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facial erythema detects diabetic 
neuropathy using the fusion 
of machine learning, random 
matrix theory and self organized 
criticality
esmaeil S. nadimi1*, tomas Majtner1, Knud B. Yderstraede2 & Victoria Blanes‑Vidal1

Rubeosis faciei diabeticorum, caused by microangiopathy and characterized by a chronic facial 
erythema, is associated with diabetic neuropathy. in clinical practice, facial erythema of patients with 
diabetes is evaluated based on subjective observations of visible redness, which often goes unnoticed 
leading to microangiopathic complications. to address this major shortcoming, we designed a 
contactless, non‑invasive diagnostic point‑of‑care‑device (pocD) consisting of a digital camera 
and a screen. Our solution relies on (1) recording videos of subject’s face (2) applying Eulerian video 
magnification to videos to reveal important subtle color changes in subject’s skin that fall outside 
human visual limits (3) obtaining spatio-temporal tensor expression profile of these variations (4) 
studying empirical spectral density (eSD) function of the largest eigenvalues of the tensors using 
random matrix theory (5) quantifying ESD functions by modeling the tails and decay rates using power 
law in systems exhibiting self-organized-criticality and (6) designing an optimal ensemble of learners 
to classify subjects into those with diabetic neuropathy and those of a control group. By analyzing 
a short video, we obtained a sensitivity of 100% in detecting subjects diagnosed with diabetic 
neuropathy. our pocD paves the way towards the development of an inexpensive home‑based 
solution for early detection of diabetic neuropathy and its associated complications.

Diabetes is a major health issue that has reached alarming levels. In 2019, nearly 9.3% of adults 20–79 years are 
living with diabetes worldwide. The estimated number of people (20–79 years) living with diabetes has increased 
by 62% during the past 10 years. The number is projected to increase by 25% in 2030 and 51% in  20451.

Diabetic neuropathy (DN), a type of nerve damage caused by long-term elevated glucose levels, is the most 
common complication of both type 1 and 2 diabetes and occurs in more than half of affected individuals. The 
condition usually develops slowly and sometimes over the course of several decades. Many studies have shown a 
significant negative impact on quality of life of those diagnosed with  DN2. Furthermore, a substantially increased 
mortality among individuals diagnosed with diabetes peripheral neuropathy (DPN) who have undergone a 
major amputation, with 5-year mortality ranging from 44 to 68% has been observed. This calls for urgent action 
towards addressing this growing global health  problem3.

To a high degree, most complications associated with different types of DN (such as amputation, digestion 
problems, double and impaired vision, among others) could be prevented through multidisciplinary care, which 
not only reduces complication risk, but also substantially reduces the rates of hospitalisation and  recurrence4. 
Therefore, an early clinical assessment of DN is essential, despite the fact that the diagnosis of DN can be time 
consuming, costly and invasive. To address these shortcomings, innovative point-of-care devices (POCDs) play 
a fundamental role in developing innovative frameworks for screening and early multi-factorial intervention 
as the best prospect for preventing or halting the progress of DN and its devastating complications and sequel. 
POCDs firstly enable early diagnosis of DN and secondly, assess the evidence for early management strategies 
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based on medication, dietary and lifestyle changes to reduce the incidence and slow the progression of these 
 complications5. Examples of such POCDs include, but is not limited to,  DPNCheck6,  Neuropad7 and  Sudoscan8 
that rely on electromyography, measurements of Sural nerve conduction velocity and response amplitude as 
standard bio-markers for diagnosis of asymptomatic and clinical DPN. Further techniques rely on cerebrospi-
nal fluid analysis, nerve biopsy findings and infrared pupillography (for evaluation of Argyll-Robertson pupil), 
often associated with autonomic  neuropathy9. A recent novel non-invasive technique based on corneal confocal 
microscopy to quantify small fibre pathology in peripheral neuropathies and to provide in-vivo images of corneal 
nerve fibres was introduced  by10.

Rubeosis faciei, characterized by a chronic facial erythema (reddening of the face), is associated with non-
cutaneous diabetic complications including nephropathy, retinopathy and  neuropathy11,12. This is possibly due 
to sharing microangiopathy as a common etiological factor. The exact pathogenesis of rubeosis diabeticorum 
is unknown, and therefore, it may follow different pathogenic pathways in subgroups of patients. This might, at 
least in part, explain the heterogeneity in clinical presentation observed between individuals. In routine clinical 
practice, facial redness of patients with diabetes is evaluated based on subjective clinical observations of visible 
redness. If rubeosis faciei is recognized, it should alert physicians to look for other microangiopathic complica-
tions. However, rubeosis faciei may go unnoticed in routine clinical practice, since the intensity of red coloration 
depends on the degree of vascular engorgement of the superficial venous plexus, as well as on the skin  tone11. On 
the contrary, if facial erythema is detected, it can be mistaken for other dermatological conditions.  Recently13, 
deployed Mexamater MX18 (Courage & Khazaka electronic GmbH—Cologne, Germany)14 and AGE Reader 
(DiagnOptics Technologies B.V.—Groningen, Netherlands)15 to assess two components responsible for skin 
color, namely melanin and haemoglobin, the later being associated with erythema, and further estimate the 
immediate cardiovascular risk.

