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Abstract: The microecological environment of the gastrointestinal tract is altered if there is an imbal-
ance between the gut microbiota phylases, resulting in a variety of diseases. Moreover, progressive
age not only slows down physical activity but also reduces the fat metabolism pathway, which may
lead to a reduction in the variety of bacterial strains and bacteroidetes’ abundance, promoting firmi-
cutes and proteobacteria growth. As a result, dysbiosis reduces physiological adaptability, boosts
inflammatory markers, generates ROS, and induces the destruction of free radical macromolecules,
leading to sarcopenia in older patients. Research conducted at various levels indicates that the
microbiota of the gut is involved in pathogenesis and can be considered as the causative agent of
several cardiovascular diseases. Local and systematic inflammatory reactions are caused in patients
with heart failure, as ischemia and edema are caused by splanchnic hypoperfusion and enable both
bacterial metabolites and bacteria translocation to enter from an intestinal barrier, which is already
weakened, to the blood circulation. Multiple diseases, such as HF, include healthy microbe-derived
metabolites. These key findings demonstrate that the gut microbiota modulates the host’s metabolism,
either specifically or indirectly, by generating multiple metabolites. Currently, the real procedures
that are an analogy to the symptoms in cardiac pathologies, such as cardiac mass dysfunctions and
modifications, are investigated at a minimum level in older patients. Thus, the purpose of this review
is to summarize the existing knowledge about a particular diet, including trimethylamine, which
usually seems to be effective for the improvement of cardiac and skeletal muscle, such as choline and
L-carnitine, which may aggravate the HF process in sarcopenic patients.

Keywords: sarcopenia; heart failure; trimethylamine-N-oxide; inflammatory mediators; choline;
L-carnitine

1. Introduction

The human intestine microbiota is primarily comprised of four phyla: proteobacteria,
firmicutes, actinobacteria, and bacteroidetes [1]. An imbalance between the gut microbiota
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phylases alters the microecological environment of a gastrointestinal tract, resulting in
numerous diseases. The gut microbiota has many important functions in sustaining
host fitness, including host feeding and energy harvesting, intestinal homeostasis, drug
absorption and toxicity, immune system responsiveness, and pathogen defense. They
can also produce microbial products such as bile acids, trimethylamine-N-oxide (TMAO),
lipopolysaccharides (LPS), vitamin B complexes, vitamin K, uremic toxins, nitric oxide,
fatty acids in the short-chain (SCFA), gut neurotransmitters, and hormones, which can
modify host metabolism and influence both the health and diseases working in the body [2].
Moreover, progressive age not only slows down physical activity but also reduces the fat
metabolism pathway, which may lead to a reduction in the variety of bacterial strains
and bacteroidetes’ abundance, promoting firmicutes and proteobacteria growth. As a result,
dysbiosis reduces physiological adaptability, boosts inflammatory markers, creates ROS,
and induces the destruction of free radical macromolecules, leading to sarcopenia in older
patients [3,4]. As aging became a global epidemic, decreased muscle mass in octogenarians
(or older persons) impaired 5–13% of elderly people between 60 and 70 years old and has
an incidence rate of up to 50% [5]. In a multi-continent sample, sarcopenia prevalence in
the general population was between 12.6% and 17.5% [6].

Sarcopenia may be induced by heart failure via common pathogenetic pathways
and mechanisms influenced by each other, such as physical activities, malnutrition, and
hormonal changes. Prevalence levels are significantly greater in individuals with heart
failure (HF), ranging between 19.5 and 47.3% [7].

