over a 3- to 5-year
period. Here, incidence was defined as the proportion of new
cases per year among uninfected adults, and reductions in
incidence were measured in terms of the incidence ratio be-
fore and after the intervention. Second, it has been debated
whether frequent transmission during the early acute phase
of HIV infection could undermine the impact in reducing
incidence of universal test and treat (Cohen et al. 2012). In
concentrated epidemics, viral phylogenetics based on partial
pol sequences have been used to provide estimates of the
proportion of transmissions arising from individuals in their
first year of infection (Volz et al. 2013; Ratmann et al. 2016).
Here, we sought to evaluate whether viral phylogenetics
based on full-genome sequences can provide accurate esti-
mates of the proportion of transmissions from individuals in
early and acute HIV (defined here as in their first 3 months of
infection), because these are likely not preventable in current
prevention trials where testing intervals are 1 year or more
(Iwuji et al. 2013; Moore et al. 2013; Hayes et al. 2014). Third,
as sequence data are now collected as part of HIV-1 preven-
tion trials (HPTN 071 (PopART) Phylogenetics Protocol Team
2015; Novitsky et al. 2015), different approaches to prospec-
tive sequence sampling have emerged. Sequences could be
collected at high coverage in villages or smaller townships at
the risk of missing long-range transmissions, or at lower cov-
erage over geographically much larger areas. We sought to
compare the impact of these sampling strategies on viral
phylogenetic analyses by simulating epidemics in village and
larger regional populations, and sampling sequences at high
and low coverage respectively. Other objectives included eval-
uating the benefit of using concatenated HIV-1 sequences
comprising simulated pol, gag and env genes, as compared
with using simulated pol sequences alone, and the impact of
frequent viral introductions into the modeled population as a
result of long-distance transmission. Table 1 describes the
objectives and reporting variables of the exercise more fully.

Five external research groups participated in the exercise,
out of eight teams that initially indicated interest. Table 2 lists
the phylogenetic methods that were used: the ABC-kernel
method (A. Poon, J. Joy, R. Liang; team Vancouver) (Poon
2015), the birth-death skyline method with sampled ancestors
(C. Weis, G.E. Leventhal, D. Kühnert, D.A. Rasmussen, T. Stadler;
team Basel-Zürich) (Gavryushkina et al. 2014; Kühnert et al.
2016), a metapopulation coalescent approach (B. Dearlove, M.
Hossain, S. Frost; team Cambridge) (Dearlove and Wilson 2013),
the structured coalescent (E. Volz, M. Hossain, S. Frost; team
Cambridge-London) (Volz et al. 2009), and a Bayesian trans-
mission chain analyser (C. Colijn, M. Kendall, X. Didelot, G.
Plazotta; team London) (Didelot et al. 2014). These methods
differed in the underlying transmission and intervention mod-
els, assumptions to facilitate estimation of the reporting vari-
ables, and computational estimation routines. Here, we
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summarize the findings of the exercise, and discuss their impli-
cations for using phylogenetic methods to estimate recent as-
pects of HIV-1 transmission dynamics in generalized epidemics.
Datasets and simulations generated here may be of use for
testing other applications of viral phylogenetic methods, and
are made available alongside this article.

Results

PANGEA-HIV Reference Datasets for Benchmarking
Molecular Epidemiological Transmission Analysis
Methods
The simulations capture a variety of transmission and inter-
vention scenarios across two demographic settings in sub-
Saharan Africa, and are available from https://dx.doi.org/10.
6084/m9.figshare.3103015 (last accessed October 14, 2016).

20 datasets correspond to generalized HIV-1 epidemics in a
region of �80,000 individuals between 1980 and 2020 (table
3). The proportion of infected individuals of whom one se-
quence was sampled (sequence coverage) was 8–16% by the
end of the simulation. These data were simulated under the
individual-based HPTN071 (PopART) model, version 1.1, de-
veloped at Imperial College London (“Regional” model). The
overall simulation pipeline and model components are illus-
trated in figure 1, and further information is provided in sup
plementary table S1, Supplementary Material online. The
Regional model was calibrated to generate an epidemic
with a comparable prevalence at the start of the intervention
to that seen currently in HPTN071 (PopART) trial sites in
South Africa (Hayes et al. 2014). In the model, standard of
care improved according to national guidelines over time,
resulting in steady declines in incidence. In 18 of the 20

simulations, a combination prevention intervention was
started in 2015 for 3 years at varying degrees of uptake and
coverage, resulting in 30% or 60% reductions in incidence
relative to the start of the intervention, when incidence was
close to 2% per year. In half of the 20 simulations, the pro-
portion of early transmissions in 2015 was respectively cali-
brated to 10% and 40% (fig. 2). Ranges in incidence reduction
reflect modeled, optimistic and pessimistic scenarios in on-
going prevention trials in sub-Saharan Africa (Iwuji et al. 2013;
Moore et al. 2013; Hayes et al. 2014). The proportion of trans-
missions from early and acute HIV has been challenging to
estimate without sequence data, and the ranges used here
reflect estimates from several settings in sub-Saharan Africa
(Cohen et al. 2012). About 5–20% of all transmissions per year
occurred from outside the model population, which hindered
prevention efforts in the simulations through continual re-
plenishment of the epidemic.