Mexamater MX18 quantifies erythema based on the principle of absorption and reflection of two specific 
wavelengths, i.e., green (568 nm) and red (660 nm), corresponding to the spectral absorption peak of haemo-
globin while avoiding other colour influences (e.g. bilirubin). These measurements are then quantified in terms 
of erythema index, ranging from 0 to 999. Even though Mexamater MX18 was primarily designed for assessing 
skin condition in cosmetic applications, one can find a rich literature in deploying MX18 in other scientific 
 disciplines14. The AGE Reader, on the other hand, is a non-invasive POCD that uses ultra-violet light to excite 
autofluorescence in skin tissue. The autofluorescence is from the level of Advanced Glycation End products 
(AGEs), providing an immediate cardiovascular risk prediction. The main weakness is that recent studies could 
not demonstrate a significant statistical correlation between facial erythema index and skin autofluorescence. 
Other shortcomings of AGE Reader are that it has not been validated for measurements on very dark skin tones, 
and an error message is displayed when unreliable measurements are  collected15.

The main objective of this study is to design an inexpensive home-based, contactless, non-invasive diagnostic 
POCD for identification of patients with diabetes without diagnosed complications, showing the very early signs 
of peripheral or autonomic neuropathy, by monitoring for early signs of rubeosis faciei. Our POCD consists of 
a digital camera for recording faces of subjects, for further magnification of spatio-temporal variations of subtle 
changes in the skin color along with motion in saccadic movements and deformation in pupil dilatation. Our 
hypothesis is twofold: (1) the recorded video carries important imperceptible and subtle variations in subject’s 
skin color that fall below humans’ limited spatio-temporal sensitivity. By revealing these variations using image 
processing, and estimating the time series associated with the difference between highest and lowest color inten-
sity, spatio-temporal tensor expression profile for color variations caused by subject’s pulse can be obtained. Some 
feature characteristics of these tensor expression profiles for diabetic subjects will differ from those of a control 
group. (2) By tracking subject’s iris and pupil movements and deformations, and after canceling involuntary 
head movements out (caused by subjects pulse and respiration), spatio-temporal expression profile for saccadic 
movements are obtained. Similar to our first hypothesis, we believe that some feature characteristics of these 
tensor profiles differ between diabetics and control group. In this paper, we will address the first hypothesis. The 
second hypothesis is thoroughly discussed  in16 and we therefore refer interested readers to that study.

The organization of this paper is as follows. In "Research design and experimental set-up" section, we present 
study participants and the experimental setup to acquire the videos of diabetic and control subjects. In "Proposed 
methodology" section, processing of retrieved videos by applying Eulerian Video Magnification (EVM) technique 
to reveal subtle changes in color variations of subject’s skin, and to further estimate the time series associated with 
these variations are presented. We further touch base concepts around the distribution of eigenvalues linked to 
the theory of random matrices (RMT), and processes exhibiting power law linked to Self-Organized-Criticallity 
(SOC). Having found some discriminatory features, we will cruise through the most important algorithms based 
on optimal ensemble learning for classification purposes. In  "Results" section, we apply these concepts to the 
time series associated with the spatio-temporal tensor expression profile for color variations obtained by EVM 
among both diabetic and control subjects. Conclusions, discussions and future works are provided at the end 
of this paper.

Research design and experimental set‑up
Study participants. The study enrolled 27 subjects, divided into two groups. Group 1, hereafter referred to 
as DM (Diabetic Mellitus) included 18 patients with diabetes (age: 63± 10 years; 12 males and 6 females with 
BMI of 29± 7 ). Group 2, hereafter referred to as C (Control) included 9 control subjects (age: 60± 6 ; 6 males 
and 3 females of with BMI of 28± 4 ). The two groups did not differ in average age, gender proportion or BMI 
( p > 0.10 ). 10 DM patients were diagnosed with type 1 diabetes (time from diagnosis: 28± 13 years), while 
remaining 8 patients were diagnosed with type 2 DM (time from diagnosis: 22± 5 years)11.
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Out of the 18 DM patients, 17 had been diagnosed with peripheral neuropathy, 17 with retinopathy, and 7 
with diabetic nephropathy, and 5 of them had been diagnosed with peripheral arterial disease. The diagnosis 
of neuropathy was carried out using Semmes–Weinstein monofilament 10 g and biothesiometry indicating 
neuropathy with a threshold of 25 V. Facial erythema was not apparent in any of the participants, except for one 
DM patient with slight facial red coloration. None of the DM patients had exhibited cranial neuropathies such 
as facial nerve palsy, optic neuropathy, or auditory neuropathy. Furthermore, no individual was diagnosed with 
obstructive sleep apnoea (OSA). More information on DM patients can be found in Table 1. Control subjects had 
not been diagnosed with DM, peripheral arterial disease, or any disease affecting the nervous system.

