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ABSTRACT Reconstruction of target genomes from sequence data produced by instruments that are
agnostic as to the species-of-origin may be confounded by contaminant DNA. Whether introduced during
sample processing or through co-extraction alongside the target DNA, if insufficient care is taken during the
assembly process, the final assembled genome may be a mixture of data from several species. Such
assemblies can confound sequence-based biological inference and, when deposited in public databases,
may be included in downstream analyses by users unaware of underlying problems. We present
BlobToolKit, a software suite to aid researchers in identifying and isolating non-target data in draft and
publicly available genome assemblies. BlobToolKit can be used to process assembly, read and analysis files
for fully reproducible interactive exploration in the browser-based Viewer. BlobToolKit can be used during
assembly to filter non-target DNA, helping researchers produce assemblies with high biological credibility.
We have been running an automated BlobToolKit pipeline on eukaryotic assemblies publicly available in
the International Nucleotide Sequence Data Collaboration and are making the results available through a
public instance of the Viewer at https://blobtoolkit.genomehubs.org/view. We aim to complete analysis
of all publicly available genomes and then maintain currency with the flow of new genomes. We have
worked to embed these views into the presentation of genome assemblies at the European Nucleotide
Archive, providing an indication of assembly quality alongside the public record with links out to allow full
exploration in the Viewer.
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Genome sequences are part of the basic data economy of modern
bioscience. Using assembled genomes, it is possible to identify loci
underpinning key traits of interest, discover the regulatory logic of gene
expression, investigate disease processes, and explore the evolutionary
historiesof genesandspecies.These researchprograms rely implicitlyon
the correctness of the genome sequences. Errors in genome sequences
risk distracting or even derailing their effective use.

Assembly of true genome sequences from reads shorter than the
length of a replicon remains a difficult task (Ekblom and Wolf 2014).
This task is made more complex when isolation of the original samples
or the processing of DNA to generate the raw sequence data cannot
avoid contamination of the target genome with DNA from non-target
sources (Salzberg et al. 2005; Salter et al. 2014). Sequencing instruments
are agnostic as to species-of-origin of the fragments they are taskedwith
processing, and thus a contaminated sample will result in a contami-
nated raw dataset. If insufficient care is taken during the assembly
process, this can mean that the final assembled genome is a mixture
of data from several species, and cannot be used as a good representa-
tion of the target species (Merchant et al. 2014). Downstream, this can
result in erroneous attribution of biochemical or genetic properties to
the target species that are actually derived from the contaminants’
genomes (Artamonova et al. 2015; Arakawa 2016).

However, not all “contaminants” are uninteresting. Many eukary-
otic species live in close biological association with symbionts, and
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many bacteria exist in, and can only be grown as, consortia of interact-
ing species (López-García et al. 2017). In these systems genome se-
quencing aims to reconstruct the genomes of all the independent
species and strains involved (Kumar and Blaxter 2011).

We are developing BlobToolKit, a software suite that will aid
researchers in identifying contamination before it is erroneously blessed
as beingpart of a target genomeand to separate sequences that belong to
different members of biological consortia. BlobToolKit is based on
BlobTools written by Dominik Laetsch (Laetsch and Blaxter 2017)
which was in turn based on the original Blobology pipeline from Sujai
Kumar (Kumar et al. 2013). We present a toolkit that has been re-
written in its entirety to make use of advanced web frameworks and
visualization. Like its progenitors, BlobToolKit uses GC proportion and
coverage as two major axes on which contigs or scaffolds from an
assembly can be displayed and overlays a taxonomic assignment to
help separate the signal from noise when using these measures to
identify sequence from different sources.

Genomes from different taxa frequently have different mean GC
proportion, with values ranging from 34–50% among monocot species
(�Smarda et al. 2014), 44–58% amongmammals (Romiguier et al. 2010)
and 16–75% among bacteria (Lightfield et al. 2011). Intra-genomic GC
proportion typically shows a unimodal distribution around a mean
value, particularly in bacteria (Bohlin et al. 2010), however, regions
of differing composition may yield bi- (or multi-) modal distributions
(Salinas et al. 1988). These intragenomic differences result from bi-
ological processes, such as biased gene conversion (Galtier et al.
2001), and may be as large or larger than differences between species
(e.g., 35–60% in the human genome (Lander et al. 2001)). Primary
separation of sequences from different sources may be possible on this
axis, provided the organisms have distinct mean values with relatively
little deviation.

The read coverage of each contig or scaffold in an assembly is an
estimate of the relative stoichiometry of the replicon from which it
derives. All the contigs or scaffolds from one species should have similar
coverage, however, as with GC content, there are a number of con-
founding factors to consider. Organelles will usually have high coverage
relative to the nuclear genome (Bakker et al. 2016) and collapsed seg-
mental duplications in the assembly will also have elevated coverage
(Bailey et al. 2002). Sex chromosomes are expected to have 50% cov-
erage in the heterogametic sex (Tomaszkiewicz et al. 2017) and uncol-
lapsed haploid segments of autosomes will also have 50% coverage.
Contaminant or cobiont genomes are likely to have different, internally
consistent stoichiometry, in which case they may be distinguished on
this axis.

To provide initial identification of sets of contigs or scaffolds from
distinct taxa, BlobToolKit also decorates each scaffold or contig with a
taxonomic attribution. This is assessed using the sequence similarity
search tools BLAST (Altschul 1997) and Diamond (Buchfink et al.
2015) to perform local alignments against public sequence databases
to identify the most closely matching sequences. Two tools are used as
BLAST is most efficient at identifying closely related sequences in
nucleotide databases, while Diamond is more efficient when searching
against protein databases (Buchfink et al. 2015). This taxonomic attri-
bution is tentative due to the presence of mis-annotated records in the
public databases. In conjunction with GC proportion and coverage
measures this serves to highlight clusters (or blobs) of contigs that share
distinct properties and coherent taxonomic source.

This richly marked-up annotation of the assemblymakes it possible
to assess whether it derives from single or multiple source organisms.
The BlobToolKit data can be used to separate contigs and scaffolds
(and the reads that generated them) into separate bins for subsequent

reanalyses. BlobToolKit can be used as part of the process of genome
assembly, playinga roleboth inseparatingrawinputdata for assemblyof
distinct components and in quality assurance of the final product. For
genomeassemblies releasedpublicly,BlobToolKit canbeusedtoprovide
quality assurance and to identify issues that should be taken into
consideration in downstream reuse of the data.