Conversely, the development of heart failure may be favored by Sarcopenia via various
mechanisms such as pathological ergoreflexes. It can be considered as a paradox that
the association of sarcopenia is not visible with a sarcopenic cardiac muscle, while non-
functional hypertrophy is displayed by cardiac muscles. In addition, cardiac hypertrophy
can be considered as the normal mechanism of cardiac adaptation to the conditions of a
rise in systemic demand. Cardiac dysfunctions can be caused by a hypertensive state in
pregnancy and even in athletes via the heart’s physiological hypertrophy or via pathological
hypertrophy, which can be triggered by various factors such as hemodynamic stress of
irregular and prolonged nature, i.e., a hypertensive condition [4]. Cardiac cachexia has
long been shown to be associated with decreased survival and this result can be considered
independent of other prognostic variables such as low peak oxygen consumption, age,
NYHA (New York Heritage Association) class, or LVEF (left ventricular ejection fraction) [8].
Additionally, research demonstrates a strong link between micronutrients such as Mg2+ and
cardiovascular health, and highlights the potential pathophysiological pathways through
which Mg2+ depletion may increase the development, progression, and maintenance of
CVD. Indeed, hypomagnesemia has a detrimental effect on cardiovascular health, as it
is linked with an increased prevalence of hypertension, type 2 diabetes, dyslipidemia,
atherosclerosis, arrhythmias, and coronary artery disease [9], all of which are common in
sarcopenia [10].

Enhanced muscle reflex has a significant link with peripheral muscle wastage and,
additionally, the overactivity of muscle reflex can be considered consistent with the idea
that the development of a syndrome is linked to the muscle’s peripheral maladaptive
changes. There are some important factors, such as progressive age, associated with
sarcopenia and the change in gut microbiota diversity. Dysbiosis can also be considered as
an independent cardiovascular risk factor and as responsible for heart failure in elderly
people. Minimal investigations have been conducted in elderly patients regarding the
actual mechanisms, such as concerning cardiac mass alteration and dysfunction, which
are considered equivalent with cardiovascular diseases. They can be concluded as the
downward spiral of dysregulation regarding exercise of the skeletal muscle, which is
suggested by the hypothesis of muscle and can be correlated with certain vicious cycles
in heart failure in which, initially, there are adaptive physiological responses that are
gradually converted into maladaptive responses [11]. Thus, the purpose of this review is to
summarize the existing knowledge about a particular diet including trimethylamine, which
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usually seems to be effective for the improvement of cardiac and skeletal muscle, such as
choline and L-carnitine, which may aggravate the HF process in sarcopenic patients.

2. Consideration of the Sources for the Review of Literature

Certain databases such as Medline, Mendeley, Google Scholar, Public Library of Sci-
ence, PubMed, ScienceDirect, and Springer Link were considered and searched through
for the literature review, searching for studies that were potentially relevant and in which
certain keywords were used both alone and in conjunction. Certain keywords that were
significant and were used for the search of literature were ‘Sarcopenia’, ‘Epidemiology
of sarcopenia’, ‘Mechanism of sarcopenia mediated heart failure’, ‘Involvement of dys-
biosis in sarcopenia’, ‘Pathogenesis of heart failure’, ‘Reactive oxygen species-mediated
mitochondrial dysfunction, ‘Relationship of choline and L-carnitine for muscle function
improvement’ or ‘Role of TMA and TMAO in heart failure, in combination with ‘heart
failure and dysbiosis’, ‘Immunogenic profile in sarcopenia and heart failure’, and ‘ergoreflx
mechanism in sarcopenia associated heart failure’. In this review, only papers in English
were considered. The reference list of the papers found were also screened for related
articles not detected by the initial search strategy.

3. Clinical Characteristics of Sarcopenia in Association with Gut Microbiota Diversity

Sarcopenia can be referred to as the gradual loss in mass of skeletal muscle, the loss of
its strength, and the loss of functions performed, and it is now considered as the major factor
of negative effects of health in the later period of life [12]. In fact, the high pervasiveness of
chronic health conditions can be correlated with old age (e.g., inflammatory irritable bowel
syndrome, celiac disease, autoimmune disease, colitis, diabetes, cancer, cardiovascular
disease, neurodegeneration, and so on), which lead in turn to many negative health events
(e.g., illness, loss of freedom, institutionalization, underprivileged quality of life, and
mortality) [13–15].

