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abstract

PURPOSE To construct a multi-institutional radiomic model that supports upfront prediction of progression-free
survival (PFS) and recurrence pattern (RP) in patients diagnosed with glioblastoma multiforme (GBM) at the
time of initial diagnosis.

PATIENTS AND METHODS We retrospectively identified data for patients with newly diagnosed GBM from two
institutions (institution 1, n = 65; institution 2, n = 15) who underwent gross total resection followed by standard
adjuvant chemoradiation therapy, with pathologically confirmed recurrence, sufficient follow-up magnetic
resonance imaging (MRI) scans to reliably determine PFS, and available presurgical multiparametric MRI
(MP-MRI). The advanced software suite Cancer Imaging Phenomics Toolkit (CaPTk) was leveraged to analyze
standard clinical brain MP-MRI scans. A rich set of imaging features was extracted from the MP-MRI scans
acquired before the initial resection and was integrated into two distinct imaging signatures for predicting mean
shorter or longer PFS and near or distant RP. The predictive signatures for PFS and RP were evaluated on the
basis of different classification schemes: single-institutional analysis, multi-institutional analysis with random
partitioning of the data into discovery and replication cohorts, and multi-institutional assessment with data from
institution 1 as the discovery cohort and data from institution 2 as the replication cohort.

RESULTS These predictors achieved cross-validated classification performance (ie, area under the receiver
operating characteristic curve) of 0.88 (single-institution analysis) and 0.82 to 0.83 (multi-institution analysis) for
prediction of PFS and 0.88 (single-institution analysis) and 0.56 to 0.71 (multi-institution analysis) for prediction
of RP.

CONCLUSION Imaging signatures of presurgical MP-MRI scans reveal relatively high predictability of time and
location of GBM recurrence, subject to the patients receiving standard first-line chemoradiation therapy.
Through its graphical user interface, CaPTk offers easy accessibility to advanced computational algorithms for
deriving imaging signatures predictive of clinical outcome and could similarly be used for a variety of radiomic
and radiogenomic analyses.
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INTRODUCTION

Cancers display hallmarks of spatial and temporal
heterogeneity at various scales, contributing to un-
favorable prognosis and treatment failure.1 Clinical
imaging offers the possibility of elucidating multifac-
eted phenotypic aspects of cancer structure and
physiology through acquisition of diverse modalities.1-3

Semantic features such as descriptors of size, mor-
phology, and location that are commonly measured
from radiologic images, are limited in revealing the
underlying cancer heterogeneity.4,5 Cancer imaging

phenomics (CIPh) is an emerging field for quantitative
analysis of oncologic multiparametric imaging. Through
mathematical measurements of the aforementioned
features, commonly known as radiomic features, CIPh
provides a broad spectrum of phenotypic imaging
signatures, which potentially brings increased precision
to diagnosis, prognosis, and prediction of response to
therapy.6,7

CIPh signatures may play a key role in paving the path
for precision medicine, as suggested by a growing
body of studies over the past few years.8-10 But
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radiomic analysis of high-dimensional feature spaces, if
they are not accompanied by high-throughput computa-
tional methods, could complicate the process of deriving
conclusions for planning treatment in clinical settings.11-15

This limits the availability of CIPh signatures when de-
signing clinical trials or applying them to patient-specific
problems. In this context, the Cancer Imaging Phenomics
Toolkit (CaPTk), an imaging analytics suite of open-source
software utilities and algorithms, has been developed to
enable the quick derivation of extensive sets of CIPh fea-
tures for precision diagnosis and predictive modeling to
support personalized cancer therapy.

CaPTk offers a systematic quantification platform for de-
signing clinical research studies using radiomics and radi-
ogenomics methods, from harmonized data preprocessing
and extraction of rich sets of CIPh features that represent
tumor characteristics to integration of features using ap-
propriate machine learning (ML) methods for precision di-
agnosis and prediction.7,11,14,16-18 Herein we examine the
application of CaPTk in glioblastoma multiforme (GBM),
which is an aggressive and genetically diverse neoplastic
malignancy with poor response to available therapies, rapid
progression, inevitable recurrence, shortmedian progression-
free survival (PFS),19 limited treatment options, and a median
overall survival (OS) of 15 months.20 The efficacy of novel
treatment strategies is most objectively gauged by the im-
provement in patient’s OS or PFS21 (as a surrogate marker of
OS in patients with GBM22,23). Although it is challenging to
objectively define PFS, when it is used as an end point, it has
the advantage of helping to complete trials faster and more
rapidly determine which interventions may be helpful for
patients.