Herewepresent the latest versionofBlobToolKit, showhow it canbe
used to probe the integrity of genome assemblies, describe the visual-
izations available and present snapshots of our ongoing BlobToolKit
analyses of all eukaryotic genome assemblies available in the European
Nucleotide Archive (ENA) (Amid et al. 2019).

MATERIALS AND METHODS
BlobToolKit is comprised of four distinct components: BlobTools2
(command line tools to create andfilterdatasets), Specification (a formal
specification and validator for the JSON-based data format), Viewer
(interactive dataset visualization), and INSDC-pipeline (a Snake-
make pipeline to run the BlobToolKit workflow on publicly available
datasets). A Docker image (BlobToolKit-Docker) containing each of
these components and their dependencies is also available.

BlobTools2
BlobTools2 is a command line program to import a genome assembly
together with BLAST, Diamond, read mapping and BUSCO analysis
output files to generate a dataset that can be filtered using the
command line and/or explored interactively in a web browser using
the BlobToolKit Viewer.

BlobDir format
BlobTools2 is a re-implementation of BlobTools (Laetsch and Blaxter
2017), written in python3 and based around a BlobDir directory of
JSON format files. This data structure has been chosen as it can be
easily validated using JSON-schema and is highly extensible. Separate
JSON files contain distinct attributes of the assembly, with one entry
per contig or scaffold. The attributes include GC proportion, length,
coverage from a single sequencing library, taxonomic inference based
on BLAST hits. Because the attributes are treated as generic datatypes
(identifiers, variables, categories, arrays of categories or variables and
arrays of arrays), it is possible to incorporate results from new analyses
without making significant changes to the codebase. Field metadata are
collated in a single JSON file allowing basic dataset information to be
accessed without loading the full set of values. JSON is the native
format for the JavaScript-based BlobToolKit Viewer and the typical
patterns of use require computation across all data for a given at-
tribute at once. Because the Viewer architecture inverts the usual
server-client model, pushing computation to the client, this BlobDir
format was favored for efficiency of data access over alternatives
such as SQLite or HDF5.

Adding data to a BlobDir

Assembly: The minimum input required to create a new BlobDir
dataset is a FASTA format assembly sequence file. This is parsed
to generate a list of sequence identifiers, along with a set of basic,
per-sequence statistics (length, GC proportion and undefined [N]
bases). Additional metadata, including assembly accessions and tax-
onomic information can be provided for inclusion in the dataset
metadata and, if an NCBI taxonomy ID (taxid) is provided, ex-
panded taxonomic lineage details will be included. The BlobDir
can be modified, for example, to add attributes based on new anal-
yses, using the BlobTools2 add command.
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Coverage: Both base and read coverage are calculated for each contig by
parsing read alignment files in BAM, SAM or CRAM formats using the
pysam library (https://github.com/pysam-developers/pysam).

Taxonomy: Taxonomy information is assigned to contigs and scaffolds
through parsing of similarity searches of taxonomically-annotated se-
quence databases. Rather than simply use a single, top-scoring hit for
each contig or scaffold, BlobTools2 uses simple taxonomy rules (tax-
rules) to deliver a best-supported assignment. BlobTools2 deploys
taxrules introduced in BlobTools to assign putative taxonomic associ-
ations to sequence contigs: bestsum (total bitscore of all hits across all
databases) and bestsumorder (total bitscore from a single database
search, with scores taken from successive databases for contigs or scaf-
folds that failed to identify hits in the first). In a typical use case a file of
NCBI BLAST+ blastn hits to the NCBI nt nucleotide database and a file
of Diamond blastx hits to the UniProt/SwissProt database are supplied
to be processed under one of these taxrules to generate a set of JSON
files. For each of eight taxonomic ranks from superkingdom to
species, files are generated containing the most likely taxon name,
the summed bitscore of all hits to that taxon, a c-index value in-
dicating the number of alternate taxa at that rank, and taxon names
for every hit to each contig or scaffold. An additional file shows the
location, score and taxid for every hit, information that is indepen-
dent of the taxonomic rank under consideration. Results are split
across multiple files to allow faster access to individual components
during subsequent analyses.

BUSCO: As an example of the incorporation of new analyses, BUSCO
(Benchmarking Universal Single-Copy Orthologs), a widely used tool
for quality assessment of genome assemblies (Waterhouse et al. 2018)
generates a sparse annotation where a few contigs are decorated with
the presence of a BUSCO reference gene. BlobTools2 incorporates
BUSCO using the same basic datatype as BLAST hit distributions.
The only unique code occurs in a specially written parser module for
the BUSCO file format.

Hyperlinks: Hyperlink templates can also be added to the BlobDir
metadata to allow hyperlinks from assembly/taxon identifiers, individ-
ual sequence identifiers or individual BLAST/Diamond hits to external
resources.

Applying filters
BlobTools2 supports filtering based on any of the contig/scaffold level
attributes in a dataset. All filters can be applied to assembly, read or
analysis files or to BlobDir datasets. This allows subsets of both input
files and datasets to be obtained without the need to use external
command line tools as was the case for previous blobology/BlobTools
implementations.

Variable attributes, suchasGCproportionor length canbefiltered to
include or exclude scaffolds with a given range of values by setting a
maximum and/or minimum. Category attributes (principally taxo-
nomic assignments) can be filtered by presence or absence of one or
more keys. For example, to exclude all scaffolds with ‘no-hit’ at the
phylum level, or to include only scaffolds assigned to the superkingdom
‘Eukaryota’. A list of scaffold identifiers can also be used as the basis for
filtering to keep or exclude records associated with specific sequences.

Filteringofassemblyandreadfiles canassist in theprocessof iterative
assembly improvement, while filtering of analysis files and datasetsmay
allow more detailed interrogation of subsets of the data in the Blob-
ToolKit viewer without the need to repeat analyses or filter analysis
outputs for re-importing.