13 simulated datasets capture generalized HIV-1 epidemics
over 45 years in a smaller village population of �8,000 indi-
viduals (table 3). Sequence coverage was higher in this smaller
population, 25–50% by the end of the simulation. These data
were simulated under an individual-based household model
using the Discrete Spatial Phylo Simulator for HIV, developed
at the University of Edinburgh (“Village” model). Model com-
ponents are illustrated in figure 1, and further information is
provided in supplementary table S2, Supplementary Material
online. The Village model was parameterized to simulate an
HIV-1 epidemic mostly contained within a small rural African
village, with a peak prevalence of 20–25% and peak incidence
of 5–7% without treatment (fig. 2). In 12 out of 13 simula-
tions, a community-level intervention providing antiretroviral
treatment took place for the last 5 years of the simulation.

Table 1. Aims of the PANGEA Phylodynamic Methods Comparison Exercise.

Objectives Reporting Variable

Primary objectives
1 Identify incident trends during the intervention Consider the year ts before the intervention started, and the second last year te of the

simulation. Participants were asked to report HIV-1 incidence trends from ts to te in
terms of “declining”, “stable”, “increasing”

2 Estimate HIV-1 incidence after the intervention Participants were asked to report %Incidence defined as %INCðteÞ ¼ INCðteÞ=SðteÞ,
where INCðteÞ is the number of new cases in year te, and SðteÞ is the number of
sexually active individuals that were not infected in year te

3 Quantify the reduction in HIV-1 incidence at the
end of the intervention

Participants were asked to report the incidence ratio %INCðteÞ=%INCðtsÞ

4 Estimate the proportion of transmissions from
early and acute HIV, just before the intervention

Participants were asked to report the proportion of new cases in year ts from indi-
viduals in their first 3 months of infection

5 Estimate the proportion of transmissions from
early and acute HIV, after the intervention:

Participants were asked to report the proportion of new cases in year te from indi-
viduals in their first 3 months of infection

Secondary objectives

To estimate the impact of the following controlled covariates on the reporting variables:
6 Availability of full genome sequences (HIV-1 gag, pol

and env genes) as compared with partial sequences
(HIV-1 pol gene only)

7 Sequence sampling frame: Sequence coverage at the
end of the simulation; Rapid increases in sequence
coverage; Sampling duration after intervention start

8 Frequency of viral introductions into the modeled
study population

9 Inference of dated viral phylogenies from sequence data
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Treatment uptake was either “fast” or “slow”, with reductions
in incidence averaging between 10% and 40% relative to be-
fore intervention start. Additionally, simulations were config-
ured so that either a small (4%) or large (20%) proportion of
transmissions occurred during the first 3 months of infection.
Some infections originated from outside the model popula-
tion in half of the simulations.

Viral sequences were generated from the simulated trans-
mission chains (fig. 1). First, individuals were sampled at ran-
dom for sequencing. The majority of individuals were only
sampled in the last years of the simulations, reflecting that
sequences are only beginning to be more routinely collected

in sub-Saharan Africa (Iwuji et al. 2013; Moore et al. 2013;
Dennis et al. 2014; Grabowski et al. 2014; HPTN 071 (PopART)
Phylogenetics Protocol Team 2015; Pillay et al. 2015).
Sequence sampling biases can be substantial in real datasets,
but were not included in the model (Carnegie et al. 2014;
Ratmann et al. 2016). Second, viral trees were generated un-
der a hybrid within- and between-host coalescent model. The
viral trees did not always correspond to the transmission
trees, because viruses diversified within infected individuals
before transmission (Pybus and Rambaut 2009). In 25 of the 33
datasets, these viral trees were made available, in order to re-
duce the computational burden of molecular epidemiological

Simulation OutputModel
Component

Regional simulations Village simulations

Demographics

FIG. 1. Simulation pipeline to generate HIV-1 sequence data, viral phylogenies, and accompanying individual-level data. Two simulation models
(Regional and Village) were implemented for the methods comparison. The two individual-level epidemic and intervention models generated
HIV-1 transmission chains in the model population, and its components are shown in blue to green. Next, individuals were sampled for
sequencing, and a viral tree was generated for these individuals. Tree generation accounted for within-host viral evolution under a neutral
coalescent model. Finally, viral sequences comprising the gag, pol and env genes were simulated along the viral tree. Sequence generation
accounted for known variation in evolutionary rates across genes, codon positions, and along within-host lineages. Further details are provided
in supplementary tables S1 and S2, Supplementary Material online.
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FIG. 2. Simulated epidemic scenarios under the Regional and Village models. (A) Six generalized HIV-1 epidemic scenarios were simulated in a region of
�80,000 adult individuals using the Regional model, and (B) nine scenarios were simulated in a rural village population with an initial population of
�6,000 individuals using the Village model. The scenarios differ in terms of incidence, the proportion of early transmissions, and scale-up of the
combination prevention package during the intervention period (gray-shaded time period). From these, 33 datasets were generated, that included either
viral sequences or viral trees. These datasets further varied in the sequence sampling frame and the frequency of viral introductions; see also figure 1 and
table 3. Datasets E, G, I, J, K, P had more frequent viral introductions or higher sequence coverage, and are not shown. The proportion of early
transmissions under the Village model was smoothed with a 3-year sliding window to better visualize trends in this smaller model population.
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analyses (table 3 and supplementary figs. S1 and S2,
Supplementary Material online). For the remaining 13 data-
sets, viral sequences of HIV-1 gag, pol and env genes were
simulated along the viral trees (�1,500, �3,000 and �2,500
nucleotides respectively, for a total of approximately 6,000
nucleotides), from an HIV-1 subtype C starting sequence. The
sequences thus represent generalized subtype C epidemics,
as in most Southern African countries. The nucleotide se-
quence evolution model that was used incorporated known
differences in evolutionary rates by gene and codon position
and relative differences in substitution rates by gene and
codon position (Shapiro et al. 2006; Alizon and Fraser
2013). The coalescent and sequence evolution models did
not account for recombination, sequencing errors, or selec-
tion beyond differential evolutionary rates across genes, co-
dons and within-host lineages (supplementary tables S1 and
S2, Supplementary Material online). As a key indicator of the
realism of the simulated sequences, we calculated the pro-
portion of the variation in evolutionary diversification among
the simulated HIV-1 sequences, that can be explained by a
constant molecular clock model. The proportion explained
ranged from 25% to 60% (supplementary figs. S3 and S4,
Supplementary Material online), broadly in line with esti-
mates on real HIV-1 sequence datasets (Lemey et al. 2006).