The study protocol was reviewed and approved by the scientific ethical committee for Region Southern 
Denmark (process number: 18/297; Project ID: S-20180006). All participants were informed about the study, 
and signed, written informed consents to publish the results of this study were obtained. Furthermore, informed 
consent for participation was obtained from the participants in the manuscript. All methods and experiments 
were carried out in accordance with relevant guidelines and regulations based on the Declaration of Helsinki.

experimental set‑up. The experimental set-up included a laptop and a Canon EOS 1300D digital camera 
mounted on a tripod. To conduct the experiment in a realistic set-up, subject’s illumination was not directly con-
trolled, and to compensate for that, colour constancy methods were deployed. The most important aspects to be 
considered in pursuance of the acquisition of an input video of adequate quality for subsequent processing were 
as follows: (1) stable camera, (2) constant background, (3) minimal reflections and shadows, (4) non-moving 
objects within the frequency range of interest, (5) choice of a digital camera, (6) sufficient temporal resolution 
of the video (frame rate), (7) sufficient spatial resolution of the video and color depth, (8) short distance to the 
object and optics, (9) proper angle of the view point and (10) sufficient duration of the  video17.

The camera was placed above the laptop, about 84 cm in front of the subject being examined, so that the entire 
face was captured. The subject was seated on a comfortable chair while looking at the laptop’s screen, see Fig. 1. 
The subject was then asked to follow with their eyes a target on the screen, with the shape of a white circle moving 
on a black background either in a sudden form (to force saccadic movements), or in a smooth fashion (to force 
pursuit motions), while keeping the head as still as possible. A series of movements occured randomly over a 
period of 7 min and 45 s (including two sets of 30 s breaks). Before each command, a sound cue was emitted, 
to facilitate the synchronization between the video and the commands. Two repetitions were recorded on each 
participant, with a resting time between repetitions of about 10 min. In all cases, the camera was set to record 
with a focal length of 35 mm, at 50 frames per second (fps), and a frame size of 1280 × 720 pixels.

Once the pre-processing of subject’s videos was performed, including trimming the unwanted parts of the 
video footage, i.e., those parts that could result in inaccurate measurements of color intensity, such as the breaks 
in which subjects could abruptly move their head or turn away from the camera, six video segments of 5,901, 
4,851, 6,251, 5,901, 4,851 and 6,251 frames each (approximately 2 min long), were collected. These videos were 
then fed into EVM for magnification of subtle changes invisible to the naked eyes.

It is worth noting that two factors that could affect facial erythema during video acquisition and potentially 
introduce errors were compensated for: (1) individual-specific factors that mostly affect facial color in a homo-
geneous manner, equally affecting all regions of the face (e.g. individual-specific score in the Fitzpatrick scale, 
sun exposure if bilateral) and (2) circumstantial factors that cause color differences among different facial regions 

Table 1.  Baseline characteristics of patients with diabetes.

Type of diabetes Neuropathy Retinopathy Gender Age Duration of diabetes (years)
Duration of microvascular 
complications (years)

1
Peripheral

Yes, non-proliferative

F 50 31 > 15

F 56 48 > 15

M 49 18 4

M 58 28 > 15

M 65 16 12

M 70 32 8

M 73 15 > 15

Yes, proliferative

M 72 36 > 15

M 65 51 > 15

Autonomic M 30 21 11

2 Peripheral

No F 72 24 2

Yes, non-proliferative

F 70 30 >15

M 64 23 9

M 67 20 12

M 71 22 > 15

Yes, proliferative

F 60 26 > 15

F 63 11 11

M 67 19 > 15
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(e.g. physical activity, emotional state, and certain skin conditions)18–20. We addressed the first potential source 
of error by using the difference of redness between two different face regions to begin with. We minimized 
heterogeneous color variations caused by the second potential source of error by using the same protocol for 
all participants, for example, by ensuring that none of participants engaged in any physical activity during the 
previous twenty minutes prior to the beginning of experimental recordings.

proposed methodology
Our method relies on the fusion of information obtained from (1) applying EVM to the videos, (2) studying 
empirical spectral density (ESD) function of the largest eigenvalues of our tensors obtained from EVM using 
theories of random matrices, (3) quantifying these ESD functions and modeling their tails in terms of General-
ized Pareto distribution and power law exponents f (x) = Cx−γ in systems exhibiting SOC, and (4) designing 
an ensemble learning-based classifier to split the subspace corresponding to group DM from that of group C. 
Schematic of our proposed method is shown in Fig. 2. The future predictive performance of the method was 
estimated using Leave-one-out Cross-Validation (LOO-XV) technique.