Specification
The BlobToolKit Specification describes the file formats required by
BlobTools2 and the BlobToolKit Viewer and includes a validator
that tests a BlobDir dataset for departures from the specification. Use
of JSON format allows validation with JSON-schema. While basic val-
idation is possible with a static schema, the validator generates and tests
against dynamically generated schemas to allow for the dependence of
some metadata values on the presence and content of data in field-
specific files. Validation includes type checking, testing for presence and
content of expected files and assessing metadata ranges against the
values present in corresponding field files.

BlobToolKit Viewer
The BlobToolKit Viewer allows interactive exploration of BlobDir data-
sets produced by BlobTools2.

Application programming interface
All data in a BlobDir can be made available through an application
programming interface (API) implemented using the Express Node.js
web framework (https://expressjs.com/). The API provides search
functionality against entries in the assembly and taxon sections of
the metadata along with direct access to datasets, fields and indi-
vidual records within fields. Full API documentation is available at
https://blobtoolkit.genomehubs.org/api-docs/.

Interactive data exploration
The BlobToolKit Viewer presents data retrieved via the API in a set of
interactive views for dataset visualization, exploration and filtering. The
Viewer is built on the React (https://reactjs.org) JavaScript library. It
makes extensive use of Redux and reselect frameworks to allow real-
time interaction with genome-scale datasets in client web browsers.
This makes it practical to host large numbers of publicly accessible
datasets on a server with a relatively small footprint. For datasets that
are too large to be processed on the fly (including those withmillions of
contigs), pre-generated static image files can be served in place of the
interactive views. Interactive plots are powered by the d3 data visual-
ization library (https://d3js.org) and all plots can be exported directly as
PNG or SVG image files.

Filters view: The Viewer supports the same set of filter parameters as
BlobTools2. Filter controls provide a graphic representation of category
or variable distributions. To reduce network overheads, only data
for active fields are loaded into the browser and the filter view provides
an indication of which data are currently available. All views update
instantly based on changes to filters.

Blob view: Blobology and BlobTools introduced the blob plot in which
contigs are represented as circles with areas proportional to contig
length.This representationhas several computational and interpretation
issues. Circles are computationally expensive to plot, and rendering of
datasets with many contigs (some published assemblies have over
1 million) makes it impossible to see all the data. While the scaled
circle view is available in the Viewer, a square-binned blob plot of GC
proportion vs. coverage is the default view when opening a new
dataset. The squares are scaled to the square-root of the sum of
lengths of contigs within each bin and colored by best-matching
phylum (Figure 1A). Binning resolves problems with scaled circles
by limiting the number of data points that need to be plotted, re-
ducing both the computational expense and the potential for data to
be obscured.
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Binning effectively divides the plot into an evenly-spaced grid
(of squares or hexagons) so the area of each color on the plot is pro-
portional to the total span of contigs assigned to each category. Where
multiple categories are represented inasinglebin, the squaresare rendered
in size order so each category remains visible in a set of concentric squares.

Binning parameters such as the resolution (how many divisions on
eachaxis) and scaling function (alternatives to square-root are linear and
logarithmicscales)canbechangedinteractivelyandupdateon theplot in
real time. This can be a useful way to explore features that are not
immediately clear in a static image. Alternative scaling functions can

Figure 1 Assembly views available in the BlobToolKit Viewer, illustrated using the Drosophila albomicans assembly ACVV01 (Zhou et al. 2012).
(A) Square-binned blob plot showing the distribution of assembly scaffolds on GC proportion and coverage axes. Squares within each bin are
colored according to taxonomic annotation and scaled according to total span. Scaffolds within each bin can be selected for further investigation.
(B) Cumulative assembly span plot showing curves for subsets of scaffolds assigned to each phylum relative to the overall assembly. (C) Snail plot
summary of assembly statistics. (D) BUSCO scores allow selection of all scaffolds with a BUSCO reference gene in each category. These images
derive from analyses of the whole assembly. Each view updates automatically in response to any filters or selections that are applied to the
dataset. This figure can be regenerated, and explored further, using the URLs given in File S1.
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increase or reduce the prominence of smaller values, for example using a
log scale can increase the relative size of squares for categories with a
small total spanrelative to the target taxon,potentiallymaking it easier to
identify contaminants or cobionts.

Binning effectively divides the plot into an evenly-spaced grid
(of squares or hexagons), making it straightforward to select all contigs
withinachosenGCproportion-coveragebin.Adjusting the resolutionof
the plot canmake each bin larger (e.g., to facilitate the selection ofmajor
features), or smaller to highlight fine-scale patterns, such as the off-axis
bimodality associated with heterozygosity.

These options are available for plots of any variable in the dataset
against any other variable, for example, to allow coverage vs. coverage
plots to identify contigs that are only supported by one sequencing
library. Categories may be assigned based on any of the taxonomic
ranks that have been calculated.

Cumulative view: The Cumulative view is a commonly used repre-
sentationof the fractionof thegenomethat is representedas size-ordered
contigs are added to the assembly (Figure 1B). These plots also show this
cumulative distribution broken down according to taxonomic assign-
ments (the default is by phylum) and allow these separate curves to be
stacked to show cumulative span by taxon.

Snail view: TheSnail view is a reimplementationof interactive assembly
statistic plots introduced in the Lepbase project (Challis et al. 2016).
These capture a rich variety of assembly properties in a single dynamic
graphic (Figure 1C). Snail plots can highlight specific features of an
assembly that may not be immediately apparent from tabulated data.

BUSCO view: If BUSCOscores are added to a dataset, the BUSCOview
shows a summary of the counts in each BUSCO category (complete,
fragmented, etc.) under the current set of filters Figure 1D. It also allows
selection of all contigs within a BUSCO category so that their distribu-
tion can be seen in the Blob view or the contigs can be inspected in the
Table view. These interactions with other views make it possible to
assess the impact of possible cobionts on the overall BUSCO score
for an assembly.

Table view: The Table view shows information for each contig for each
currently active attribute. The available columns can be controlled by
activating or deactivating individual attributes in the Filters view. The
default columns show the GC proportion, length, coverage and taxo-
nomic assignment that are used to generate plots in the Blob and
Cumulative views. Individual records can be selected (either to view
their position in the Blob view or for use in filtering) and rows can be
sorted according to selected status or by any of the attribute values.