The authors established a link between health status, diet, and microbiota. To be more
precise, the composition of the microbial population was predominantly influenced by
fruit, meat, and vegetable intake. Additionally, a higher proportion of two dominant phyla,
namely Firmicutes (64%) and Bacteroidetes (23%), comprise up to 90% of the overall gut
microbiota in older people who are living in long-term care facilities [16–18]). It has been
identified that the level of Staphylococcus spp. and Lactobacillus Reuters, both of which are
from phylum firmicutes, is high in obese people. A positive correlation has been established
between plasma > C-reactive protein (CRP) and plasma [19,20]. Moreover, older people
are primarily affected by a rise in Escherichia (phylum of proteobacteria) abundance [16].
However, it is understood that an increase in gram-negative bacteria such as proteobacteria
in their relative abundance is one of the most significant harmful age-changes for the
human intestinal microbiota composition, as lipopolysaccharides are secreted by these
gram-negative bacteria, through which inflammation can be induced in the intestines [21].
Advancing age can also be characterized by a gastrointestinal microbiota’s dysbiosis, which
promotes the circulation passage of endotoxin and other microbial products or metabolites
via the increased permeability of the intestine [22], thereby highlighting the influential role
of gut dysbiosis for deficits in muscle functions associated with age. Sarcopenic patients
have increased serum c-reactive protein (CRP) levels, while trials with other inflammatory
mediators such as interleukin 6 have not shown consistent results [23].

In addition, the maintenance of sarcopenia is supported by the insufficient nutritional
system and aged immune system, which play key roles in stimulating the activation of
chronic inflammation [24,25]. In cachexia and sarcopenia, however, mitochondrial and
systemic inflammation plays a central role. The proinflammatory role of cytokines (e.g.,
IL6, IL1β, TNF-α, and TNF-style weak apoptosis inducer (TWEAK)) has previously been
reported in inducting muscle catabolism [26] (Figure 1).
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Figure 1. Representation of the relationship of gut microbiota dysbiosis-mediated sarcopenia in elderly people.

4. Dietary Intake Choline and L-Carnitine-Mediated Aggravation of CVD

Choline/L-carnitine was investigated as an ergogenic aid for improving the training
ability of a stable athletic population due to its pivotal role in the oxidation of fatty acids and
energy metabolism. Beneficial impacts on acute physical performance, such as increased
power production and increased intake of maximum oxygen, were observed in earlier
research studies and further studies show the beneficial influence of L-carnitine as a
dietary supplementation in the post-exercise recovery process. L-carnitine has been shown
to alleviate the injury of muscles and condenses’ cellular damage markers, and muscle
soreness attenuation is accompanied by free radical formation [27].

In 2013, researchers first demonstrated that a molecular metabolite, namely trimethyla-
mine-N-oxide (TMAO) isolated from the microbiota of the gut, predicted that 4007 healthy
cardiac patients will be enduring elective coronary angiography with an excepted in-
creased risk of cardiovascular accidents [28]. TMAO is produced by microbiota via the
ingestion of meat products containing nutritional precursors of trimethylamine, such as
phosphatidylcholine, glycerophosphocholine, trimethylglycine, betaine, γ-butyrobetaine,
crotonobetaine, choline, and L-carnitine [28–31]. Specific intestinal microbial enzymes con-
vert these precursors into trimethylamine and to date, they have identified four different
types of microbial enzyme systems including choline-TMA lyase (cutC/D) [32], carnitine
monooxygenase (cntA/B) [33], betaine reductase [34], and TMAO reductase [35]. Recently,
it has also been demonstrated that elevated L-carnitine, choline, and phosphatidylcholine
amounts reflect multiple cardiovascular hazards such as myocardial infarction, hyperten-
sion, atherosclerosis, and diabetes [36–43].