Eulerian video magnification (EVM). Revealing important subtle changes that fall outside human visual 
limits to be seen with the naked eye, and displaying them in an indicative manner using Eulerian video mag-
nification technique was first introduced  by21. EVM takes a video as input, and applies a sequence of spatial 
decomposition and temporal filtering to the frames. The filtered outcome is further amplified by a magnification 
factor α to reveal hidden information such as color variations or head movements caused by subject’s pulse. This 
technique can show events of interest that occur at specific temporal frequencies, such as the frequency band 
corresponding to the human pulse. The main advantages of EVM compared to the Lagrangian video magnifi-
cation or other similar techniques are (1) its capability to cope with dynamic environments, (2) its robustness 
under different noisy condition and (3) its invariant performance under different skin-tones.

Assume image intensity function at pixel x, y at time t be determined by I(x, y, t). After translational 
variation, lasting t units of time, the initial image intensity function I(x, y, t = 0) = f (x, y) evolves into 
I(x, y, t) = f (x + δ(x), y + δ(y), t + δ(t)) , where δ(.) is the displacement function and therefore, magnified 
intensity function is calculated as follows:

Figure 1.  Experimental set-up.

Figure 2.  Schematic of our proposed method.
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where α is the magnification factor. To increase temporal signal-to-noise ratio and for the sake of computational 
efficiency, pooling multiple pixels while simultaneously processing spatially using low-pass filters were applied to 
the frames of the video. In this study, however, we benefited from full Laplacian pyramid spatial filtering while for 
the temporal processing, subtraction of two Butterworth low-pass filters with cutoff frequencies of 4.0 and 0.4 Hz 
was selected. The extracted band-pass signal was then multiplied by a magnification factor, namely α = 50. The 
temporal processing was uniform for all spatial levels and for all pixels within each level. The filtered spatial bands 
were then added back to the original signal and collapsed to generate the output video with magnified color. We 
used the post-processed videos and automatically extracted eight facial patches of size 31× 31 pixels from each 
frame, featuring two patches corresponding to two areas potentially affected by facial erythema (i.e., cheeks) and 
six patches corresponding to facial areas less prone to erythema, representing the background facial skin tone 
(forehead, philtrum, and nose). The location of the patches is detected all through the video, using an algorithm 
for the detection of facial landmarks. The intensity value of the Red channel in the RGB color spectrum of each 
31× 31-pixel patch was the basis for forming the spatio-temporal tensor expression profile for color variations. 
The difference between the highest and lowest intensity patches estimates normalized spatio-temporal tensor 
expression profile for color variations caused by subject’s pulse.

Random matrix theory (RMt). RMT attempts to make statements about the statistics of the eigenvalues 
�η of large random matrices, in particular the density of eigenvalues ρ(�) defined as below:

where �η are the eigenvalues of the N × N symmetric matrix H that belongs to the statistical ensemble under 
scrutiny, and δ is the Dirac function. The Marcenko–Pastur  theorem22 on the spectrum of empirical correlation 
matrices have been implemented in many, very different contexts including neural networks, image processing 
and population health studies. The question raised is the feasibility to identify common causes that explain the 
dynamics of various quantities linked to �η . These quantities might resemble the motion of individual grains in 
a packed granular medium linked to systems featuring self-organized-criticality, or different biological indica-
tors such as blood pressure or cholesterol level within a  population23. Inspired by these studies, we attempted 
in this work to draw statements about the statistics of the eigenvalues of the spatio-temporal tensor expression 
profiles for the color variations using RMT. We looked at the statistics of the bulk of eigenvalues and deployed 
the covariance matrix model to make statements about the empirical spectral density (ESD) function of the 
largest eigenvalues of our tensors.

Tracy and  Widom22 showed that upon following normalization of �max , cumulative distribution function 
(CDF) of ξ could be estimated as follows:

where q(.) is the solution to the nonlinear differential equation associated with the Airy function. It is worth 
noting that the Tracy–Widom distribution can be as well estimated by a Gamma distribution, Ŵ(β , θ) , with 
following pdf

where x > 0 and both shape and rate parameters β , θ are positive.
In this research, we study the statistics of the largest eigenvalues of the normalized spatio-temporal tensor 

expression profiles associated with each video segment (6 per subject for both group DM and C) to explore 
whether they are asymptotically governed by the Tracy–Widom distribution. We also pay special attention to 
the appearance of sharp edges and particularly to the tails of the spectrum and their decay rate.

