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Abstract 

Background:  Plexiform lesions, which have a dynamic appearance in structure and cellular composition, are the 
histological hallmark of severe pulmonary arterial hypertension in humans. The pathogenesis of the lesion develop‑
ment remains largely unknown, although it may be related to local inflammation and dysfunction in early progenitor 
endothelial cells (eEPCs). We tested the hypothesis that eEPCs contribute to the development of plexiform lesions by 
differentiating into macrophages in the setting of chronic inflammation.

Methods:  The eEPC markers CD133 and VEGFR-2, macrophage lineage marker mannose receptor C-type 1 (MRC1), 
TNFα and nuclear factor erythroid 2-related factor 2 (Nrf2) in plexiform lesions in a broiler model were determined 
by immunohistochemistry. eEPCs derived from peripheral blood mononuclear cells were exposed to TNFα, and 
macrophage differentiation and angiogenic capacity of the cells were evaluated by phagocytotic and Matrigel plug 
assays, respectively. The role of Nrf2 in eEPC-to-macrophage transition as well as in MRC1 expression was also evalu‑
ated. Intratracheal installation of TNFα was conducted to determine the effect of local inflammation on the formation 
of plexiform lesions.

Results:  Cells composed of the early lesions have a typical eEPC phenotype whereas those in more mature lesions 
display molecular and morphological characteristics of macrophages. Increased TNFα production in plexiform lesions 
was observed with lesion progression. In vitro studies showed that chronic TNFα challenge directed eEPCs to mac‑
rophage differentiation accompanied by hyperactivation of Nrf2, a stress-responsive transcription factor. Nrf2 activa‑
tion (Keap1 knockdown) caused a marked downregulation in CD133 but upregulation in MRC1 mRNA. Dual luciferase 
reporter assay demonstrated that Nrf2 binds to the promoter of MRC1 to trigger its expression. In good agreement 
with the in vitro observation, TNFα exposure induced macrophage differentiation of eEPCs in Matrigel plugs, result‑
ing in reduced neovascularization of the plugs. Intratracheal installation of TNFα resulted in a significant increase in 
plexiform lesion density.
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Introduction
Plexiform lesions are a predominant histological fea-
ture in humans suffering from severe pulmonary arterial 
hypertension (PAH), including idiopathic PAH (IPAH), 
ultimately leading to vascular occlusion [1, 2]. These 
structures are typically located at an arterial branch point 
or at the origin of a supernumerary artery, and are con-
sidered to be functionally important because it could 
completely occlude the vessel lumen of the affected ves-
sels [2]. It is believed that patients tend to be unrespon-
sive to vasodilator therapy and have an extremely poor 
prognosis when plexogenic arteriopathy is present [3].

The cause and origins of plexiform lesions remain 
largely unclear. Several mechanisms have been pro-
posed, involving inflammation mechanisms and disor-
dered angiogenesis [4–7]. In recent years, endothelial 
progenitor cells (EPCs) have attracted increasing inter-
est in vascular physiology and pathophysiology [8]. To 
date, two distinct types of EPCs have been described: the 
early EPCs (eEPCs, also termed circulating angiogenic 
cells  [ASC] or colony-forming unit-endothelial cells) 
derived from the bone marrow and the late outgrowth 
EPCs (late EPCs) derived from nonhematopoietic tis-
sue, presumably from tissue vascular niches [9–11]. A 
beneficial effect on endothelial repair after injury has, 
in particular, been shown for early EPCs [12, 13]. Based 
on more recent observations, however, it is suggested 
that dysfunction of eEPCs contributes to the formation 
of plexiform lesions in PAH patients [14–16], which was 
highlighted by evidence of eEPC accumulation in the 
sites of lesions. However, the exact mechanisms account-
ing for eEPC dysfunction and the fate of the EPCs in the 
sites of plexiform lesions remain to be fully elucidated.

In addition to eEPCs, monocytes/macrophages  are 
also found in increase number within plexiform lesions 
of human PAH and in animal model with severe PAH 
[17]. However, it is of interest to note that eEPCs dis-
play a mixed macrophage/endothelial cell phenotype 
[18–20], suggesting complex relationships between 
eEPCs and monocytes/macrophages. While it is pro-
posed that eEPCs with a mixed macrophage/endothelial 
cell phenotype can develop an endothelial-like cell phe-
notype under angiogenic conditions [21, 22], there is also 
evidence that inflammatory environment induces the 

differentiation of eEPCs into immune/inflammatory cells 
by yet unknown mechanisms [23], leading to the sugges-
tion that eEPC angiogenic commitment is not a definitive 
event and that the phenotype and function of these cells 
are affected by the local microenvironment. Given the 
intensive perivascular inflammation of plexiform lesions 
[7], we proposed that the impaired angiogenic activity of 
local eEPCs is associated with a phenotypic switching of 
eEPCs to macrophages. However, evidence supporting 
this hypothesis is still lacking.