Hit view: TheHit viewshows thedistributionof sequence similarityhits
to sequence databases along a single contig and can be accessed from the
Table view of contigs, and is particularly useful for investigating contigs
or scaffolds with unexpected or conflicting taxonomic attribution. The
hyperlink functionality can be used to embed links to associated records
in public sequence databases.

Detail view:Asubset of datasetmetadata is presented in a tabularDetail
view, together with optional links to external resources. Full dataset
metadata can be retrieved in JSON format.

Reproducible analyses: Sharing analyses reproducibly is critical, par-
ticularly when many choices have been made to generate a particular
filtered dataset or image. To aid in reproducibility the Viewer encodes

query parameters within the URL for the displayed data. Parameters
developed during interactive filtering can be applied in BlobTools2
(specified individually or using the entire URL or query string) to filter
input files and BlobDir datasets. Selection-based filters are not stored in
the URL due to the potential number of identifiers involved. Selections
can be exported and imported via a List menu, which will export a
JSON format file that includes a complete list of identifiers based on the
current filters, including selections. This file also contains a summary of
URL parameters and filtered dataset statistics (including BUSCO
scores, span and N50 by taxon, etc.) and can be used to specify filter
parameters used within BlobTools2.

Access to views: BlobTools2 provides a view command that uses the
SeleniumWebDriver to provide non-interactive access to all plot types.
For datasets with millions of contigs that are too large for practical
interactive exploration, use of view provides a way to generate static
images that will not display in the interactive mode.

INSDC-pipeline
INSDC-pipeline is a reusable Snakemake (Köster and Rahmann 2018)
pipeline to run analyses on publicly available, International Nucleotide
Sequence Database Collaboration (INSDC; http://www.insdc.org/)
public eukaryotic genome assemblies.We built the pipeline to automate
the generation of BlobDir datasets from the available data, including
retrieval and formatting of database files, retrieval of sequences for each
assembly and the associated raw read files, read mapping, BLAST and
Diamond searches, and BUSCO analyses (Figure 2). We have made the
results available on a public instance of the BlobToolKit Viewer at
https://blobtoolkit.genomehubs.org/view (Table 1).

Thisworkflowbroadly follows the BlobToolsworkflow (Laetsch and
Blaxter 2017), but with some changes to increase efficiency. For exam-
ple, Diamond searches against UniProt are only run for contigs with no
BLAST hit to the nt database, and the addition of BUSCO analyses.
Query genomes are masked using windowmasker to reduce spurious
matches to interspersed repeats. A wrapper script for blastn splits con-
tigs longer than 100 kb into chunks before running BLAST, to avoid
taxonomic inference for longer contigs being dependent on a single
region. Since this pipeline was run on public datasets extracted from the
same databases that are used to infer taxonomic affiliation, all se-
quences belonging to the same genus as the query assembly were ex-
cluded either before (Diamond) or during (BLAST) sequence similarity
searches. Details of settings used and configuration options for the tools
used in the main analysis steps are given in Table 2.

The pipeline uses Conda (https://docs.conda.io/projects/conda/en/
latest/index.html) environments to load all external dependencies.
These are stored as YAML-format files within the INSDC-pipeline
repository. The generate_metadata step of the pipeline includes the
current git commit hash in an extended version of the input configu-
ration file so the specific versions of each program used can be de-
termined from the BlobDir metadata. A record of database versions
is maintained by including the date of creation in the local database
directory names.

ENA integration
Wehaveworked to integrate the analyses generatedbyBlobToolKitwith
the genome presentations of the European Nucleotide Archive (ENA)
(Amid et al. 2019), to enhance understanding and utility of submitted
data. Importantly, ENA holds both deposited raw sequence read and
genome assembly data and it is possible to mine these data to discover
relationships describing which read sets were used in given assemblies.
At the time of analysis, of the 7,632 eukaryotic genome assemblies
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present within the ENA that could be associated with read sets,
585 (8%) were associated with a single run in the raw sequence data,
875 (11%) with between two to four runs, and 6,172 (81%) associated
with four or more runs. None of the eukaryotic genome assemblies
explicitly referenced the run(s) used to create the assembly within the
relevant metadata. Values differ from those presented in Table 1, which
uses only data available through the API to make associations between
genome assemblies and read sets. We note that the 585 assem-
blies associated with a single run derived from 266 unique species,
potentially permitting the identification of common contaminants
in frequently-reassembled taxa. The species with the most independent
assemblies were Saccharomyces cerevisiae,Homo sapiens and Pyricularia
oryzae. These findings led to the inclusion of user documentation for

the process of referencing reads during eukaryotic genome assembly
submission to the ENA (https://ena-docs.readthedocs.io/en/latest/
submit/assembly/genome.html#submitting-isolate-genome-assemblies).
This will encourage future assemblies to be submitted with a refer-
enced run, thereby increasing the number of assemblies for which
BlobToolKit can report contamination.

A cross-reference service was set up in conjunction with in-house
cloud services for the purpose of processing eukaryotic genome assem-
blies hosted on the ENAvia BlobToolKit, aswell as hosting the resulting
visual and textual data. The BlobToolKit APIwas used to access relevant
data for each assembly in coordination with Jupyter Notebooks, gen-
erating hypertext markup language (HTML) documents for assemblies
with links out to associated interactive BlobToolKit Viewer analyses.

Figure 2 Depiction of the snakemake workflow used to analyze publicly available (INSDC-registered) eukaryotic genome assemblies. The
workflow is run once for each assembly. Each box represents a Snakemake rule that may be run one or more times during workflow execution. The
workflow can be logically divided into four parts: (i) creation of a minimal BlobDir dataset based on a single assembly with metadata derived from
the configuration file and additional taxonomic annotation from the NCBI taxdump, shown in orange; (ii) addition of sequence-similarity search
results based on blastn and Diamond blastp searches of the nt and refseq databases, shown in green; (iii) addition of read coverage data based
on minimap2 alignment of read files linked to the assembly record (where available), shown in blue; and (iv) addition of BUSCO results based on
analyses with all relevant BUSCO lineages, shown in purple. Rules marked with an asterisk are typically only run the first time the pipeline is
executed as they generate local copies of relevant database files used elsewhere in the pipeline.
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Each of these documents displays the respective blob, snail and cumu-
lative length of scaffold by phylum plots, along with assembly statistics
directly from the ENAwebsite (see, for example, https://www.ebi.ac.uk/
ena/browser/view/GCA_000298335). The generation of these docu-
ments is modified autonomously based upon the data available via
the API, and uploaded to GitHub Pages respectively.