Generalized pareto (Gp) and Ŵ distribution. The GP distribution, a generalization of both Exponential 
distribution and the Pareto distribution, is a right-skewed distribution, parameterized with location parameter 
µ , a shape parameter k, also known as the tail index parameter, and a scale parameter σ . k can be positive, zero, 
or negative and was developed to model tails of a wide variety of distributions. The probability density function 
of X ∼ GPD(µ, σ , k) is

in which x ≥ µ when k ≥ 0 , and µ ≤ x ≤ µ− σ
k  when k < 0.

(1)Î(x, y, t) ≈ f (x, y, t)+ (1+ α)δ(t)
∂2f (x, y)

∂x∂y

(2)ρN (�) =
1

N

N
∑

η=1

δ(�− �η)

(3)
ξ ≡

√
2N

1
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√
2N)

F(ξ) = exp

(

−
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ξ

(x − ξ)q2(x)dx

)

(4)f (x;β , θ) = θβxβ−1exp(−θx)
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Distributions whose tails fall off as a polynomial (i.e., power law), such as Student’s t, lead to a positive shape 
parameter k. Distributions whose tails decrease exponentially, such as the normal, correspond to a zero k, while 
distributions with finite tails, such as Gamma, correspond to a negative shape parameter k. We estimate the right 
tail index parameters k of ESD function of the largest eigenvalues derived from the normalized spatio-termporal 
tensor expression profiles of video segments for both groups DM and C by fitting GP distribution. This indicates 
whether a subject follows k > 0 , representing power law behaviour and therefore exhibiting SOC, or follow-
ing k < 0 , representing Tracy–Widom distribution [estimated by Ŵ in Eq. (4)] and therefore exhibiting a more 
unstructured random behavior.

Self‑organized‑criticality (Soc). Critical systems are dynamical systems with several interacting com-
ponents that exhibit scale-invariant  fluctuations23. Experiments have suggested that the healthy brain, capable of 
self-tuning to the critical state, also known as SOC, functions near phase transitions because criticality improves 
both information processing capabilities and  health23. Experiments have shown that when the brain malfunc-
tions, e.g., during epileptic seizures, the brain loses the characteristics of criticality. Experiments have also shown 
that the size of neural avalanches appears in various aspects of observables of the system, following power-law 
distributions of the form f (�max) = C�

−γ
max , which are generally a consequence of scale invariance and therefore 

an evidence for  criticality23.
We estimate the exponent γ following the commonly accepted Maximum Likelihood Estimator (MLE) which 

provably leads to accurate parameter estimates in the limit of relatively large sample size. The exponent with an 
error up to O(1/N), N being the sample size, can be estimated as follows:

under the assumption that γ > 1 , and xmin represents the cutoff value for the tail of the distribution.
Reference 23 found that the avalanche size of neuronal tissues in a healthy brain follows a power law with 

exponent γ close to −1.5 , with the avalanche duration following a power law with an exponent close to −2.

Ensemble learning-based classification. Combining several base predictive learners using an ensem-
ble of models aims at providing better predictions due to capturing the underlying distribution of the data in a 
more precise  manner24. Different ensemble-based techniques range from bagging to boosting and stacking have 
been used in different research disciplines including  health24. While the first two techniques, namely bagging 
and boosting primarily focus on reducing either variance or bias, stacking approaches attempt at finding the 
optimal approach to accumulate base learners so that the best trade-off between bias and variance is obtained. 
Stacking technique searches for optimal weights using cross-validation, also known as Cross-validated Optimal 
Weighted Ensemble (COWE). COWE as presented in Table 2 intends to find the best way to combine predic-
tions of base learners such as decision trees, linear discriminant analysis (LDA), Naive Bayes, support vector 
machines (SVM), K-nearest neighbors (KNN) and neural networks among others, by searching for the optimal 
weight to combine them so that the outcome (ensemble) minimizes the total expected prediction error (MSE). 
The optimization model of COWE assumes that the hyperparameters of each base learner are tuned prior to 
conducting the weighting task. This means that the hyperparameters are tuned in an optimal fashion as an inde-
pendent process. The optimization process relies on three distinct algorithms, namely Bayesian optimization, 
random search or grid search. While the former aims at approximating the unknown function with surrogate 
models like Gaussian process, the two latter solutions are exhaustive search methods. Bayesian optimization tries 
to gather observations with the highest information in each iteration by making a trade-off between exploration 
and exploitation.