A line of evidence shows that the function and fate of 
stem and progenitor cells are under redox regulation 
in physiologic and pathologic conditions [24, 25]. The 
inducible transcription factor Nrf2 (nuclear factor eryth-
roid 2-related factor 2; encoded by Nfe2l2 gene) is emerg-
ing as a central regulator of oxidative stress by activating 
a wide array of cytoprotective and antioxidant gene tar-
gets [26–29]. Although initially considered to function 
primarily for maintaining and regulating the cellular 
redox equilibrium, Nrf2 is now recognized to modulate 
various cellular processes including cell proliferation and 
differentiation [30].  Recent evidence shows that Nrf2 
contributes to the pathogenesis of atherosclerosis via 
inducing the phenotypic changes of vascular cells as well 
as macrophages in the lesion [31, 32]. In this regard, Nrf2 
may serve as a signaling mechanism to participate in the 
pathogenesis of plexiform lesions.

Although numerous experimental animal models of 
PAH have been developed, only few of them  develop 
plexiform-like lesions (reviewed by Bonnet et  al. 2017) 
[33]. In addition, attempts to better understand the 
pathogenesis of plexogenic arteriopathy in humans with 
severe PAH have been hampered by the absence of ani-
mal models in which plexiform lesions develop spon-
taneously [34]. Domesticated fast growing meat-type 
chickens (broiler chickens) are highly prone to idiopathic 
PAH (previously known as ascites syndrome; pulmonary 
hypertension syndrome) [35–37], and can spontaneously 
develop plexiform lesions in small pulmonary arter-
ies exhibiting histological features similar to that seen 
in human PAH [38–40]. We have recently confirmed 
the presence of eEPCs (CD133+/VEGFR-2+ cells) and 
foam-like macrophages in the structures, and provided 
evidence that the lesion development in this avian model 

Conclusions:  This work provides evidence suggesting that macrophage differentiation of eEPCs resulting from 
chronic inflammatory stimulation contributes to the development of plexiform lesions. Given the key role of Nrf2 in 
the phenotypic switching of eEPCs to macrophages, targeting this molecular might be beneficial for intervention of 
plexiform lesions.
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is associated with hemodynamic stress [41, 42]. More 
recently, we showed that transplantation of mesenchymal 
stromal cells attenuates neointimal and plexogenic arteri-
opathy in PAH broiler chickens through modulating lung 
inflammation [43].

The aim of this work is to uncover the mechanisms by 
which inflammation and eEPCs conspire to cause the 
plexiform lesions in the avian model. We demonstrate 
here that chronic inflammation leads to the phenotypic 
switching of chicken eEPCs into macrophage lineage 
resulting in reduced angiogenic potential that involves 
the transcription factor Nrf2. Moreover, intratracheal 
instillation of proinflammatory cytokine tumor necrosis 
factor α (TNFα) promotes the development of plexiform 
lesions in broilers. This provides new insight into the 
mechanisms by which inflammation and eEPCs contrib-
ute to the plexogenic arteriopathy.

Materials and methods
Animal ethics
The animal experiments followed the National Guide-
lines  for the Ethical Review of Laboratory Animal Wel-
fare and were approved by the Ethics Committee of the 
Zhejiang University (ZJU20170554).

Animals
Cobb-500 broiler chickens with mixed sex were obtained 
at 1-day old from a local commercial hatchery (Hang-
zhou, China) and were reared at thermoneutral tempera-
tures. They were fed a 21% crude protein corn-soybean 
meal-based broiler ration formulated to meet or exceed 
the NRC (1994) standards for all ingredients. Feed and 
water were supplied ad libitum.

Histology and immunohistochemistry
Birds at 4 weeks of age were humanly killed by cervical 
dislocation. The whole right lung was collected and cut in 
the transverse plane at the major rib indentations (costal 
sulci). For histological study, one inter-rib division from 
the middle of each lung was fixed in 4% paraformalde-
hyde. The apical regions of the left lungs were stored in 
liquid nitrogen until use. The paraffin-embedded blocks 
were serially cut in the transverse plane at 4–5 μm thick-
ness. One slide of each lung was stained with haema-
toxylin and eosin  (H&E). Number of plexiform lesions 
was counted for calculation of lesion density (number of 
lesions per section/cm2 per section).

The procedure for immunohistochemistry has been 
previously described [42]. Lung sections were incu-
bated with mouse anti-chicken CD133 (self-prepared), 
rabbit anti-rat VEGFR-2 (Boster Biotechnology Tech-
nology, China), mouse anti-chicken monocyte/mac-
rophage MRC1 (KUL-01, Southern Biotech, Birmingham, 

USA), rabbit anti-human Nrf2 (Proteintech, Wuhan, 
China), or mouse anti-human TNFα (Huabio, Hangzhou, 
China) at a dilution of 1:50–1:200. The primary antibody 
detection was performed by using appropriate horse-
radish peroxidase (HRP)-conjugated secondary anti-
body and visualized with DAB (3,3′-diaminobenzidine 
tetrahydrochloride), followed by counterstaining with 
haematoxylin.

Ex vivo expansion of eEPCs
Ex vivo expansion of eEPCs were performed exactly as 
described in our previous work [44]. Briefly, mononu-
clear cell fraction of the peripheral blood (PBMC) from 
4-week-old healthy birds was cultured in Endothelial cell 
growth medium (EGM)-2 (Lonza, Walkersvil, MD, USA) 
containing 2% fetal bovine serum (FBS), 100 U/ml peni-
cillin, and 100  μg/ml streptomycin at 39  °C in 5% CO2. 
Non-adherent cells were removed after 48 h. On day 4 of 
culture, cells were passaged using  0.25%  trypsin/EDTA 
(Invitrogen) and plated on rat tail type 1 collagen-coated 
6-well plates at 1 × 107 cells/well.