The simulations were designed to retain signal for differ-
entiating between the “fast”, “slow” and “no” community-

level intervention scenarios through the viral sequences
provided (supplementary fig. S5, Supplementary Material on-
line). However, we expected that rapid increases in sequence
coverage after the intervention would complicate phyloge-
netic inference. The simulations also retained, on average,
information for differentiating between the 10% and 40%
early transmission scenarios of the Regional simulations at
very low sequence coverage (supplementary fig. S6,
Supplementary Material online). More challenges were ex-
pected on the Village simulations despite higher sequence
coverage, partly because the effect size between the low
and high %Acute scenarios was smaller (supplementary fig.
S7, Supplementary Material online).

Responses to the Methods Comparison Exercise
Participants were primarily asked to estimate incidence re-
ductions from before the intervention (year 39 or 2014) to
just after the intervention (year 43 or 2018), and to estimate
the proportion of early transmissions in the year before and
after the intervention (table 1). Participating teams developed
fast computational strategies for handling full-genome HIV
sequence datasets within given timelines (3 months for 13
Village datasets and 6 months for 20 regional datasets). First,
where only sequences were provided, viral phylogenies were
reconstructed with maximum likelihood methods (Price et al.
2010; Stamatakis 2014). Second, these phylogenies were dated
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FIG. 3. Estimates of HIV-1 incidence from phylogenetic methods on simulated PANGEA datasets. Submitted estimates are shown for each
PANGEA dataset by research team (panel) and type of data provided (either sequences or the viral phylogenetic tree, color). Error bars correspond
to 95% credibility or confidence intervals. True values are shown in black.
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under least-squares criteria or similar fast approaches (To
et al. 2015). Third, dated phylogenies were used as input to
the transmission analysis methods described in table 2. This
sequential approach allowed the teams to obtain phyloge-
netic estimates to all reporting variables for the large majority
of the datasets (see supplementary table S3, Supplementary
Material online). Team Vancouver did not provide estimates
to datasets of the Regional model that contained true phy-
logenetic trees; and teams Cambridge-London and Basel-
Zürich did not provide estimates to datasets of the
Regional model that contained sequences. The most com-
mon reasons for incomplete recall were limited availability of
computing resources, tight timelines to evaluate the simula-
tions, and difficulties in tree estimation when viral introduc-
tions occurred frequently. Nearly all participants focused on
inference from full viral genomes (supplementary table S3,
Supplementary Material online), meaning that the impact of
full genome sequences (concatenated HIV-1 gag, pol and env
genes) as compared with partial sequences (HIV-1 pol gene
only) could not be evaluated.

Estimating Incidence and Reductions in Incidence
Phylogenetic methods differed in their ability to estimate in-
cidence after the intervention (fig. 3). Under the most suc-
cessful computational approach, phylogenetic estimates of
incidence were correlated with true values by 91% (supple

mentary table S2, Supplementary Material online, team
Cambridge-London who used a structured coalescent
model). Bias in these estimates was relatively small for esti-
mates of two teams (on an average 0.35% by team
Cambridge-London and 0.57% by team London). Team
Basel-Zürich achieved substantially more accurate estimates
on the Regional datasets than the Village datasets, whereas
the converse was true for team London (supplementary table
S2, Supplementary Material online).

The accuracy of phylogenetic estimates of changes in in-
cidence as a result of the intervention largely reflected the
accuracy of the underlying incidence estimates (fig. 4).
Phylogenetic estimates of incidence ratios correlated with
the true values by 93% under the structured coalescent ap-
proach of team Cambridge-London, and had only slight up-
ward bias (supplementary table S4, Supplementary Material
online). This meant that large reductions in incidence, which
are expected from combination prevention interventions,
could be correctly detected at relatively low sequence cover-
age when sequences were sampled for 5 years since interven-
tion start by the most successful method. Epidemic
simulations with >25% reductions in incidence were cor-
rectly classified as declining in 15/17 (88%) of all simulations
with a submission by team Cambridge-London, although the
true positive rate was lower with other phylogenetic methods
(supplementary table S5, Supplementary Material online).
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FIG. 4. Estimates of HIV-1 incidence reductions from phylogenetic methods on simulated PANGEA datasets. Submitted estimates are shown for
each PANGEA dataset by research team (panel) and type of data provided (either sequences or the viral phylogenetic tree, color). Error bars
correspond to 95% credibility or confidence intervals. True values are shown in black.
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Estimating the Proportion of Transmissions from
Individuals in Their First Three Months of Infection
(Early and Acute HIV)
Phylogenetic estimates of the proportion of early transmis-
sions just before and after the intervention were more accu-
rate on the Regional simulations than the Village simulations,
potentially reflecting stronger signal as a result of larger effect
sizes in the Regional simulations (fig. 5 and supplementary
figs. S6–S8, Supplementary Material online). On the regional
simulations, estimates by team Cambridge-London had a
mean absolute error of 3.9% and correlated with true values
by 92%. However, on the Village simulations, the mean abso-
lute error in estimates by team Cambridge-London was 12%
(supplementary table S6, Supplementary Material online).
Other teams had, overall, difficulties recovering the frequent
early transmission scenarios. Team Basel-Zürich achieved the
smallest mean absolute error on the Village simulations (sup
plementary table S6, Supplementary Material online).