The architecture of our classifier is presented in Fig. 3, in which k and σ of fitted GP(k, σ) to the right tail of 
ESD function of the largest eigenvalues of normalized spatio-temporal tensor expression profiles for color vari-
ations retrieved from subject’s 6 video segments are the feature predictor variables, while class C (0) and DM 

(6)γ̂ = 1+ N

[

N
∑

i=1

ln

(

xi

xmin

)

]

Table 2.  Cross-validated optimal weighted ensemble (COWE) algorithm.
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Figure 3.  Architecture of our cross-validated optimal weighted ensemble (COWE)-based classifier.



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16785  | https://doi.org/10.1038/s41598-020-73744-3

www.nature.com/scientificreports/

(1) are the response variables. A wide range of learners, their corresponding hyperparameters, and optimizers 
to search for them, along with the optimal ensemble weights were investigated.

We deployed Leave-one-out Cross-Validation (LOO-XV) to predict how well the developed method for 
feature extraction and classification will generalize on an independent data set. LOO-XV removes each observa-
tion in turn, constructs the classifier, and then computes whether this leave-one-out classifier correctly classifies 
the deleted observation. This was iterated 27 times (27-fold cross validation at subject level) with a different 
observation (subject) reserved for testing purpose each time. The final assignment of a subject belonging to 
either class was based on majority voting with equal weights, i.e., 4 equally classified video segments out of 6 (per 
patient) dictates the final class, where a tie is considered undecided. The performance of the classifier was finally 
calculated from the 27 testing observations, by using pre-determined performance metrics such as accuracy, 
sensitivity and specificity.

Results
Application of EVM to subject’s videos. An illustration of temporal color variations of subject’s face due 
to the pulse, before (top row) and after applying EVM with magnification factor α = 50 (bottom row) is pre-
sented in Fig. 4. Subtle color changes invisible to the naked eye (top row) is evident after magnification (frames 0 
and 39, vs. frames 20 and 58), where the time between heart beats is about 0.38 s (19 frames in a video at 50fps, 
bottom row). An example of the difference between the highest and lowest intensity value of the Red channel 
(RGB color spectrum) of each 31× 31-pixel patch to estimate the spatio-temporal tensor expression profile for 
color variations after magnification is presented in Fig. 5. The intensity map on the left belongs to a subject from 
group DM, while the equivalent on the right belongs to a subject chosen from group C. The intensity maps show 
that the mean of intensity difference among subjects of group DM is approximately 22 times larger than that of 
group C.

Analysis of largest eigenvalues and implementation of Soc. Examples of ρ(�max) of subjects 
belonging to group C (in log-log scale) and DM are presented in Fig.  6. Furthermore, statistics of the ESD 
function of the largest eigenvalues of normalized spatio-temporal tensor expression profiles for color variations 
among subjects of group DM and C are presented in Tables 3 and 4. One can note from the statistics of these 
tables that the fitted GP(k, σ) to group C features positive shape parameter ( k > 0 ) as opposed to k < 0 of sub-
jects belonging to group DM. This observation holds for majority of subjects (7 out of 9 in C vs. 15 out of 18 in 
DM), which is an indication of the feasibility of establishing power law among those subjects of group C, whose 
tails of their corresponding ρ(�max) decay as a polynomial. Furthermore, Ŵ(β , θ) as an estimator for the Tracy–
Widom distribution was fitted to ρ(�max) of those subjects from group DM whose k in GP(k, σ) were negative 
(15 in DM). This is presented in terms of both fitted PDF and CDF of Ŵ distribution in Fig. 7. Given that these 
properties do not universally apply to all the subjects of either group C or DM, relying on sgn(k) as the sole basis 
for a classifier in an unsupervised learning manner results in a sensitivity of 83.3% and 77.8% for group DM and 
C, respectively. We can further observe that the magnitude of σ s of group C are significantly smaller than those 

Figure 4.  Illustration of temporal facial color variations before (top row) and after applying Eulerian Video 
Magnification (bottom row).
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of group DM, which if fused with both sgn(k) and |k| , could theoretically outperform the classifier that is based 
only on k.

We observed, however, as exemplified by Table 3, that all those subjects of group C showing sgn(k) > 0 
exhibit γ ∈ [−1.2,−1.55] , which according to SOC falls within the range of healthy brain activity. In addition, 

Figure 5.  Example of the difference between the highest and lowest intensity value of the Red channel (RGB 
color spectrum) of a 31× 31-pixel patch. The left patch belongs to a subject from group DM and the right patch 
is generated from a subject of group C.

Figure 6.  Example of empirical spectral density function of the largest eigenvalues of spatio-temporal tensor 
expression profile of color variations (left: subject from group C in log-log scale; right: subject from group DM).