Cell viability assay
Cell viability was measured by using Cell Counting Kit-8 
(CCK-8, FDbio Science, Hangzhou, China) according 
to the manufacturer’ instructions. Briefly, eEPCs were 
seeded in 96-well plates at 1 × 104 cells/well in the pres-
ence or absence of r-TNFα (PeproTech Inc., Rocky Hill, 
NJ, USA). At the indicated time points, 10 μl of CCK8 
solution was added into each well, followed by incubation 
of the plates at 39 °C in 5% CO2 for 2 h. The optical den-
sity (OD) was measured at 450 nm.

Dil‑ac‑LDL and lectin staining
eEPCs were characterized by their ability to take up 
1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine-
labelled acetylated low-density lipoprotein (Dil-Ac-LDL) 
and bind to lectin (Ulex europaeus agglutinin, Sigma-
Aldrich, Shanghai, China). A detailed protocol for Dil-
Ac-LDL/lectin labeling has been described previously 
[45]. Cells were observed with a fluorescence microscope 
and photographed. The double-labelled cells were identi-
fied as eEPCs [46].

Immunocytochemistry (ICC)
Cells were fixed with 4% paraformaldehyde, followed by 
antigen retrieval (for MRC1) in  Tris–EDTA buffer  (pH 
9.0) or permeabilization (for Nrf2 and CD133) in 0.1% 
Triton X-100 for 5–10  min. Nonspecific binding sites 
were blocked with 10% fetal bovine serum (FBS) for 
20  min, followed by incubation with an anti-MRC1 
(Southern Biotech, Birmingham, USA) used at a dilution 
of 1:50, anti-chicken CD133 (self-prepared) or anti-Nrf2 
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(Proteintech, Wuhan, China) at 1:200 overnight at 4  °C. 
The primary antibody detection was performed with an 
FITC-labeled or Alexa Fluor 568-conjugated secondary 
antibody (Abcam, Cambridge, UK). Nuclei were visu-
alized with DAPI (4′-6-diamidino-2-phenylindole) for 
5  min. Cells were observed with a fluorescence micro-
scope and photographed. MRC1+ and CD133+ cells 
in each well were counted in 6 randomly selected high-
power fields (× 200).

Phagocytosis assay
eEPCs were cultured in 24-well plates at 3 × 105 cells/
well with or without recombinant TNFα (r-TNFα; 50 ng/
ml) for 3–6 days. Cells were then marked with DAPI for 
3  h before incubation with FITC-labeled E. coli DH5α 
(1 × 109  CFU/ml) for another 3  h. Extracellular bacteria 
was killed by gentamicin. Cells that phagocytosed bac-
teria were counted in at least 6 randomly selected high-
power fields (× 200) under a fluorescence microscope. 
Broiler PBMNC-derived macrophages were used as a 
positive control.

In vivo Matrigel plug assay
Briefly, 6 × 105 eEPCs were treated with or without 
recombinant TNFα (r-TNFα; 50 ng/ml) for 24 h and were 
mixed with 200 μl Matrigel (BD Biosciences, San Jose, 
CA, USA). Thereafter, the Matrigel mixture was subcuta-
neously injected into 4-week-old broilers. Matrigel mixed 
only with r-TNFα was used as a blank control. After 
6 days, the birds were killed and the Matrigel plugs were 
harvested, fixed in 4%  formaldehyde and processed for 
histology and immunohistochemistry analyses.

Keap1 siRNA transfection
Chicken nontargeting negative control siRNAs (NC 
siRNA) and siRNA specific for the chicken Keap1 was 
designed and synthesized by GenePharma (Shang-
hai, China). Briefly,  siRNA was complexed with Lipo-
fectamine™ 2000 (Invitrogen, Waltham, MA, USA) 
according to manufacturer’s instructions before trans-
fection. eEPCs were incubated with siRNA (final siRNA 
pool concentration of 20  nM) for 6  h  in a humidified 
incubator. Knockdown efficiencies were determined by 
qPCR.

Real‑time quantitative PCR assay
Total RNA was extracted from the cultured cells using 
TRIzol (Takara). The RNA was reverse transcribed with 
the PrimeScript RT reagent Kit with genomic DNA 
(gDNA) Eraser (Takara, Dalian, China). The 80–150-bp 
primers for each gene were purchased from Tsingke Bio-
logical technology (Additional file 1: Table S1). Quantita-
tive assessment of target messenger RNA (mRNA) levels 

was performed by qPCR using a SYBR-Green Quanti-
tative PCR kit (Vazyme, Nanjing, China) with a Roche 
LightCycler 480 II system (Roche Diagnostics GmbH, 
Mannheim, German). The cycle threshold (Ct) values 
were normalized to the expression of two reference genes 
(B2M, RPL19). The relative expression of mRNA was cal-
culated using a Pfaffl analysis method.