Predictors of Large Error in Phylogenetic Estimates
We evaluated to what extent the variation in errors of phy-
logenetic estimates could be associated to systematic

differences in the simulation datasets (referred to as “covar-
iates”), such as sequence coverage and frequency of viral in-
troductions (table 3). Figure 6A illustrates the phylogenetic
estimates that deviated largely from the true values (referred
to as “outliers”). We focused on quantifying the association of
outlier presence with the covariates listed in table 3 using a
partial least squares regression approach, which enabled us to
handle a relatively large number of co-dependent covariates
(see “Materials and Methods” section).

Several covariates could be excluded from this analysis.
Estimates obtained from the simulated full genome sequence
datasets were not more strongly associated with estimation
error than estimates obtained using the phylogenetic trees
from which the sequences were simulated (supplementary
fig. S9 and supplementary table S7, Supplementary Material
online). Shorter, intense sampling periods after intervention
start of 3 years compared with a default of 5 years were also
not strongly associated with larger estimation error (supple
mentary table S7, Supplementary Material online).

Figure 6B shows the proportion of variance in outlier
presence that is explained by each of the remaining co-
variates. Signs indicate the impact of a change in predic-
tor values on the number of phylogenetic estimates with
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intervention from phylogenetic methods on simulated PANGEA datasets. Submitted estimates are shown for each PANGEA dataset by research
team and model simulation (panels) and type of data provided (either sequences or the viral phylogenetic tree, color). Error bars correspond to
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very large error. Subplots are empty when phylogenetic
methods did not produce estimates with large error (in-
dicating a higher degree of success). Overall, with regard
to estimates of incidence and incidence reduction, higher
sequence coverage (16% vs. 8% in the Regional datasets
and 50% vs. 25% in the Village datasets) and a large pro-
portion of sequences obtained after intervention start

(>80% vs. 50%) were associated with more outliers for
more than one phylogenetic method. Frequent viral in-
troductions (20%/year vs. <¼5%/year) were associated
with more outliers by team Basel-Zürich. These predictors
tended to outweigh the impact that true differences in
incidence and incidence reduction had on outlier
presence.
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FIG. 6. Predictors of large error in phylogenetic estimates. (A) For each response, the error in the phylogenetic estimate was calculated, and
statistical outliers were identified. The plot shows error in phylogenetic estimates by team and outcome measure. For large errors, the corre-
sponding PANGEA dataset code in table 1 is indicated. (B) The contribution of the systematically varied covariates in table 1 to the presence of
outliers was quantified through partial least squares regression (PLS, see “Materials and Methods” section). The plot shows the contribution of each
predictor to the variance in outlier presence in colors, and the corresponding signs of the regression coefficients are added. Estimates from team
Cambridge could not be characterized due to small sample size. The impact of the error predictors varied across the primary objectives of
phylogenetic inference, as well as the phylogenetic methods used. With regard to estimates of incidence and incidence reduction, a subset of
phylogenetic methods was particularly sensitive to high sequence coverage, a very large proportion of sequences obtained after intervention start,
and a large frequency of viral introductions. With regard to estimates of the proportion of early transmissions, outliers were in several cases best
explained by true differences in the proportion of early transmissions.
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In contrast, with regard to estimates of the proportion of
early transmissions, outliers were in several cases best ex-
plained by true differences in the proportion of early trans-
missions. Several phylogenetic methods had substantial
difficulty estimating frequent early transmissions. Low sam-
pling coverage did not contribute substantially to the pres-
ence of outliers. To substantiate this observation further, we
compared phylogenetic estimates from just before the inter-
vention to those after the intervention, and found no con-
sistent improvements in accuracy with a doubling of
sampling coverage (supplementary fig. S10, Supplementary
Material online). Instead, outlier presence could be explained
through the simulation model, with more outliers on the
Village datasets. These simulations were characterized by
smaller sample sizes and smaller effect size (table 3 and sup
plementary figs. S6 and S7, Supplementary Material online).

Discussion
The PANGEA methods comparison exercise represents a
community-wide effort for advancing the use of phylogenetic
methods to estimate aspects of recent HIV-1 transmission
dynamics of generalized epidemics in sub-Saharan Africa.
This region is affected by the largest HIV-1 epidemics world-
wide. Viral phylogenetics could be a central tool to guide HIV-
1 prevention in these settings (Dennis et al. 2014).

It is not possible for phylogenetic methods to capture all
factors that influence the spread of HIV-1, ranging all the way
from biological factors determining person-to-person trans-
mission (Cohen et al. 2011) to the structure of sexual net-
works on the community level (Gregson et al. 2002; Tanser
et al. 2011), and the broader impact of prevention and care
services (Gardner et al. 2011). Of course, capturing all such
features may not be needed: particular aspects of HIV-1
spread in generalized epidemics could be estimable from se-
quence data under the simplifying assumptions of phyloge-
netic methods, and at relatively low sequence coverage.