Table 3.  Fitted generalized pareto and power law exponent (SOC) to the data of subjects belonging to group 
C. Cij is the jth video segment of subject i.

C

C1 C2 C3

C11 C12 C13 C21 C22 C23 C31 C32 C33

GP(k, σ) (0.0869,0.0001) (0.1013,0.0001) (0.1697,0.0001) (0.5628,0.0030) (0.4382,0.0033) (1.0249,0.0020) (1.1599,0.0004) (0.0897,0.0031) (0.4650,0.0016)

Ŵ(β , θ) N/A N/A N/A N/A N/A N/A N/A N/A N/A

γ − 1.53 − 1.52 − 1.45 − 1.20 − 1.20 − 1.21 − 1.30 − 1.21 − 1.23
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all subjects of group DM showing sgn(k) < 0 followed an estimated Tracy–Widom distribution, exhibiting a 
more random nature of tensor profile.

Classification based on an Ensemble of learners. Out of all the potential ensembles of learners listed 
in Fig. 3, the best performance in terms of observed minimum classification error of 0.155 was obtained out of 
a boosting ensemble of 10 weak and shallow decision tree learners, with an optimal learning rate of 0.469, and 
maximum split size of 38. Observed minimum classification error of the best performing ensemble of learners 
and its corresponding scatter plot of model predictions are shown in Figs. 8 and 9, respectively. Furthermore, 
an example of a decision tree in which the ensemble is based upon is presented in Fig.  10. To obtain opti-
mal prediction model while aggregating predictive learners, all trees were given equal weights, being the most 
straightforward approach by simply averaging over the pre-tuned base models. The best point hyperparameters 

Table 4.  Fitted Generalized Pareto and Gamma distribution to the data of subjects belonging to group DM. 
DMij is the jth video segment of subject i.

DM

DM1 DM2 DM3

DM11 DM12 DM13 DM21 DM22 DM23 DM31 DM32 DM33

GP(k, σ) (− 0.378,0.156) (− 0.334,0.131) (− 0.361,0.127) (− 0.455,0.724) (− 0.135,0.665) (− 0.172,0.758) (− 0.745,0.713) (− 0.811,0.916) (− 0.565,0.748)

Ŵ(β , θ) (5.449,0.022) (4.935,0.021) (4.344,0.023) (4.948,0.006) (2.283,0.008) (1.783,0.015) (3.310,0.183) (5.450,0.146) (3.615,0.133)

γ N/A N/A N/A N/A N/A N/A N/A N/A N/A

Figure 8.  Observed minimum classification error of the best performing ensemble of learners.

Figure 7.  Fitted Gamma probability and cumulative density functions to the tails of the empirical spectral 
density function of the largest eigenvalue of subjects of group DM.
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were obtained out of 52 learners featuring an optimal learning rate of 0.107. Given that the number of subjects 
in class DM was twice as that of class C, and in order to cope with class imbalance and skewed nature of the data, 
RUSBoost with maximum split size of 39 and split criterion of maximum deviance reduction while finding all 
the surrogate decision splits were applied. To overcome overfitting, fivefold cross-validation was applied. Bayes-
ian optimization was preferred over other techniques, due to gathering observations with highest information 
while simultaneously incorporating prior beliefs. The performance of the ensemble of learners on the pool of 
individual video segments, in terms of classification accuracy, sensitivity and specificity reached 86.1% , 93.0% 
and 71.4% , where the corresponding ROC curve and scaled trained weights w exhibiting a sparse profile are 
presented by Fig. 11.

The results of final phase of classification process, i.e., fusion of 6 classified video segments of each subject 
reserved for testing (following the LOO-XV strategy) by applying equally weighted majority voting technique 
leading to a decision as whether the subject belongs to group C or DM, are presented in Fig. 12. The results show 
that by integrating classification results from 3 video segments of group DM, only one subject was misclassified 
(sensitivity of 94.4%) while integration of 4 video segments or more lead to a sensitivity of 100%. Similar results 
were observed among subjects of group C, in which integration of classification outcomes from 5 video segments 

Figure 9.  Scatter plot of the ensemble of model predictions.

Figure 10.  Example of one out of ten decision trees.
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resulted in the misclassification of only one subject. Integration of results from 6 video segments shifted the label 
of the misclassified subject into undecided, due to an equal split in the voting outcome.