Data availability
All BlobToolKit code is freely available under open source licenses from
https://github.com/blobtoolkit. Current release versions of each of the
repositories at the time of writing have been deposited in the Zenodo open
access repository: BlobTools2 v2.1, https://doi.org/10.5281/zenodo.3531583;
BlobToolKit-Docker v1.0, https://doi.org/10.5281/zenodo.3660946; INSDC-
pipeline v1.0, https://doi.org/10.5281/zenodo.3533168; Specification v1.0,
https://doi.org/10.5281/zenodo.3531846; and Viewer v1.0, https://
doi.org/10.5281/zenodo.3533128. The Docker image is available from
https://hub.docker.com/r/genomehubs/blobtoolkit.

File S1 containsURLs and/or commands required to reproduce each
of the Figures andTables in thismanuscript alongside full automatically
generated captions for each Figure. Files S2 and S3 contain lists of
selected scaffolds toallowpresented selections tobe reproduced.Files S4,
S5 and S6 contain the full analyzed datasets for the three assemblies

presented inResults. Supplementalmaterial available atfigshare: https://
doi.org/10.25387/g3.10303865.

RESULTS
The following case studies highlight some of the features of BlobToolKit
and the ways it may be used in assessment of published assemblies.

Identification of common cobionts
The Drosophila albomicans assembly ACVV01 (GCA_000298335.1)
contains 1,440 scaffolds that have greatest sequence similarity to Pro-
teobacteria sequences in the reference databases (nt and UniProt; see
File S4 for the analyzed dataset). On a blob plot of GC proportion vs..
coverage, many of these scaffolds are found in a distinct blob with
higher GC proportion and lower coverage than the majority of the
assembled scaffolds (Figure 3A and B). The difference in the distribu-
tions of the two sets is highlighted in a kite representation of the data
(Figure 3B; see File S2 for a list of selected scaffolds).

When analyzed at higher taxonomic resolution, the scaffolds
assigned to Proteobacteria derive from several distinct species. The
majority of proteobacterial scaffolds (representing 4.3Mbof 6.7Mb) are
assigned to Acetobacter, and there are 1.8 Mb of scaffolds assigned to
Gluconobacter (Figure 3C). The Gluconobacter scaffolds have a lower

n■ Table 1 Summary of assemblies analyzed and availablea at https://blobtoolkit.genomehubs.org/view on 6th February 2020

Kingdom Species Assemblies

Total Total With reads Without reads

Fungi 1240/2094 2738/5551 2267/3257 471/2294
Metazoa 938/1838 1311/2900 750/1813 561/1087
Viridiplantae 361/622 655/1214 404/737 251/477
Other Eukaryota 336/421 711/959 350/489 361/470
Total 2875/4975 5415/10624 3771/6296 1644/4328

a. For each kingdom within Eukaryota, the numbers of assemblies analyzed/available are shown. Values were obtained through using a scripted query of the ENA and
BlobToolKit APIs described in File S1.

n■ Table 2 External program versions, settings and configuration options used during the main analysis steps

Rule Program (version) settings

subsample fastq Seqtk sample (1.2)a Subsample by proportion calculated from configurable maximum coverage (default: 100x).
bwa index Bwa index (0.7.17)b Algorithm ‘bwtsw’ used for all assemblies.
map reads Minimap2 (2.11)c Preset (‘sr’, ‘map-pb’ or ‘map-nt’) based on input read type.
bamtools stats Bamtools stats (2.5.1)d Insert size option used for paired end reads.
run busco BUSCO (3.0.2)e Genome mode using default settings, lineages are configurable.
run windowmasker Windowmasker (2.9.0)f Generate counts in binary output format.
run blastn NCBI blastn (2.9.0)g Uses windowmasker database and specific output format (‘6 qseqid staxids bitscore std’).

Uses configurable ‘max-target-seqs’ and ‘evalue’. A configurable wrapper script around
the blastn executable splits long (default: 100kb) sequences into (default: up to 10)
chunks. An optional filter excludes a configurable list of NCBI taxIDs (default: excludes
query genus). Requires v5 BLAST database.

extract nohit
sequences

Seqtk sample (1.2)a Subsample assembly sequences based on list of IDs with no blastn hit.

make diamond db Diamond makedb (0.9.19)h Includes taxonomic information for each sequence. Input sequences optionally filtered to
exclude configurable list of NCBI taxIDs (default: excludes query genus).

run diamond
blastx

Diamond blastx (0.9.19)h Uses ‘sensitive’ option with specific output format (‘6 qseqid staxids bitscore qseqid sseqid
pident length mismatch gapopen qstart qend sstart send evalue bitscore’). Uses
configurable ‘max-target-seqs’ and ‘evalue’.