Protein extraction and Western blot analysis
Total protein  extraction from lung tissues and  cultured 
cells were performed by using a radioimmunoprecipita-
tion assay buffer (RIPA) containing protease inhibitors 
and phosphatase inhibitors (FDbio Science, Hangzhou, 
China). Nuclear and cytoplasmic fractionation was con-
ducted using a Nuclear-Cytosol Extraction Kit (FDbio 
Science, Hangzhou, China) according to the manufactur-
er’s instructions. Samples were boiled at 99 °C for 5 min 
and then separated by using a sodium dodecyl sulfate 
(SDS)-10% polyacrylamide gel electrophoresis (PAGE) 
Fast Preparation Kit (FDbio Science, Hangzhou, China). ​
After gel electrophoresis, the proteins from the gels were 
transferred to the 0.45 μm PVDF membranes (Millipore, 
USA). The membranes were blocked in 5% non-fat milk 
for 2 h at room temperature and incubated with primary 
antibodies against Nrf2 (Proteintech, Wuhan, China), 
Keap1 (Proteintech, Wuhan, China), β-actin (Santa Cruz 
Biotechnology, Shanghai, China), histone (Santa Cruz 
Biotechnology, Shanghai, China) and tubulin (FDbio Sci-
ence, Hangzhou, China) at a dilution of 1:1000 overnight 
at 4  °C. The primary antibody was detected by a horse-
radish peroxidase (HRP)-conjugated secondary antibody 
(FDbio Science, Hangzhou, China). Electrochemilumi-
nescent (ECL, FDbio Science, Hangzhou, China) was 
used to visualize the immunoreactive bands.

Luciferase assay
The full-length open reading frame (ORF) of chicken Nrf2 
cDNA with an optimal Kozak consensus sequence just 
before the in-frame first ATG was cloned into the eukar-
yotic expression vector pEGFP-C3 (pEGFP-C3-Nrf2). 
A predicted regulatory region containing 978  kb of a 5′ 
flanking sequence (from − 45 to − 1022) of MRC1 was 
cloned into the Kpn I and Hind III of pGL3-basic vector 
(Promega, Madison, Wisconsin, USA) containing a firefly 
luciferase reporter gene. The constructs were confirmed 
by DNA sequencing. The pRL-TK vector (Promega, 
Madison, Wisconsin, USA) containing a Renilla reni-
formis luciferase reporter gene was used as a control for 
transfection efficiency in the Dual-Luciferase Reporter 
Assay System. All plasmid DNAs were transfected into 
the HEK-293T cell line using the Lipo8000 (Beyotime 
Biotech, Nanjing, China). Luciferase activities were ana-
lyzed in 20 μl cell lysates with the Dual Luciferase Assay 
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kit (Vazyme, Nanjing, China) on a BioTek Synergy H1 
microplate reader (Winooski, Vermont, USA). The rela-
tive luciferase activities are expressed as a ratio of the 
pGL3 reporter activity to that of the control plasmid pRL.

Intratracheal instillation of TNFα
Intratracheal TNFα instillation was performed following 
a modified protocol described earlier for rat [47]. In brief, 
birds at 14  days of age were anesthetized by inhalation 
of diethyl ether and received twice either 100 μl saline 
or 0.5  μg recombinant TNFα in 100 μl saline solution 
intratracheally, followed by another intratracheal instilla-
tion after 3 days. Birds were humanly killed 3 days after 
the second instillation. The hearts were removed, dis-
sected, and weighed for calculation of the right-to-total 
ventricular weight ratio (RV/TV) as an indicator of pul-
monary arterial hypertension [37]. Lung tissue was sam-
pled as described above.

Statistical analysis
Data were analyzed for normality using Shapiro–Wilk 
test as a justification for using parametric analysis. Dif-
ference in cell proliferation was compared using one-way 
analysis of variance (ANOVA) followed by Bonferroni 
post-hoc test. Other data were analyzed using non-par-
ametric Mann–Whitney U test due to the small sample 
size or not normally distributed. Data were expressed as 
mean ± s.d. (ANOVA) or median ± 95% confidence inter-
val (Mann–Whitney). The software used was SPSS 22.0 
for Window (IBM Corp., Armonk, NY, USA). Differences 
were considered significant at P < 0.05.

Results
Cells within the early and mature plexiform lesions 
demonstrate distinct molecular characteristics
To evaluate the cell phenotype in plexiform lesions at dif-
ferent differentiation stages, lung slides was examined 
to confirm the presence of plexiform lesions by H&E 
stain, and the expression of CD133, VEGFR-2 as well as 
mannose receptor C-type 1 (MRC1), was evaluated by 
immunohistochemistry analysis using serially cut slides. 
MRC1+ monocyte/macrophage lineage cells have been 
found to exhibit features similar to those in mammals 
[48]. As shown in Fig.  1, we determined strong expres-
sion of MRC1, CD133 and VEGFR-2 in cells within the 
early lesions indicative of the presence of a mixed mac-
rophage/endothelial cell phenotype that has been defined 
as eEPCs. In more mature lesions foam-like macrophages 
became predominant, which demonstrated weak CD133 
reactivity but strong expression in MRC1 and VEGFR-
2, resembling differentiated, polarized macrophages in 
mammals [49].

TNFα production in plexiform lesions increases with lesion 
progression
To confirm that the development of plexiform lesions in 
our avian model is associated with aberrant TNFα pro-
duction, an immunohistochemical study of histological 
sections was performed. As expected, the parent ves-
sels of plexiform lesions had increased signal of TNFα in 
the endothelial cell layer than the vessels without lesions 
(Fig. 2A, B). In addition, we noted a progressive increase 
in stromal TNFα production with the lesion progression 
(Fig. 2C).