To validate this hypothesis from the outset, the PANGEA-
HIV team simulated data under two highly complex HIV
transmission and intervention models, whose components
are considered essential for understanding long-term HIV
transmission dynamics (Eaton et al. 2012). The aspects of
HIV-1 spread evaluated here (table 1) were chosen both be-
cause molecular epidemiological studies into the sources of
transmission and temporal changes in epidemic spread are in
principle feasible (von Wyl et al. 2011; Stadler et al. 2013; Volz
et al. 2013; Dennis et al. 2014; Ratmann et al. 2016), and
because of their relevance to on-going HIV-1 prevention ef-
forts in sub-Saharan Africa. Crucially, the model simulations
were constrained to pessimistic and optimistic projections of
the likely outcomes of on-going HIV-1 prevention efforts in
sub-Saharan Africa (Iwuji et al. 2013; Moore et al. 2013; Hayes
et al. 2014), as well as what sequence data could become
available in these settings.

The methods comparison exercise was challenging. First,
the exercise focused on quantifying recent transmission dy-
namics, whereas HIV-1 sequence data are more routinely
used to characterize the origins and spread of the virus

(Faria et al. 2014), or to undertake descriptive analyses of
putative transmission chains (Brenner et al. 2007; Dennis
et al. 2012). To be precise, the challenge here was in obtaining
quantitative estimates of HIV-1 incidence and the sources of
transmission in generalized epidemics, and to do so close to
the present, when the phylogenetic signal weakens (de Silva
et al. 2012). Second, sequence coverage was relatively low in
most simulations, as is expected for most endemic-phase
settings in sub-Saharan Africa. Furthermore, frequent viral
introductions complicated the interpretation of viral trees,
timelines were tight (3 months for the Village datasets, and
6 months for the Regional datasets), and phylodynamic mod-
els had to represent viral spread in heterogeneous popula-
tions (males and females with different risk profiles). We
aspired to evaluate the extent to which these challenges
can be addressed with full genome HIV-1 sequences, and
through customized phylogenetic methods.

The methods comparison exercise demonstrates that viral
phylogenetic tools can successfully estimate aspects of recent
transmission dynamics of generalized HIV-1 epidemics at
limited sequence coverage of the infected population, when
full-genome sequences are available. Two methods, the ABC
kernel method of team Vancouver and the Bayesian trans-
mission analyzer of team London (table 2), were newly de-
veloped in response to the exercise. The birth–death skyline
model with sampled ancestors (Gavryushkina et al. 2014) and
its multi-type analogue (Kühnert et al. 2016) are readily avail-
able through the BEAST2 software package. The structured
coalescent (Volz et al. 2009) was customized to reflect avail-
able information on the simulated epidemics, and required
considerable resources (roughly 1 week of computation time
on a 64-core machine of 2.5 Ghz processors per analysis). The
methods comparison reflects these different stages in devel-
opment and customization. In this context, the structured
coalescent approach was overall most accurate, producing
accurate estimates of incidence and changes in incidence,
as well as broadly accurate estimates into the proportion of
early transmissions on the Regional simulations from full-
genome sequences. Confidence intervals were sufficiently
tight for epidemiological interpretation, bearing in mind
that uncertainty in tree reconstructions was ignored. This
indicates that the latest generation of viral phylogenetic
methods can complement standard incidence estimation
techniques where full-genome sequences are available from
the general population. The use of sequence data for estimat-
ing incidence trends in sub-Saharan Africa could be particu-
larly useful where demographic and health survey data are
sparse (Pillay et al. 2015), no relevant observational HIV co-
horts exist, or where estimates would otherwise be solely
reliant on data from particular population groups such as
pregnant women (Montana et al. 2008). Further, this study
supports using viral phylogenetic methods for identifying
sources of HIV-1 transmission from full-genome sequences
in certain settings. Broadly accurate estimates into the frac-
tion of transmissions attributable to a population group were
obtained when both transmission from that group was not
infrequent (at least 10%) and sample size was not too small
(thousands of sequences for the HIV-infected populations
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considered). Viral phylogenetic methods could thus help to
quantify the contribution of several other source populations
that are of key interest for prevention in sub-Saharan Africa,
including the proportion of individuals infected within local-
ized high prevalence areas (Tanser et al. 2013), or the propor-
tion of young women infected by male peers (Dellar et al.
2015).

We varied aspects of transmission dynamics and the sam-
pling frame in the simulations, to obtain a more systematic
understanding of methods’ performance (fig. 5). Most phylo-
genetic methods did not identify significant differences be-
tween the high/low early transmission scenarios, and this was
also the case when basic genetic distance measures recovered
differences between the high/low early transmission scenarios
(regional simulations, supplementary fig. S6, Supplementary
Material online). The true proportions of early transmissions
were also frequently outside 95% confidence or credibility
intervals. This indicates that further methods’ improvement
is needed for estimating the proportion of early transmissions,
and potentially for attributing sources of HIV-1 transmission
more broadly at the low sequence coverage scenarios consid-
ered. Further, nearly all participants reported difficulties in
achieving numerical convergence of their methods on full-
genome sequence data (unpublished submission reports).
This could explain the above observations in part, and in
particular why the accuracy of early transmission estimates
did not improve when using larger datasets with higher se-
quence coverage (fig. 5 and supplementary fig. S10,
Supplementary Material online). Further investigations are
needed. Finally, our error analysis suggests that explicit mod-
eling of unobserved source demes (team Cambridge-
London) or identification of spatially localized phylogenetic
clusters prior to transmission analyses (team London) could
be effective approaches for mitigating the negative impact of
viral introductions on phylogenetic analyses on mobile pop-
ulations (Grabowski et al. 2014). The simulated PANGEA
datasets as well as various aspects of the corresponding
true epidemics and interventions are available for future
benchmarking.