Change in the microbiota composition of the gut caused by sarcopenia and heart failure
can alter the circulating levels of TMAO. Moreover, it has been identified that hypertension
patients experience an alteration in intestinal microbiota diversity. Experiments conducted
on rats who were treated with angiotensin II revealed that intestinal biota species were less
diverse and when compared to regulated rats, the Firmicutes to Bacteroidetes ratio was
increased [44,45]. Moreover, heart failure was considered a chronic systemic inflammatory
disorder, which indicates a substantial rise in pro-inflammatory cytokines of plasma;
although its origin is still unclear, this unresolved inflammation can be considered as one of
the key components of cardiovascular diseases [46,47]. Several occurring signs indicate that
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the microbiota of the gut produces bioactive metabolites including bile acids, short chains
of fatty acids, and TMAO, and might have systemic effects on the host [48]. Microbiotas and
their metabolites affect intestinal health and other physiological processes, especially within
the circulatory system. Under normal circumstances, most can be considered as healthy and
safe bacterial metabolites, but due to the involvement of heart-failure-related cardiovascular
pathologic processes, there is a risk of disruption in the balance of the microbiota of the
gut as well as a risk of a rise in the level of harmful metabolites; generally, it was shown
in studies that TMAO was found to be related with the prognosis of at-risk heart-failure
patients. Moreover, Firmicutes, including Enterococcus, Proteobacteria, Anaerococcus,
Streptococcus, and Desulfitobacterium including Actinobacteria, Clostridium, Citrobacter,
Dseulfovibrio Enterobacter, Escherichia, Proteus, Pseudomonas, and Klebsiella, have been
linked with the production of the primary component of TMAO, i.e., TMA [49].

One research study found that eight Firmicute and Proteobacteria species have ab-
sorbed more than 60% of the production of choline of TMA, including Escherichia fer-
gusonii, Clostridium asparagiforme, C. hathawayi, C. sporogenes, Edwardsiella tarda
Anaerococcus hydrogenalis, Proteus penneri, and Providencia rettgeri [50]. Akkermansia,
Prevotella, and Sporobacter are some other gut microbiota that are associated with the
higher production of TMAO [51], and atherosclerotic CAD is associated with Ruminococ-
cus gnavus [52]. The growth of CAD may be predicted via different metabolites such as
betaine, choline, and TMA. It can be explained, for instance, by considering that TMAO-
producing microbes can be reduced by blocking or inhibiting specific microbial metabolic
pathways via utilizing pharmacological intervention and probiotics [53]. Furthermore,
the increased level of Ruminococcus is due to the high fat and high protein diet [54], and
additionally, downregulation of Treg cells is led by TLR4 activation, which is associated
with inflammatory responses such as CD4, Pro-inflammatory cytokines, and Th1 and T
cells [55,56]. Thus, we explore, from top to bottom, all of the contributing factors associated
with CVD.