Chronic TNFα exposure promotes the differentiation 
of eEPCs to macrophages
Although TNFα has been shown to induce cell death in 
many cell types [50], we did not determine a significant 
effect of TNFα at 10–100  ng/ml on cell viability (Addi-
tional file 2: Fig. S1). Nevertheless, a remarkable morpho-
logic change was observed in TNFα-challenged eEPCs, 
characterized by loss of the typical spindle-shaped eEPC 
appearance and acquisition of rounded and loosely 
attached phenotype showing numerous superficial den-
drites (Fig.  3A), matching the morphology of mature 
macrophages. In line with the morphologic change, the 
portion of cells with an eEPC phenotype, as defined as 
acLDL+/lectin+ cells [18, 51], was markedly declined 
following exposure to TNFα for 6 days (Fig. 3B). In con-
trast, MRC1 + cells were significantly increased while 
CD133+ cells were decreased in the same cultures 
(Fig. 3C, D). To further confirm that chronic inflamma-
tion drives the differentiation of eEPCs to macrophage 
lineage, phagocytosis assay was performed. As shown in 
Fig.  3E, ePECs acquired strong phagocytic capability in 
uptake of FITC-labeled bacteria following treatment with 
TNFα for 6 days. Together, the data suggest that chronic 
TNFα challenge triggers the differentiation of eEPCs to 
macrophages.

Chronic exposure to TNFα attenuates in vivo angiogenic 
potential of eEPCs
We next evaluated the effects of chronic TNFα exposure 
on the angiogenic potential of eEPCs by using an in vivo 
Matrigel plug assay. H&E staining revealed the presence 
of numerous lumenal structures containing erythro-
cytes in the plugs with eEPCs; however, in the presence 
of TNFα, the number of vascular structures in the plugs 
containing eEPCs was significantly reduced (Fig.  4B–
D). Of note, few host cells invaded the plugs contain-
ing Matrigel only or Matrigel with r-TNFα, although 
giant cells were found to infiltrate into the borders of 
the implants (Fig. 4A), indicating that eEPCs within the 
implants were not contaminated with host cells (Fig. 4B, 
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Fig. 1  Characterization of the phenotypes of cells within plexiform lesions. Representative serial hematoxylin and eosin (H&E)-stained sections 
and immunohistochemistry images showing histologic features and immunostaining results of plexiform lesions at different maturing stages from 
4-week-old broiler chickens. The cells in the early immature lesion (left) exhibit endothelial-like morphology and those in more mature lesion (right) 
consist predominantly of foam-like macrophage cells. Immunohistochemistry analysis were performed using primary antibodies against monocyte/
macrophage marker mannose receptor C-type 1 (MRC1), stem/progenitor cell marker CD133 and vascular endothelial growth factor receptor 
(VEGFR)-2. All immunostained sections are counterstained with hematoxylin. The dotted lines represent the edge of lesions
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C). Plug sections were also subjected to immunohis-
tochemistry analyses of the expression of MRC1 and 
CD133. Similar to the in vitro results, the Matrigel plugs 
containing TNFα and eEPCs had increased MRC1+ but 
decreased CD133+ cells than those containing eEPCs 
alone (Fig. 4E).

Nrf2 is essential for the phenotypic changes of eEPCs 
to macrophages in response to chronic TNFα stimulation
Nrf2 has been previously reported to regulate mac-
rophage phenotype in response to oxidative stress and 
chronic inflammation [31]. On activation, Nrf2 trans-
locates into the nucleus to exert a variety of biological 
functions [52]. To determine whether Nrf2 regulates 
phenotypic switching of eEPCs in response to chronic 
inflammation, we first determined by Western blot the 
protein level of Nrf2 in the cytoplasmic and nuclear frac-
tions prepared from eEPCs after treatment with TNFα 
(50 ng/ml) for 3–6 days. As shown in Fig. 5A, Nrf2 pro-
tein was detected only in the nuclear fractions from both 
normal and TNFα-exposed cells. Interestingly, nuclear 
Nrf2 level tended to be decreased after treatment with 
TNFα for 3  days, followed by a marked increase at day 
6. In line with the Western blot analysis, immunofluores-
cent staining demonstrated strongly increased nuclear 
Nrf2 signal in cells exposed to TNFα for 6 days (Fig. 5B).

To confirm Nrf2 overactivation drives phenotypic 
switching of eEPCs, we modulated Nrf2 activity in eEPCs 
by genetic knockdown of Keap1, which targets Nrf2 for 
ubiquitination and subsequent degradation in cytoplasm 
[53]. siRNA silencing of Keap1 (Fig.  5C) resulted in a 
persistent activation of Nrf2, as evidenced by increased 
Nrf2 accumulation in the whole cell lysates and upreg-
ulated expression of its target gene Nqo-1 (NAD(P)
H:quinone oxidoreductase 1) (Fig.  5D). The effects of 
Keap1 knockdown on CD133 and MRC1 expression 
were also evaluated. We noticed a marked upregulation 
in CD133 mRNA level during the first 48  h following 
Nrf2 activation; however, an opposite effect was observed 
when Nrf2 activation was sustained for 72  h (Fig.  5E). 
Interestingly, Keap1 knockdown resulted in a persistent 
upregulation in MRC1 (Fig. 5F). Based on this finding, we 
hypothesized that Nrf2 regulates the promoter of MRC1. 
Results from dual luciferase reporter assay showed that 