This study has limitations. First, phylogenetic methods
were evaluated on simulated HIV-1 epidemics. While the
use of two models guards to some extent against over-
interpretation, analyses of real datasets may be more complex
and could be associated with overall larger error. Of note, the
simulated datasets are free of sequence sampling biases,
which can substantially distort phylogenetic inferences
(Carnegie et al. 2014). Second, the evolutionary components
of the two models generated sequences that do not contain
gaps or sequencing errors, cannot be translated to amino
acids, were correctly aligned, and did not contain recombi-
nant sequences. Viral trees reconstructed from real sequence
data are likely less accurate than those used in this analysis, a
potential source of error that is not represented in our eval-
uations. Frequent recombination could imply that full HIV-1
genomes are more appropriately analyzed on a gene-by-gene
basis (Hollingsworth et al. 2010; Ward et al. 2013), in contrast
to our full-genome analyses of simulated sequences that ex-
cluded recombinants. This limitation is particularly relevant

to epidemic settings in sub-Saharan Africa where multiple
subtypes and recombinant forms circulate at high frequen-
cies. Third, phylogenetic analyses of full-genome sequences
were not compared with similar analyses using shorter frag-
ments of the genome such as, e.g., several 250 base pair re-
gions from the gag, pol or env genes. Full-genome sequences
may not be required for estimating recent changes in HIV-1
incidence or for quantifying the sources of HIV-1 transmis-
sion, and more cost-effective sequencing approaches could
provide similar results.

The PANGEA-HIV methods comparison exercise showed
viral phylogenetic methods can be adapted to provide quan-
titative estimates on aspects of recent HIV-1 transmission
dynamics in sub-Saharan Africa, where sequence coverage
remains limited. On simulations, the structured coalescent
approach was overall most accurate for estimating recent
changes in incidence and the proportion of early transmis-
sions in modeled populations with generalized, and large
HIV-1 epidemics. Future molecular epidemiological analyses
would ideally make use of several of the evaluated phyloge-
netic tools, in order to obtain robust insights into HIV-1
transmission flows and how to disrupt them. Further meth-
ods’ refinement is required to this end, with our analysis
suggesting a focus on estimating the sources of HIV-1 trans-
mission from full-genome HIV-1 sequence data. These find-
ings were obtained through a community-wide, blinded
evaluation, and thereby add confidence into the use and in-
terpretation of viral phylogenetic tools for HIV-1 surveillance
and prevention in sub-Saharan Arica and beyond.

Materials and Methods

Study Design
The blinded PANGEA-HIV methods comparison exercise was
announced in October 2014 at HIV Dynamics & Evolution,
and later on the PANGEA-HIV website. In a training round
(round 1), participants were asked to identify trends in inci-
dence on simulated sequence datasets that were similar in
size to the datasets in table 3, but that had qualitatively dif-
ferent epidemic dynamics. Data included full-genome viral
sequences, patient meta-data, and further broad information
on the simulated epidemic (supplementary text S1,
Supplementary Material online). Participation was unre-
stricted. In December 2014, the training data were un-
blinded. All participants shared their findings. PANGEA-HIV
and the participants agreed on the objectives and reporting
variables listed in table 1; on the timelines for the second final
round; and that participation will be retrospectively restricted
to teams addressing at least one of the pre-specified reporting
variables. Simulation models were updated to include explicit
HIV care and intervention components, and re-calibrated to
generate the epidemic scenarios shown in figures 1 and 2.
Blinded datasets were released on 10 February 2015 (supple
mentary text S2, Supplementary Material online). The dead-
line for submissions was 8 May 2015. Questions and clarifica-
tions during the exercise were disseminated to all
participants. Submissions were checked manually, and teams
were given the opportunity to fix conceptual errors. Few
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submissions to the Regional simulations were obtained, and
the deadline for submission to Regional datasets was ex-
tended to 18 August 2015. The Village simulations were
un-blinded on 14 May 2015, and a preliminary evaluation
was presented and reviewed by all participants at the 22nd
HIV Dynamics & Evolution conference. Teams Vancouver
and Basel-Zürich informed the evaluation group of a concep-
tual misunderstanding of the reporting variables, and pro-
vided updated incidence estimates after the intervention
1 day after the presentation. These updates on the Village
datasets were used in the evaluation reported here. The
Regional datasets were un-blinded on 3 September 2015.