a. https://github.com/lh3/seqtk
b. (Li and Durbin 2010)
c. (Li 2018)
d. https://github.com/pezmaster31/bamtools
e. (Waterhouse et al. 2017)
f. (Morgulis et al. 2006)
g. (Altschul 1997)
h. (Buchfink et al. 2015)
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Figure 3 Blobplot of base coverage in read set SRR026696 against GC proportion for scaffolds in Drosophila albomicans assembly ACVV01.
(A & B) Scaffolds are colored by phylum with Proteobacteria highlighted in orange and all other phyla grouped together in gray. Histograms show
the distribution of scaffold length sum along each axis. (A) Square-binned blob plot at a resolution of 30 divisions on each axis. Colored squares
within each bin are sized in proportion to the sum of individual scaffold lengths on a logarithmic scale, ranging from 867 to 40,536,114. The bins
highlighted in pink contain a total of 5 scaffolds that have been annotated as Proteobacteria but that contain BUSCOs using the diptera_odb9
BUSCO set. (B) A simplified representation of the distributions of scaffolds assigned to each phylum highlights the difference in GC proportion
and coverage of Proteobacteria scaffolds. Each kite has a pair of lines representing two standard deviations about the mean on each axis
(weighted to account for scaffold lengths) that intersect at a point representing the weighted median. They are angled according to a weighted
linear regression equation to indicate the relationship between coverage and GC proportion. (C) Assembly filtered to exclude non-proteobacterial
scaffolds. Scaffolds are colored by genus with Acetobacter highlighted in orange, Gluconobacter shown in blue and Wolbachia shown in green.
Colored squares within each bin are sized in proportion to the sum of individual scaffold lengths on a square-root scale, ranging from 1,005 to
771,195. (D) A simplified representation of the distributions of scaffolds assigned to each genus highlights the difference in GC proportion and
coverage of Acetobacter, Gluconobacter and Wolbachia scaffolds. This figure can be regenerated, and explored further, using the URLs given in
File S1. The list of scaffolds highlighted in (A) is available in File S2.
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Figure 4 Visualization of the highly fragmented Conus consors assembly SDAX01. (A) Binned distribution of all 2,688,687 assembly scaffolds
shows unimodal distributions in GC proportion and coverage axes. The majority of scaffolds lack a taxonomic annotation (assigned to “no-hit”).
(B) Square-binned plot of coverage in read set SRR1719763 against coverage in SRR1712902 for scaffolds with coverage ,= 0.01 in read set
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coverage than the Acetobacter scaffolds, and thus the assembly is, as
expected, less complete. Acetobacter and Gluconobacter species are
common cobionts of Drosophila (Crotti et al. 2010) and usually have
genomes of 3-4 Mb. A third group of scaffolds is assigned to the
alphaproteobacterial genus Wolbachia (Figure 3D). Wolbachia are in-
tracellular symbionts that commonly manipulate the reproductive bi-
ology of their hosts (Werren et al. 2008), and insect-infecting strains
have genomes of �1.4 Mb. However, the cumulative span of scaffolds
assigned toWolbachia is only 190 kb. The GC proportion and coverage
of these scaffolds is more congruent with that of the bulk, Drosophila-
assigned scaffolds. Collectively, these data suggest that the Wolbachia-
assigned scaffolds are likely to represent nuclear insertions ofWolbachia
fragments. Such insertions are common in insect genomes, and de-
rive from previous colonization of the species by this endosymbiont
(Dunning Hotopp et al. 2007).

It is notable that some of the loci identified using the diptera_odb9
BUSCO set (EOG091502LX, EOG091505EO, EOG091502SD,
EOG091504TW, EOG09150B43, EOG09150529) are annotated as
being present in scaffolds that have been assigned to Proteobacteria.
Five of these scaffolds have GC proportions and coverages consistent
with their being part of the bacterial rather than the Drosophila ge-
nomes. Thus the BUSCO assessment of ACVV01 is compromised by
the presence in the bacteria of loci which are recognized as being
members of the BUSCO dipteran reference gene set. While excluding
the BUSCOs identified in the proteobacterial genomes makes a very
small difference to the overall BUSCO completeness score of assem-
bly ACVV01 (83.7% vs. 83.9% complete; diptera_odb9; BUSCO
3.0.2), their inclusion in, for example, phylogenomic analyses would
lead to erroneous inferences. Similar patterns are observed in other
Drosophila assemblies. For example, in Drosophila elegans assembly
AFFF02, two diptera_odb9 BUSCOs (EOG0915021D, EOG091501A1)
are present on scaffolds assigned to Proteobacteria. The mis-annotated
BUSCOs from proteobacterial scaffolds in ACVV01 are found within
core Arthropoda scaffolds in AFFF02 and vice versa. This highlights the
importance of determining assembly integrity and contamination
before assessing quality and completeness, and before proceeding to
downstream analyses.

Visualization of highly fragmented assemblies
Conus consors is a cone snail studied for its production of neuro-
toxins (Andreson et al. 2019). The C. consors assembly SDAX01
(GCA_004193615.1; see https://www.ncbi.nlm.nih.gov/genome/
24193) highlights the challenges associated with visualization of
highly fragmented datasets. The 2 Gb assembly is split into 2,688,687
scaffolds with an N50 length of 1,128 bp (see File S5 for the analyzed
dataset). While the full dataset can be viewed in the BlobToolKit Viewer,
interactive visualization of so many contigs requires use of a device
with a relatively high-specification (at least 8 GB RAM) and a browser
that does not limit the amount of available RAM (e.g., Firefox). To
allow such assemblies to be viewed on any device, we have set default
parameters to limit the computation required.

The default, binned view (Figure 4A) ensures that the number of
graphic elements that must be rendered by the browser does not

increase linearly with dataset size as would be the case if each scaffold
were plotted individually. This representation is sufficient to show that
SDAX01 has a unimodal distribution on both the GC proportion and
coverage axes. However 550,837 scaffolds with a total span of over
170 Mbp have coverage below 0.01 with the selected read set
(SRR1714990). An assembly of this size is typically based on a number
of sequencing runs and in this case nine short read accessions are
associated with the same bioproject (PRJNA267645) as the assembly.
The largest three of these read sets were mapped to the assembly,
allowing comparison of coverage across libraries. For scaffolds with
coverage ,= 0.01 in SRR1714990, a coverage vs.. coverage plot of
the remaining two libraries (SRR1719763 and SRR1712902; Figure
4B) shows the majority of these scaffolds (433,970 scaffolds with a
total span of over 136 Mb) have coverage in at least one other
library. Some have no coverage in any of the three libraries. It might
be prudent to consider all these contigs as questionable compo-
nents of the C. consors genome, or artifacts due to heterozygosity
or misassembly.