increasing chNrf2 plasmid upregulated the expression 
of the reporter gene carrying the promoter of MRC1 in 
a dose-dependent manner, as evidenced by increased 
MRC1-luciferase activity (Fig.  5G). As expected, in the 
presence of TNFα, MRC1-luciferase activities in chNrf2-
overexpressing cells were significantly enhanced. To 
confirm Nrf2 activation during the development of plexi-
form lesions, lung tissues were subjected to immuno-
histochemistry analysis (Additional file  3: Fig. S2). The 
immunostaining intensity for Nrf2 in mature lesions was 
stronger than that in early lesions. In addition, in contrast 
to the fact that Nrf2 was localized predominantly in the 
cytoplasm of cells in the early lesions, Nrf2 was found to 
be located predominantly in the nucleus of the foam-like 
macrophages present in more mature ones (Additional 
file 4: Fig. S3).

Intratracheal TNFα installation enhances the formation 
of plexiform lesions
As expected, local TNFα administration resulted in a 
significant increase in the number of plexiform lesions 
that were morphologically undistinguishable from those 
observed in the control group (Fig.  6A). Western blot 
analysis demonstrated increased amount of Nrf2 pro-
tein in the lung of TNFα-treated birds as compared to 
the controls, suggesting an overactivation of Nrf2 in 
response to TNFα (Fig. 6B). Consistent with the Western 
blot analysis data, birds treated with TNFα had increased 
endothelial Nrf2 expression as assessed by immunohis-
tochemistry staining (Fig.  6C, D). TNFα administration 
also led to an elevation in RV/TV ratio, although the dif-
ference between groups was not statistically significant 
(Fig. 6E).

Discussion
In the present study, we described several findings sup-
porting a view that eEPCs undergo macrophage dif-
ferentiation during the development and evolution of 
plexiform lesions in our avian model. First, we have dem-
onstrated that the cells in the early lesions have a typical 
eEPC  phenotype (i.e., a mixed macrophage/endothelial 
cell phenotype) whereas those predominated in more 
mature lesions display molecular and morphological 
characteristics of macrophages. In addition, we show that 

Fig. 2  Immunohistochemistry analysis of TNFα. A Normally branching vessels showed weak intimal expression of TNFα (right panel) while the 
arteries from which plexiform lesions arose displayed stronger endothelial signal of TNFα (left panel). NV normally branching vessels. PL plexiform 
lesion. B Semi-quantification analysis of TNFα in normally branching vessels (NV) and parent vessels of plexiform lesions (PVPL) by measuring the 
optical density. Data are expressed as median ± 95% confidence interval of at least 20 arterioles. **P < 0.01. C The EPCs in early lesions (up) showed 
limited expression of TNFα as compared to the foam-like macrophage in mature lesions (down)

(See figure on next page.)
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(See figure om next page.)
Fig. 3  Chronic exposure to TNFα leads to eEPC-to- macrophage conversion. A Representative photographs showing the morphological change 
of eEPCs in response to chronic TNFα exposure. Cells were incubated with TNFα at 50 ng/ml for 6 days. B Characterization of eEPCs. eEPCs 
were subjected to fluorescence staining with Dil-ac-LDL (red) and lectin (green). Cell nuclei were visualized by DAPI (blue). Dual positives were 
counted (n = 3). C Characterization of macrophage lineage. eEPCs were subjected to fluorescence staining with anti-KUL-01 (green). The cell 
nuclei were labeled with DAPI (blue). MRC1+ cells were counted (n = 6). D eEPCs were exposed to TNFα at 50 ng/ml for 3–6 days and subjected 
to immunofluorescence analysis with anti-CD133 (green). The cell nuclei were labeled with DAPI (blue). CD133+ cells were counted (n = 6). E 
Phagocytosis capability assay. eEPCs were exposed to TNFα at 50 ng/ml for 3–6 days and allowed to phagocyte E. coli (green). The cell nuclei were 
labeled with DAPI (blue). Chicken PBMNC-derived macrophages were used as a positive control. Cells having intracellular bacteria were counted 
(n = 6). The data are representative of 2 separate experiments. Photographs are from one representative experiment. Data were expressed as 
median ± 95% confidence interval (Mann–Whitney). *P < 0.05. **P < 0.01

chronic inflammation induces the differentiation of eEPC 
into macrophage lineage, resulting in reduced angiogenic 
potential. Furthermore, we provide direct evidence that 
local administration of TNFα produces plexiform lesions. 
Our findings are important, regarding that the morpho-
logical and molecular characteristics and anatomic distri-
butions of plexiform lesions developed in broilers closely 
resemble that seen in human PAH patients [34, 38].