Village Simulations
The Village simulations were generated using the Discrete
Spatial Phylo Simulator with HIV-specific components
(DSPS-HIV, https://github.com/PangeaHIV/DSPS-HIV_
PANGEA; last accessed October 14, 2016). The DSPS-HIV is
an individual-based stochastic simulator which models HIV-1
transmissions along a specifiable contact network of individ-
uals and produces a line-list of all events (Hodcroft 2015).
Viral phylogenies that reflect between- and within-host viral
evolution were generated along transmission chains using
VirusTreeSimulator (https://github.com/PangeaHIV/
VirusTreeSimulator; last accessed October 14, 2016). HIV-1
subtype C sequences were simulated along these viral phy-
logenies using pBUSS (Bielejec et al. 2014), with substitution
rates parameterized from analyses of African subtype C se-
quences. An overview of the simulation pipeline is shown in
figure 1, and details about the parameter values and assump-
tions used in the DSPS-HIV and to generate phylogenies and
sequences are found in supplementary table S2,
Supplementary Material online. Notably, assumptions were
made in sexual mixing partners, partner duration, interven-
tions, sampling, and between- and within-evolution complex-
ity. Disease progression and transmission within the DSPS-
HIV are determined by set-point viral load using previously
described relationships (Fraser et al. 2007). Simulations were
parameterized to reflect estimates of prevalence and inci-
dence from the peak of the HIV-1 epidemic in the late
1980s and early 1990s (Serwadda et al. 1992; Wawer et al.
1994), before treatment was widely available, with the root of
the sequences dating back �40 years previously, coinciding
with the recent subtype C estimates of a common ancestor in
the 1940s (Faria et al. 2014). Further information about the
DSPS-HIV will be available in a forthcoming publication.

Regional Simulations
The Regional simulation model consists of a stochastic,
individual-level epidemic transmission and intervention
model, and an evolutionary model that generates viral phy-
logenies and sequence data to simulated transmission chains.
Figure 1 and supplementary table S1, Supplementary Material
online, describe the overall simulation pipeline, model com-
ponents, parameters, and parameter values. Notably, assump-
tions were made on: sexual risk behavior (proportion of
individuals in risk groups, mixing between risk groups, partner
change rates); HIV infection (relative transmission rates);

interventions (population-level effectiveness of ART);
within-host evolution (neutral coalescent model, no co-
infection and no recombination); between-host evolution
(transmission of one virion, no recombination); and sequence
sampling (at time of diagnosis of randomly selected individ-
uals). To obtain the six epidemic scenarios shown in figure 2,
we varied the relative transmission rate from early infections
as well as parameters relating to uptake of the combination
intervention respectively. The simulation algorithm is avail-
able from https://github.com/olli0601/PANGEA.HIV.sim (last
accessed October 14, 2016), and combines (with further
code): the individual-based HPTN071 (PopART) model ver-
sion 1.1 to generate transmission chains, the
VirusTreeSimulator (https://github.com/PangeaHIV/
VirusTreeSimulator; last accessed October 14, 2016) to gen-
erate viral trees from transmission chains, and SeqGen version
1.3 (Rambaut and Grassly 1997) to simulate viral sequences
along viral trees.

Protocols for Phylogenetic Transmission Analyses
All participants adopted overall similar computational strat-
egies that first reconstructed dated maximum-likelihood trees
(Price et al. 2010; Stamatakis 2014; To et al. 2015), and then
considered the viral trees fixed in one of the following trans-
mission analyses:

ABC Kernel Method
Reporting variables were estimated with an experimental
kernel-ABC method that combines a kernel method on
tree shapes (Poon et al. 2013) with a framework for approx-
imate Bayesian computation (ABC). The basic premise of
ABC is that it is usually easier to simulate data from a model
than to calculate its exact likelihood for the observed data. A
model can then be fit to the observed data by adjusting its
parameters until it yields simulations that resemble these
data, bypassing the calculation of likelihoods altogether. We
formulated a structured compartmental SI model (Jacquez
et al. 1988) that was informed by the descriptions of the
agent-based simulations that were distributed to all partici-
pants. Specifically, the model comprised three populations: a
main local population, a second local high-risk minority pop-
ulation, and an external source population. Each population
was further partitioned into susceptible and infected groups,
where the latter was stratified into three stages of infection
(acute, asymptomatic, and chronic). Mixing rates between
the main and minority local populations were controlled by
two parameters to allow for asymmetric mixing. Individuals
with acute or asymptomatic infections migrated from the
external region to the local region at a constant rate m,
and replaced with new susceptible individuals in the external
region. One infected individual in the external source popu-
lation started the simulation. Coalescent trees were then sim-
ulated based on population trajectories derived from the
numerical solution of the ordinary differential equations
that represent the model, using the R package rcolgem. The
subset tree kernel (Poon et al. 2013) was used as a distance
measure between the simulated coalescent trees and the
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reconstructed viral phylogenies on available sequence data, or
the provided phylogenies. A Markov chain Monte Carlo im-
plementation of ABC was used to fit the model. This kernel-
ABC approach was validated on simulated data from more
conventional compartmental models (Poon 2015).

Birth–Death Skyline Method with Sampled Ancestors
Phylodynamic analyses were performed in BEAST v2.0
(Bouckaert et al. 2014) using the add-ons “bdsky” (Stadler
et al. 2013), “SA” (Gavryushkina et al. 2014) and “bdmm”
(Kühnert et al. 2016). Under the birth–death skyline model
with sampled ancestors (“SA” module), individuals could
transmit with some probability after sampling which im-
proved estimation of the reporting variables in preliminary
analyses (round 1 of the exercise). To estimate the proportion
of early transmissions, the multi-type birth–death model was
used with two compartments (“bdmm” module) to consider
individuals in their first 3 months of infection separately from
those in later stages of infection. In all analyses, time was
partitioned into different intervals to obtain estimates of vary-
ing transmission rates through time. As further described in
supplementary text S3, Supplementary Material online, for
both Village and Regional simulations, lognormal priors
were used for the effective reproductive number (mu¼ 0
and sigma¼ 0.75) and the becoming-non-infectious rate
(lognormal with mu¼�1 and sigma 0.5). Uniform priors
were used for the sampling proportion, and specified based
on available meta-data. For the Village datasets 0, 1, 2, 3, 4, 9,
10, 11 and 12, we assumed a priori a sampling proportion
between 15% and 40%; for Village datasets 5, 6, 7 and 8 be-
tween 40% and 100%; and for the Regional datasets between
5% and 10%. The prior distribution for the removal probabil-
ity r was chosen based on an estimate of the proportion of
sampled infected individuals that are on treatment, and cal-
culated from available survey data before intervention start.
Sensitivity analyses on these prior choices were conducted.
The reporting variables were estimated from MCMC output
of the posterior model parameters using a customized pro-
cedure that is fully described in supplementary text S3,
Supplementary Material online.