5. Pathobiological Interactions in Heart Failure Involving TMAO

Mechanisms of heart failure pathophysiological pathways are quite intricate and
include inflammatory reaction, hemodynamics irregularity, cardiac remodeling, neuroen-
docrine system stimulation, etc. Traditionally, the key causes of heart failure are supposed
to be the activation of the pathways of the neuroendocrine system, which include the
natriuretic peptide system, renin-angiotensin-aldosterone cascade, and sympathetic ner-
vous system, which lead to a pathologic myocardial remodeling process series including
apoptosis, extracellular matrix deposition, myocardial hypertrophy, and resultant fibro-
sis [57,58]. Hence, neuroendocrine inhibition is the main basis of the strategies of current
treatments [59]. Mechanisms driving the development and progression of heart failure
are, however, still under consideration. In the conversion of dietary choline into the in-
termediate trimethylamine (TMA), a requisite role is played by microbiota of the gut and
TMAO is formed by the subsequent oxidization of TMA after it enters into the circulatory
system by the flavin-containing monooxygenase (FMO) enzyme, which is encoded by
the FMO gene present in the kidney, liver, and in many other tissues [60,61]. There is
an increase in the permeability of the intestinal barrier via two mechanisms in the con-
dition of heart failure, in which during the initial stage, a decreased inflow of blood to
the intestinal endothelium is observed, and via the ischemia of the wall of the intestine,
there is an increase in the permeability of the intestinal epithelial barrier [62]. Due to the
intestinal wall’s congestion and swelling in the advanced stages of heart failure, there is
an increase in the permeability of the intestine. Additionally, in the patients identified
with chronic heart failure, higher levels of enteropathogenic candida, such as Campy-
lobacter, Shigella, and Salmonella, were observed [63]. This process is directly linked
with microbial and microbial metabolite translocation [64,65]. Recent research evidence
indicates that chronic inflammation can be caused by both an increase in the permeability
and an increase in the disordered microbiota of the intestine, further leading to impaired
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cardiac function [62,66]. In addition, studies have shown that there are severe clinical
symptoms and worse survival rates associated with patients with heart failure, which
are due to the elevated serum levels of multiple cytokines, such as IL-1, IL-6, and the
TNF [67–69]. This is consistent with findings that both heart failure and sarcopenic patients
have an elevated proportion of these bacterial strains of the intestine, indicating shifts in
intestinal microbiota, which may influence levels of TMAO by controlling intestinal TMA
synthesis. TMAO has recently become a major mediator showing that the microbiota of
the gut has a close relationship with several CVDs. Subsequent preclinical experiments
explored the evidence concerning that the heart is directly affected by the TMAO, inducing
endothelial cell and vascular inflammation, fibrosis and myocardial hypertrophy, and heart
mitochondrial dysfunction, thus aggravating the heart-failure process [70–72]. In addition,
the association of TMAO is established with both the C-reactive protein (CRP) and with
endothelial dysfunction in evaluating the increased permeability of the gut, and is closely
related to increased LPS endotoxin serum levels [49], leading to the release of calcium and
the hyperreactivity of the platelets [73], contributing to the aggravation of heart failure. The
several key pathophysiological pathways of TMAO include the following: explicitly and
implicitly contributing in heart failure, including through the pathological LV dilation of
the mouse-fed TMAO or choline-demonstrated decreased LVEF, and enhanced circulatory
BNP volumes, myocardial fibrosis, and lung oedema [31]; TMAO-encouraged myocar-
dial hypertrophy and fibrosis through Smad3 signals [71]; cardiac remodeling attenuated
through 3,3-dimethyl-1-butanol via the reduction in the volume of plasma TMAO, which
modifies the signals of TGF-β1/Smad3 and p65 NF-kB [74]; TMAO-promoted activated
leukocyte recruitment into endothelial cells and induced inflammatory gene expression via
the activation of NF-kB signaling [75]; TMAO significantly affected the contractile nature of
cardiomyocyte and intracellular calcium-handling in the negative direction [76]; Pyruvates
and fatty acid oxidation in cardiac mitochondria is influenced by TMAO [70]; and, last
but not least, TMAO stimulated vascular inflammation by triggering the inflammatory
NLRP3 induced by inhibiting SIRT3-SOD2–mitochondrial ROS signaling pathway [77].
Moreover, the function of TMAO, as first assessed by Suzuki et al. [78] in acute HF (AHF),
was found to be a predicting marker for mortality and mortality/heart failure within a year
(Table 1) [79].

Table 1. TMA metabolism-targeting therapeutic methods.

Therapy Alteration in Biotransformation TMA Implications

Inhibition of the
FMO3 enzyme Prevents oxidation of TMA to TMAO

Trimethylaminuria is caused by an accumulation
of TMA and is characterized by a fishy odor. It

may also cause inflammation. Additionally, FMO3
metabolizes a wide variety of other compounds.

Resveratrol Modifies the makeup of the gut microbiota.
Reduces the formation of TMA and TMAO

Increases Lactobacillus and Bifidobacterium. When
antibiotics are taken, no adverse effects occur.

Observed in mice studies.

Enalapril Increases TMAO excretion in the urine
Mechanism unknown. Rat studies were conducted.
It does not affect TMA synthesis or the makeup of

the gut flora.

Prebiotics
Induces a beneficial effect on the makeup of the

gut bacteria to reduce TMA production
in the intestine

In humans, the consequences are unknown.
Numerous variables affect the makeup of

the gut microbiota.

Probiotics (I):
Methanogenic bacteria Reduces TMA and TMAO levels Human safety and engraftment are unknown.

Probiotics (II): Bacteria
incapable of converting

precursors to TMA
Reduces the production of TMA in the gut Mice show beneficial benefits. However, the

consequences on people remain unknown.



Nutrients 2021, 13, 3453 7 of 12

Table 1. Cont.