PAH is a common cardiovascular disorder in modern 
broiler chickens, with an estimated incidence of 3% in all 
broilers reared under normal conditions that promote 
rapid growth. Although the primary triggers of PAH in 
broilers remain unclear, accumulating evidence suggests 
that anatomically insufficient lung volume predisposes 
broilers to PAH [54, 55]. Unlike that in mammals, avian 
pulmonary capillaries are rigid tubes that prevent them 
from expanding in response to increased blood flow. The 
result is that pulmonary arterial pressure rises linearly 
with pulmonary blood flow [56]. Rapid growth in broil-
ers incurs progressive increases in cardiac output that 
inevitably lead to increased pulmonary arterial pressure 
due to the corresponding increases in pulmonary blood 
flow. Research has shown that pulmonary arterial pres-
sure in normal broilers increases from 20 to 25  mmHg 
between 2 and 3  weeks and maintains at approximately 
25  mmHg during weeks 4 and 5 of age [57].Individuals 
having the most restricted pulmonary vascular capac-
ity develop PAH when their right heart must develop 
an excessively elevated pulmonary arterial pressure to 
overcome the increased resistance to flow through the 
constricted pulmonary  arterioles [55].  Sustained PAH 
triggers a series of events leading to structural vascular 
changes similar to the observations in human patients, 
including medial thickening and intimal proliferation 
[43, 58, 59]. Despite that fact that PAH broilers demon-
strate increased plexiform lesions in their lungs [60], we 
and others have shown that PAH is not an essential pre-
requisite of the structures [38, 39, 42]. Nevertheless, an 

elevation in pulmonary arterial pressure appears to play a 
role in the process [41]. It is now believed that increases 
in pulmonary arterial pressure may create turbulent flow 
in increasing numbers of branch points or  curved por-
tions, leading to increased plexiform lesions as observed 
in PAH broilers [60]. The importance of disturbed flow 
for the development of plexogenic pulmonary arterio-
pathy is indirectly supported by the fact that the lesions 
can hardly be recapitulated in rodents in which turbulent 
flow rarely occurs because of the rapid stabilization of 
flow in small vessels [61].

eEPCs have been recognized as monocyte-derived cir-
culating angiogenic cells [18] and are known to home 
to the sites of vascular injury for endothelial repair [62]. 
We have previously reported the accumulation of eEPCs 
(CD133+ and VEGFR-2+ cells) in the early lesions 
located at branch points of interparabronchial arterioles 
in broiler lungs [42]. In the present study, we extended 
our previous findings by demonstrating the expression 
of a macrophagic marker MRC1 in these cells, further 
confirming their eEPC phenotype [63]. This finding is 
important, regarding the presence of  fully differentiated 
macrophages in the mature lesions.

In compliance with the hypothesis that chronic inflam-
mation contributes to the pathology of plexiform lesions, 
we determined increased endothelial TNFα expression 
in the parent arterioles of plexiform lesions and con-
stant mononuclear cell infiltrates around the lesions. We 
next used an in  vitro model to test our hypothesis that 
chronic inflammation induces macrophage differentia-
tion of eEPC resulting in reduced angiogenic potential. 
In line with an early study where incubation with TNFα 
showed no effect on eEPC death [64], we did not observe 
a significant effect of TNFα at 10–100 ng on cell viability. 
As expected, prolonged TNFα stimulation promoted the 
differentiation of eEPCs to macrophages, as evidenced 
by decreased expression in CD133 and increased expres-
sion in MRC1 together with the acquisition of strong 
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phagocytotic activity. Additional experiments were car-
ried out to examine if chronic inflammation leads to a 
conversion of eEPCs to macrophages in  vivo. For this, 
eEPCs were mixed with Matrigel containing TNFα and 
were subcutaneously injected into broiler chickens to 
allow neovascularisation to develop for 6  days. Results 
from these studies demonstrate that eEPCs undergo 
macrophage differentiation in Matrigel plugs contain-
ing TNFα, resulting in reduced neovascularization in 
Matrigel plugs. Together, the data provide clear evidence 
that chronic inflammation predisposes eEPCs to differ-
entiate into macrophage lineage, a process that impairs 
the angiogenic potential of eEPCs. In context, our results 
allow us to argue that the development of plexiform 
lesions is attributed to the impairment of angiogenic pro-
cesses that is associated with the switching of eEPCs to 
macrophages in response to chronic inflammation.

To explore the potential mechanisms by which TNFα 
promotes eEPC-to-macrophage conversion, we focused 
on Nrf2, a well-known oxidative stress-responsive tran-
scription factor. Interestingly, TNFα exposure had no 
significant effect on Nrf2 activation in eEPCs during the 
first 3  days, suggesting an intrinsic capability of these 
cells to tolerate inflammatory stimulation [65]. However, 
Nrf2 activation was evident at day 6 following TNFα 
exposure, a time point at which increased MRC1+ mac-
rophages were present in the cultures. We found that 
Nrf2 hyperactivation was sufficient to induce the differ-
entiation of eEPC to macrophage lineage. In support of 
our findings, Nrf2 has also been shown to regulate the 
differentiation of other cell types [66, 67]. In addition, 
we found that Nrf2 was able to bind to the promoter 
of MRC1 to trigger its expression. By using a luciferase 
assay, we confirmed that Nrf2 regulates TNFα-induced 
eEPC-to-macrophage conversion. Showing a very good 
agreement with the in vitro data, Nrf2 protein was found 
to be barely expressed in the cells within the early plexi-
form lesions, whereas its expression was strong in more 
mature ones. Taken together, it is reasonable to suggest 

that local Nrf2 hyperactivation contributes to the patho-
genesis of plexiform lesions by inducing macrophage dif-
ferentiation of eEPCs. Further studies are warranted to 
test whether targeting Nrf2 would be beneficial for inter-
vention of the lesions.