OnthepublicBlobToolKitViewersite, alldatasetswithover1million
scaffolds are presented with a set of pre-generated images so users not
wishing to explore beyond the default visualizations have no need to
download or process the data files. In interactive mode, the same
threshold is used to filter out scaffolds that lack a taxonomic annotation
(those assigned to the “no-hit” category) so the default interactive view
emphasizes the portion of the dataset that provides most information
for contaminant screening (Figure 4C). For this assembly, filtering out
“no-hit” scaffolds leaves 43,857 scaffolds (1.6% of all contigs) with a
total span of 209 Mb (10.2% of the total span). Below a default thresh-
old of 100,000 scaffolds, it is computationally reasonable to plot indi-
vidual scaffolds as scaled circles, even on relatively low-powered
devices. However, the resulting image can be difficult to interpret as
the visibility of specific features becomes dependent on plotting order
with the last plotted scaffolds having greatest prominence (Figure 4D).
Using a kite representation highlights a distinct distribution of Firmi-
cute scaffolds in the C. consors assembly (Figure 4E) suggesting that
these represent a contaminant.

Identification of mis-annotated records in
public databases
Thegenomesofmanybird species arebeinggenerated tounderstand the
evolution of this important group, and to explore the evolutionary
genomics of particular phenotypes (Jarvis et al. 2014).Whilemost other
paleognath birds (kiwis, ostriches, rheas and their kin) are flightless, tin-
amous can fly, and genomic analyses are exploring the biology of this
phenotypic shift (Sackton et al. 2019). The genome assembly of the thicket
tinamou, Crypturellus cinnamomeus (PTEZ01; GCA_003342915.1)
(Sackton et al. 2019) was analyzed using BlobToolKit (see File S6).
We noted that this assembly (total span 1.1 Gb) contained �130 Mb
of scaffolds that had coverage an order of magnitude lower than that
of the main part of the assembly (Figure 5A). This blob of scaffolds
also had a mean GC proportion of 0.52, contrasting with the main
assembly GC proportion of 0.42. Exploring the biology of this set of
scaffolds revealed several interesting features.

SRR1714990. The extent of the unfiltered distribution is indicated by the empty square bins. (C) In the interactive browser datasets with over
1,000,000 scaffolds are presented with the “no-hit” scaffolds filtered out to reduce computation. In this case, 43,857 scaffolds are plotted in the
filtered dataset. (D) A non-binned presentation of the same data shows the challenges of interpreting a dataset plotted as a large number of
overlapping circles, even after filtering “no-hit”. (E) A simplified representation of the distributions of scaffolds assigned to each phylum highlights
the difference in GC proportion and coverage of scaffolds assigned to Firmicute. This figure can be regenerated, and explored further, using the
URLs given in File S1.
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Halfof the spanof the low-coverage scaffolds (58Mb)wasassignedto
theprotist groupEucoccidiorida, andmore specifically hadhigh-scoring
matches to Sarcocystis species (Figure 5B). Sarcocystis are apicomplexan
parasites that infect a wide range of vertebrate and non-vertebrate
hosts. Sarcocystidae, which includes the important pathogensNeospora

and Toxoplasma, have genomes that range from�60 Mb to 127 Mb
(Sarcocystis neurona). The other scaffolds in the low-coverage blob
either had no annotation (39 Mb) or were annotated as deriving
from a cetacean, Physeter catodon (Physeteridae; the sperm whale;
24 Mb) or a galliform bird, Colinus virginianus (Odontophoridae;

Figure 5 Blob plots of the Crypturellus cinnamomeus assembly PTEZ01 showing the presence of an apicomplexan parasite. (A) Circles are scaled
with area proportional to scaffold length and colored by phylum. Scaffolds assigned to the phylum Apicomplexa are colored orange and form a
distinct blob relative to the majority of Chordata-assigned scaffolds, shown in gray. (B) Circles are colored by family and scaffolds assigned to
families other than Physeteridae, Odontophoridae or Sarcocystidae have been filtered out. Scaffolds with coverage greater than 2 in the
SRR6918124 read set have also been excluded. (C) A square-binned plot in which bins containing scaffolds with BUSCO annotations using
any of the applicable reference gene sets are outlined in pink. This figure can be regenerated, and explored further, using the URLs given in File
S1. The list of scaffolds highlighted in (C) is available in File S3.
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the northern bobwhite quail; 8 Mb). While it is possible that a bird
genomics laboratory might contaminate across species, the north-
ern bobwhite genome was not sequenced by the same team
that sequenced the tinamou, and contamination with sperm whale is
hard to imagine. Instead, we infer that the bobwhite and sperm
whale genomes are also contaminated by co-assembled genomes from
Sarcocystis-like apicomplexans. Available C. virginianus and P. catodon
assemblies were analyzed with BlobToolKit to determine the presence
of Apicomplexan-assigned scaffolds in these assemblies (Table 4). A
total of 48 Mb of the 1.2Gb (4%) of the C. virginianus assembly
AWGT02 (GCA_000599465.2 (Oldeschulte et al. 2017)) is inferred
to be derived from an apicomplexan parasite. For P. catodon, the only
published assembly, AWZP01 (GCA_000472045.1 (Warren et al.
2017)) is inferred to be free of contamination with sequences of
apicomplexan origin. However, two more recent assemblies, includ-
ing a chromosome-level assembly PGGR02 (GCA_002837175.2),
which is tagged as the RefSeq (Pruitt et al. 2005) representative ge-
nome, each contain 4.3 Mb of sequence assigned to Apicomplexa.

Thus 11%of the thicket tinamou genome assembly appears to derive
not from the target species but rather fromaparasite, and sequence from
this group of parasites is also present in other genome assemblies
fromdiverse target species. This contamination of the INSDCdatabases
with whole genomes mistakenly attributed to their host species identity
means that the public commons becomes an untrustworthy substrate
fordiscovery research.Critically, aswith theD.albomicans example above
(Figure 1), the likely Sarcocystis-derived scaffolds contained many
BUSCO annotations (Figure 5C; see File S3 for a list of selected scaffolds),

and contributed 6% of the unique eukaryote BUSCO hits in the
assembly (Table 3).

We have identified additional examples of co-sequencing of api-
complexan pathogens with target species in other taxa (Table 4). These
include early assemblies of the model organisms Mus musculus and
Rattus norvegicus, for which subsequent revisions have been released
that have shorter span and few or no remaining apicomplexan-assigned
sequences. For non-model organisms the resources available for assem-
bly revision are considerably smaller so it is important to have the
means to identify co-sequencing with pathogens and other cobionts.
BlobToolKit makes evident these fascinating biological juxtapositions,
and facilitates evidence-led separation of host from cobiont. Indeed
this task was one of the original motivations for the development of
the blob plot: to separate symbiont genomes from those of their hosts
(Kumar et al. 2013).