Discussion and concluding remarks
A useful demarcation line that makes the distinction between our proposed POCD and existing solutions crisp 
and easy to apply, can be formulated as follows. Our POCD is an inexpensive solution that only requires a digital 
camera and a screen. Given recent advances and surge of interest in smartphones and tablets that are equipped 
with complex and powerful processors and high resolution peripherals such as illumination systems (LEDs) and 
cameras, converting our proposed POCD to a home-based solution is feasible. The analysis of collected videos 
and potential outcomes of such investigations can be performed on a centralized cloud-based server maintained 
by healthcare professionals. This enables both patient and care givers to automatically update the status of the 
patient and plan future healthcare actions accordingly. We believe that the same principle could be applied to 
detect anemia, jaundice and infection and dehydration, using color magnification of lower eyelid mucosa, face 
and sclera and by observing increased heart rate, respectively. Even though no individual in our study group was 
diagnosed with obstructive sleep apnoea (OSA); which might result in exhibiting higher levels of haemoglobin, 
it is our belief that our algorithm would not suffer from this condition, as it relies on the time series associated 
with the difference between highest and lowest values of color intensity. This results in our technique being 

Figure 11.  ROC curve (left) and scaled trained weights of our ensemble of learners (right).

Figure 12.  Classification results based on the majority voting of video segments, each column representing the 
number of aggregated video segments.
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independent from the absolute values of haemoglobin, shown to be high in subjects with OSA and low in sub-
jects with anaemia, as the computations are based on relative values of haemoglobin level. Combined with our 
study on tracking subject’s iris and pupil movements, deformations and dilation, we expect to be able to further 
detect diabetic encephalopathy.

Even though Eulerian video magnification algorithm does not provide superior performance in terms of 
computational speed compared to the proposed method  in25, it has been proven to be a very robust algorithm 
for revealing subtle changes in both color and motion deformations that fall outside human visual limits. Limita-
tions with regards to video quality metrics, including noise level, video quality and long execution time that are 
associated with the existing video magnification techniques (such as Eulerian video magnification, phase-based 
video magnification, Riesz pyramid for fast phase-based video magnification and enhanced Eulerian video 
magnification) need to be taken into consideration.

The conclusions drawn on the statistics of the ESD function of the largest eigenvalues of normalized spatio-
temporal color tensor expression profile, and their tails, were build upon modeling this process as a covariance 
matrix model in RMT. Even though we observed that in a majority of cases in group C, the tails of these ESD 
functions decay with a power law exponent mimicking systems exhibiting SOC, while those of group DM 
follow Tracy–Widom statistics, a natural question of great importance is whether the Information-plus-noise 
model would be a better choice, which could lead to a concise universal results on the statistics of the tails and 
their decay rate. It should be also noted that sharp edges in the bulk of these ESD functions were not observed. 
Another important aspect is the study of subspace stability spanned by the eigenvectors associated with the largest 
eigenvalues. Following the subspace spanned by these eigenvectors, one expects that the top eigenvector wobble 
around the true direction either due to the measurement noise or due to the presence of a systematic rotation 
caused by a hidden mechanism. Having said that, our hypothesis is that there should be a genuine motion of the 
largest eigenvector in time towards the uniform vector among subjects belonging to group C and away from the 
uniform vector over time among subjects of group DM. Studying the statistics of the largest eigenvectors and the 
stability of their corresponding spanned subspace is part of our future work. Our goal is not only to distinguish 
patients diagnosed with DN-related complications from a control group, but to map the journey, find transition 
points from mild to severe complications throughout this journey and to stage the disease, by studying different 
aspects of these eigenvectors.

As part of our future work, we intend to investigate the performance of nested optimization-based algorithms 
that concurrently tune and find learner’s hyperparameters and the optimal weights, to combine the ensembles of 
learners on a larger population sample size. The apparent shortcoming of this study is the small sample size and 
ambiguities around calculation of the power of the study. However, it is worth noting that: (1) in order to make 
a priori power analysis, we would need to have an idea of what the size of the effect will be, and the variance of 
the variable of interest. Since this is a proof-of-concept study, no reliable estimation was available. (2) Intensity 
maps presented in Fig. 5 show that the mean of intensity difference among subjects of group DM is approximately 
22 times larger than that of group C, which suggests that these two groups are indeed different. Therefore, this 
result is deemed as statistically meaningful despite study’s small sample size.

Even though our ensemble learning classification technique based on COWE reached a sensitivity of 100% in 
detecting subjects diagnosed with DN after integrating only 4 video segments (each segment approximately two 
min long), we believe that recent techniques such as Cross-validated Optimal Weighted Ensemble with Inter-
nally Tuned Hyperparameters (COWE-ITH) could outperform our algorithm in terms of required number of 
video segments. In addition, there is a strong evidence that fusion of information obtained by investigating both 
variations in skin color and deformations in subject’s iris and pupil movements will outperform the outcome of 
each individual observation. This paves the road towards the design and development of an inexpensive home-
based contact-less, non-invasive diagnostic POCD for early detection of diabetic neuropathy and its associated 
complications.

Data availability
Recorded videos of subjects are available to interested readers.
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