The present study has several limitations. First, since 
specific surface markers for the identification of mac-
rophage subpopulations in avian species have not been 
defined, subgroups of the macrophages in the plexi-
form lesions and in the in  vitro cultures challenged 
with TNFα were not specified. Second, the present 
study focused only on the eEPCs in the pathogenies 
of plexiform lesions. We acknowledge that TNFα may 
also stimulate endothelial-to-mesenchymal transition 
to promote the process [68]. Third, we did not evalu-
ate the effect of TNFα installation on pulmonary blood 
flow and pulmonary vascular resistance. Thus, we could 
not conclude that the moderate increase in pulmonary 
arterial pressure as measured by RV/TV ratio after 
TNFα administration is merely related to the increased 
formation of plexiform lesions.

Conclusions
In summary, the current study provides evidence sup-
porting the view that local inflammatory cytokine 
TNFα plays a critical role in the development of plexi-
form lesions. Our observation that chronic exposure 
to TNFα promotes the phenotypic switching of eEPCs 
towards macrophage lineage might explain why the 
eEPCs loss their angiogenic activities after homing to 
the sites of vascular injury within the pulmonary vascu-
lature and the origin of macrophages in the lesions. We 
show for the first time that Nrf2 drives the phenotypic 
switching of eEPCs towards macrophages following 
chronic TNFα stimulation. Taken together, understand-
ing of these mechanisms that drive the development 
of plexiform lesions may pave the way to provide 
novel therapeutic strategies for the treatment of PAH 
patients.

(See figure on next page.)
Fig. 4  In vivo angiogenic potential and phenotype of eEPCs exposed to TNFα. A–C Representative photographs showing the morphology 
of subcutaneous Matrigel plug containing TNFα (blank control), eEPCs (control) and both (TNFα). Injection of eEPCs without TNFα led to the 
formation of capillary-like structures containing many erythrocytes. D Quantification of the newly-formed vessels in the Matrigel containing 
eEPCs with or without TNFα. Vessel density was expressed as the number of vessels per field (× 400) (n = 6). E Immunohistochemical staining of 
paraffin-embedded Matrigel plug was performed by using the anti-KUL-01 and anti-CD133 antibody. Positive cells were automatically identified 
and counted in 6 randomly selected fields (× 400) by using ImageJ (version 1.52). Bars are median ± 95% confidence interval. The data are 
representative of 2 separate experiments
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Fig. 5  Nrf2 regulates the eEPCs-to-macrophage conversion in response to chronic TNFα stimulation. A eEPCs were exposed to 50 ng/ml 
TNFα for the indicated time. Total cytoplasmic and nuclear proteins were extracted for Western blot using an anti-Nrf2. Tubulin and Histone 
are shown as loading control, respectively. # non-specific bands. B Alternatively, cells were subjected to immunofluorescence analysis of Nrf2 
nuclear translocation. Nrf2 was probed with a primary anti-Nrf2 antibody and visualized with an Alexa Fluor 594-conjugated secondary antibody 
(red). Cell nuclei were stained with DAPI (blue). C–F eEPCs were transfected with a siRNA targeting chicken Keap1 or a negative control (NC) 
siRNA for 48–72 h. C Evaluation of knockdown efficiency of Keap1. Total RNAs and whole-cell lysates were subjected to qPCR and Western blot 
analysis, respectively, for determination of Keap1 mRNA (left panel, n = 3) and protein levels (right panel). D Evaluation of Nrf2 activation after 
siRNA silencing of Keap1. Total RNAs and whole-cell lysates were subjected to Western blot and qPCR analysis, respectively, for determination 
of Nrf2 protein levels (left panel) and relative mRNA level of Nrf2 target genes Nqo-1 (NAD(P)H:quinone oxidoreductase 1) (right panel, n = 3). 
E–F Effect of Nrf2 activation on the mRNA expression of stem/progenitor cell marker CD133 and macrophage marker MRC1 (n = 3). G HEK-293T 
cells were co-transfected with the chNrf2 expression vector pEGFP-C3-Nrf2 (denoted in μg of DNA per well of a 12-well plate) and the plasmid 
constructs containing a firefly luciferase gene under the control of the MRC1 promoter along with the pRL-TK Renilla. Empty pEGFP-C3 was used 
as control. Cells were incubated with or without TNFα (50 ng/ml) for 72 h and processed for measurement of luciferase activity (n = 3). The data are 
representative of at least 2 separate experiments with similar results. Data were expressed as median ± 95% confidence interval. *P < 0.05
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Fig. 6  Intratracheal TNFα installation enhances the formation of plexiform lesions. A Representative photographs showing the morphology 
of plexiform lesions in the lung of TNFα-treated birds. Plexiform lesion density was expressed as the number of lesions per section/cm2 per 
section (n = 6). B Western blots and densitometry analyses of Nrf2. Total proteins extracted from lung tissue were analyzed by immunoblotting 
with anti-Nrf2 antibody. β-actin are shown as loading control. Densitometry data represent the mean ± 95% confidence interval of 4 birds 
and are representative of 2 separate experiments. C Immunohistochemistry staining of Nrf2 in lung tissue. Expression of endothelial Nrf2 was 
semi-quantified by measuring the optical density (OD) in 28 pulmonary arterioles randomly selected from 6 birds in each group
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