DISCUSSION
BlobToolKit is a significant extension of the approach launched in
BlobTools. In particular, by permitting user interaction with the rich
data associated with each contig in the Viewermode, BlobToolKit can
enhance discovery of novel biology. The addition of real-time interac-
tion addresses a criticism of the approach, relative to cluster-based
methods such as Anvi’o (Eren et al. 2015), that it limits the amount
of supporting data that can be included (Delmont and Eren 2016). We
envisage three main uses for BlobToolKit. The first is in the research
laboratory aiming to sequence for the first time the genome of a new
species. BlobToolKit can be used during the assembly process, to filter

n■ Table 3 BUSCO scoresa for the Crypturellus cinnamomeus assembly PTEZ01

Lineage Complete Duplicated Fragmented Missing Single copy Total

aves_odb9 92.8% (-0.1%) 1.0% (-0.1%) 4.1% (+0.0%) 3.1% (+0.1%) 91.8% (+0.0%) 4915
tetrapoda_odb9 96.1% (-0.1%) 0.3% (-0.0%) 2.3% (+0.0%) 1.6% (+0.1%) 95.8% (-0.1%) 3950
vertebrata_odb9 97.4% (-0.2%) 0.2% (-0.1%) 1.4% (-0.0%) 1.2% (+0.2%) 97.1% (-0.1%) 2586
metazoa_odb9 91.6% (-3.2%) 1.2% (-0.7%) 3.5% (-0.5%) 4.9% (+3.7%) 90.4% (-2.5%) 978
eukaryota_odb9 91.4% (-8.3%) 3.6% (-3.3%) 4.3% (-1.7%) 4.3% (+9.9%) 87.8% (-5.0%) 303

a. BUSCO analyses were performed using BUSCO 3.0.2 and the indicated ortholog group sets. Numbers in parentheses show the change in score when scaffolds with
a coverage below 2 in read set SRR6918124 are removed from the assembly.

n■ Table 4 Presence of Apicomplexa-assigned sequences in selected chordate genome assemblies

Species

Accession

Date

Span (Mb)

Blob- ToolKit GCA Apicomplexa Chordata Total

Colinus virginianus AWGT02 GCA_000599465.2 2017a 48.0 1074 1254
Crypturellus cinnamomeus PTEZ01 GCA_003342915.1 2018b 59.9 1017 1122
Mus musculus AAHY01 GCA_000002165.1 2009c 188.9 2738 3251
Mus musculus LXEJ02 GCA_003774525.2 2018d 0.0 2687 2801
Physeter catodon AWZP01 GCA_000472045.1 2013e 0.0 2279 2280
Physeter catodon UEMC01 GCA_900411695.1 2018f 4.3 2472 2512
Physeter catodon PGGR02 GCA_002837175.2 2019g 4.3 2472 2512
Piliocolobus tephrosceles PDMG02 GCA_002776525.2 2018h 33.3 2976 3038
Rattus norvegicus AAHX01 GCA_000002265.1 2006i 15.4 2699 2932
Rattus norvegicus AABR07 GCA_000001895.4 2014j 0.2 2869 2870

a. (Oldeschulte et al. 2017)
b. (Sackton et al. 2019)
c. (Mural et al. 2002)
d. Most recent non-chromosomal assembly (see https://www.ncbi.nlm.nih.gov/assembly/GCA_003774525.2)
e. (Warren et al. 2017)
f. (see https://www.ncbi.nlm.nih.gov/assembly/GCA_900411695.1)
g. (see https://www.ncbi.nlm.nih.gov/assembly/GCA_000472045.1)
h. (see https://www.ncbi.nlm.nih.gov/assembly/GCA_000472045.1)
i. (Florea et al. 2005)
j. (Gibbs et al. 2004)
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contaminants and cobionts, and to explore issues such as haploid vs.
diploid contigs, and patterns of coverage in different sequence read
datasets (for example, comparing male and female read sets in het-
erogametic organisms). As part of an assembly workflow, BlobTool-
Kit should ensure better quality assemblies with higher biological
credibility.

The second use is in publication and visualization of published
assemblies. The BlobToolKit Viewer generates publication quality
images that are fully reproducible via the embedding of control param-
eters in the URL. These images should, we believe, become standard
in reporting genome assemblies, and thus enhance the ease of
assessment of assembly quality. We have worked to embed Blob-
ToolKit views into the presentation of genome assemblies at the ENA
for just this reason and believe that we have demonstrated that
collaboration between tools developers and public databases is
important in refining best practice in data publication. Journals
may generate (or request that authors supply) BlobToolKit assess-
ments of new assemblies submitted for publication, to aid review and
speed publication of high quality data.

The third is in comparative and evolutionary genomics. With
ongoing improvements in sequencing technologies and assembly soft-
ware, genome assemblies are improving in quality and contiguity.
Among other players, the Earth Biogenome Project (Lewin et al.
2018), 10K Vertebrate Genome Project (Genome 10K Community of
Scientists 2009) and Tree of Life project (https://www.sanger.ac.uk/
science/programmes/tree-of-life) collectively aim to generate chromo-
somally-contiguous reference genomes for (in the first instance) all
known families of Eukaryota. BlobToolKit protocols can be used to
explore these genomes for evidence of past horizontal gene transfer,
for the presence of symbionts and parasites, and to explore chromo-
somal patterns of gene expression.

The difficulty we experienced in associating raw sequence read sets
with submitted assemblies has led ENA to include a more apparent and
thorough explanationof the benefits of andprocess for referencing reads
during eukaryotic genome assembly submission to the repository. We
advocate thepracticeofassemblysubmissionalongwithassociated reads
to INSDC to enable downstream analysis and assembly contamination
detection.

We aim to complete analysis of all public genomes in INSDC
and post them to the BlobToolKit Viewer website at https://
blobtoolkit.genomehubs.org/view in the near future, and then
maintain currency with the flow of new genomes. The toolkit is under
active development (see https://github.com/blobtoolkit) and we wel-
come feature requests and collaborations to expand and improve its
capabilities.
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