Bayesian Transmission Chain Analyser
The Bayesian approach reported in (Didelot et al. 2014) was
adapted to account for incomplete sampling as well as het-
erogeneity in HIV transmission rates. In place of a susceptible-
infectious-recovered (SIR) model (as in Didelot et al. 2014) a
generalized branching model was used to describe transmis-
sion dynamics. In this model, the (prior) time interval be-
tween a case becoming infected and infecting others (tgen)
is distributed such that there is a peak after infection, a
chronic phase, and increased infectivity with progression to
AIDS. Cases were sampled after a random time since becom-
ing infected (tsamp). The prior distribution of the numbers of
secondary cases was negative binomial (n¼ 5, P¼ 0.7), re-
flecting a convolution of a Poisson distribution conditioned
on a gamma-distributed overall infectivity. To account for
infected individuals in transmission chains for whom a

sequence was not available, likelihood terms were adjusted
by numerically calculating the probability that a case infected
at a given time had no sampled descendant cases by the time
the study finished, and then conditioning on each case’s num-
ber of sampled and unsampled descendants. A reversible-
jump Bayesian MCMC approach with proposal moves as
described in (Didelot et al. 2014) was used to fit the model.
This approach produces a posterior collection of trans-
mission trees. From these, we extracted the portion of
infections in the acute stage, recent changes in incidence
and other outcomes required for the comparison study.
The generation time tgen had prior tgen � 0.4
gamma(1.3,1)þ 0.6 gamma(3.5,3.5) where the arguments
are the shape and scale parameters. The time to sampling
had prior tsamp � gamma(0.7, 1.5).

Structured Coalescent
Structured coalescent models were implemented in the rcol-
gem R package and were based on compartmental infectious
disease models using the approach described in (Volz 2012).
These models were tailored to the Regional and Village sce-
narios, and included compartments for stage of infection
(early HIV infection through AIDS as in Cori et al. 2014),
sex, and diagnosis/treatment status. Transmission rates
were allowed to vary between compartments, and general-
ized logistic functions described secular trends in the force of
infection through time. Coalescent models also included a
deme for the unsampled source deme to capture the effects
of lineage importation into the surveyed region. Models were
fitted to the dated viral phylogenetic trees and to available
epidemiological data under the approximation that the cor-
responding likelihood terms are independent. For the
Regional simulations, the contribution to the likelihood
model of the CD4 counts at diagnosis and gender of all se-
quenced individuals was assumed multinomial; the propor-
tion of diagnoses with a sequence was assumed binomial; and
that of survey data (sex, diagnosis, and treatment status) was
assumed multinomial. For the Village simulations, fewer
meta-data variables were available. The likelihood model as-
sumed that estimated HIV prevalence was within the bounds
given by the available survey data. A parallel Bayesian MCMC
technique (Calderhead 2014) was used to obtain posterior
distributions of model parameters.

Statistical Analysis
Phylogenetic estimates and true values were transformed so
that their differences were approximately normally distrib-
uted. For incidence and incidence reductions, the error
ei of response i was calculated as ei ¼ logðx̂iÞ � logðxiÞ,
where x̂i is the phylogenetic estimate and xi the true value
on dataset i; for proportions, the error was calculated as
ei ¼ x̂i � xi. Data points outside the whiskers of Tukey box-
plots were considered as outliers.

To identify covariates associated with large error in phylo-
genetic estimates, stepwise model selection with the
stepGAIV.VR procedure in the gamlss R package was used
to reduce the number of covariates at significance level 0.01
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(supplementary table S4, Supplementary Material online).
The contribution of the remaining covariates to outlier pres-
ence (response) was evaluated with partial least squares (PLS)
regression (Boulesteix and Strimmer 2007), because of the
limited number of datasets and dependencies amongst the
covariates. PLS regression is a dimension reduction technique
that identifies combinations of covariates (PLS latent factors)
that are maximally correlated with the response variable,
and then regresses the response variable against the latent
factors. The first four latent factors that explained most of the
variance in outlier presence were considered in the error
analysis. Figure 5B shows, in the notation of (Boulesteix and
Strimmer 2007), the sign of the PLS regression coefficients Bj1
for each covariate j to the univariate response variable across
the first c ¼ 4 latent factors. The proportion of variance pj in
the response variable attributable to each covariate j is calcu-
lated as pj ¼

Pc
k¼1

wjk

w Þ
2 vk

�
, where wjk is the weight of co-

variate j to the kth latent factor and vk is the variance
explained by the kth latent factor. PLS regression was per-
formed with the plsr routine in the pls R package.

Supplementary Material
Supplementary figures S1–S10, tables S1–S7, and text S1–S4
are available at Molecular Biology and Evolution online.
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