Therapy Alteration in Biotransformation TMA Implications

Meldonium
Reduces the production of TMAO from

L-carnitine (GBB conversion to L-carnitine
is inhibited)

TMAO production from choline cannot be reduced.
It may result in a rise in the urine excretion of

TMAO in people.

Oral non-absorbent
binders

Eliminates TMAO or any of its precursors from
the gut

A speculative approach. There has not yet been
found a chemical capable of removing

TMAO specifically.

Additionally, an independent cohort of ambulatory individuals with persistent sys-
tolic HF supports our results and provides new insights on the link between the three
phosphatidylcholine metabolic isomers, namely TMAO, choline, and betaine, considering
echocardiographic determinants and the associations between both renal and inflammatory
biomarkers. Numerous noteworthy discoveries have been made. To begin, we found that
TMAO had a superior predictive value to choline and betaine in patients with chronic
systolic heart failure, regardless of the cardio-renal parameters. Second, rather than LV
systolic dysfunction, we found associations between all three metabolites and LV diastolic
dysfunction. Thirdly, the very low correlations between TMAO, choline, and betaine
in many well-characterized inflammatory biomarkers and in their distinct associations
with endothelial dysfunction indicators indicated the existence of a separate pathophysi-
ological mechanism. Notably, the increased TMAO levels seen in individuals with renal
insufficiency or diabetes mellitus suggest an underlying metabolic deficiency associated
with those disease states rather than a systemic inflammatory response. Nonetheless,
the relationship between increased TMAO and both HF severity and adverse outcomes,
irrespective of other cardio-renal indices, argues for a possible harmful molecular link
between the gut microbiota pathway that generates TMAO and the development and/or
progression of HF. Notably, this is a cohort of ambulatory stable heart failure patients with
left ventricular systolic dysfunction and with an annualized mortality of 7.1% (considering
transplantation as the equivalent of death), which is not dissimilar to that seen in published
clinical trials. Taken together, our results validate the clinical relevance of TMAO levels
in heart failure and indicate that further research is needed to elucidate the association’s
molecular underpinnings. However, after tuning for the parameters of renal function,
the capacity of the TMAO to independently forecast is lost, likely due to the substantial
correlations between the parameters of renal function (approximate glomerular filtration
rate and urea) and TMAO. These findings indicate that a higher degree of “backward
failure” (congestion associated with scarring or ischemia) rather than “forward failure”
(or reduced perfusion) may be linked with the main metabolic deficiency underlying the
observed correlations. Consistent with this, correlations between choline and renal func-
tion indices were seen for both choline and TMAO, although the link between TMAO
and adverse outcomes in individuals persisted even after adjusting for renal function.
The purpose of this study was to investigate the connection between (1) the intestinal
microbiota-dependent analyte TMAO and its dietary precursors, namely and choline and
betaine, and (2) echocardiographic indicators in sarcopenic patients with chronic systolic
heart failure [80,81] (Figure 2).
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6. Conclusions

Sarcopenia is common in cases of heart failure, leading to inadequate disease prog-
nosis. While the pathophysiology of muscle wastage is quite complicated in heart failure,
multiple pathogenetic mechanisms tend to be shared by sarcopenia and heart failure, and
they can benefit from strategies of standard treatment focused on a nutritional, physical,
and pharmacological approach. In recent years, several studies have identified a clear
correlation between CVDs and the microbiota of the gut. We already know that TMAO,
a gut microbiota metabolite, may have fresh perspectives and insights regarding how heart
failure is supported by the microbiota of the gut. These findings provide a good opportu-
nity for controlling heart failure via addressing the microbiota of the gut, including through
the use of updated probiotics, prebiotics, dietary therapy, and FMT. Moreover, emerging
research from different groups and clinical findings reveal the association between the
dysfunction of the microbiota of the gut, the TMAO circulation, and the susceptibility of
heart failure, indicating a fresh and desirable therapeutic target for HF treatment. Further-
more, excessive intake of a diet such as choline or L-carnitine, which contain intermediate
precursor TMA for TMAO, should be carefully used in elderly people who have dysbiosis
with muscle disorders. Future research studies are warranted.
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