Studies of PFS and OS have suggested the benefit of
maximal surgical resection and adjuvant concurrent che-
moradiation therapy to locally control recurrence in patients
with GBM.24 Nonetheless, the majority of GBM tumors
progress in proximity to the surgical resection cavity.25 This
propensity to recurrence has been attributed to a GBM
cancer subpopulation that is resistant to chemoradiation

therapy, and recurrence disperses the tumor cells into the
surrounding tissues or even to distant locations.26

Reliable upfront prediction of PFS and recurrence pattern
(RP) may facilitate better personalization of treatment by,
for example, stratifying patients into clinical trials for treat-
ment intensification and/or supportive care and improving
the efficiency of clinical trial design.27 In this article, we
address the problem of constructing personalized prognostic
signatures of GBM related to PFS and RP by leveraging CIPh
signatures generated from the CaPTk platform.

PATIENTS AND METHODS

Study Design

Data from patients with newly diagnosed GBM from two
institutions (institution 1, Hospital of the University of
Pennsylvania, n = 65; institution 2, Ohio Brain Tumor
Study, n = 1528,29) were retrospectively collected after
obtaining approval from the institutional review boards.
Details about the inclusion and exclusion criteria and
imaging parameters for both institutions are provided
in the Data Supplement. Characteristics of the pa-
tients recruited in this study are provided in Table 1 and
Figure 1.

PFS was measured from the date of initial diagnosis until
tumor progression by neuroradiologists (J.D.R. and M.B. at
institution 1 and C.B. at institution 2), in compliance with
criteria for tumor progression provided by the Response
Assessment in Neuro-Oncology Working Group.30 RP was
determined by neuroradiologists (S.M. and M.B. at in-
stitution 1 and C.B. at institution 2) who were blinded to the
patients’ clinical and genetic information. RP was defined
on the basis of the distance between the surgical resection
cavity and the new enhancing lesion on the T1-weighted
contrast-enhanced (T1CE) scan at the recurrence time
point: near recurrence was considered as a contiguous
enhancement with the resection cavity, and distant re-
currence was considered as an enhanced lesion that is
noncontiguous with the cavity (with a nonenhancing region
between the cavity and the new enhancement focus).

CONTEXT

Key Objective
Describe howmachine learningmethods (radiomics) based onmultiparametric magnetic resonance imaging (MRI) scans can

aid in personalized prognosis and treatment planning in patients with glioblastoma.
Knowledge Generated
Using the Cancer Imaging Phenomics Toolkit (CaPTk) open-source software, we created quantitative signatures of

progression-free survival and recurrence pattern in patients with glioblastoma. We showed the feasibility of a radiomics
approach for the two aforementioned clinical applications in a multi-institutional analysis of 80 patients on the basis of
preoperative MRI scans.

Relevance
Predictive radiomic models can be used to help in first-line decision making on a patient-specific basis.
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Radiomic Analysis Using CaPTk

The radiomic analysis for prediction of PFS and RP in this
study was designed and carried out using CaPTk open-
source software (https://www.med.upenn.edu/cbica/captk/).
CaPTk was designed on the basis of a three-level func-
tionality for radiomic analyses (Fig 2). The first level pro-
vides image preprocessing tasks, such as conversion of
image formats, segmentation, registration, and smoothing.
The second level comprises various general-purpose rou-
tines such as feature extraction, feature selection, and ML.
These routines are used within CaPTk for specialized
closed-form applications and are also available for cus-
tomized analysis pipelines. In particular, this level targets
extraction of various features that capture different aspects
of local, regional, and global imaging patterns, which re-
sults in an extensive feature panel that is compliant with the
guidelines provided by the Image Biomarker Standardi-
zation Initiative,31 thus ensuring reproducible and com-
parable radiomic features. It also synthesizes features to
distinguish smaller more meaningful feature subsets from
larger feature sets and uses ML to build predictive and
diagnostic models. The third level of CaPTk focuses on
integrating these features into specialized applications via
ML algorithms to accomplish specific goals such as making
precision diagnoses, assessing risk for developing cancer,
and creating models that predict response and survival.

Image preprocessing. Preprocessing of multiparametric
magnetic resonance imaging (MP-MRI) data, including T1-
weighted (T1w) contrast-enhanced (T1CE), T2-weighted

(T2w), T2-fluid-attenuated inversion recovery (T2-FLAIR),
diffusion tensor imaging (DTI), and dynamic susceptibility
contrast-enhancedMRI (DSC-MRI) images, was performed
with the CaPTk software (for details, see Figure 2 and the
Data Supplement). The calculated perfusion derivatives for
institution 1 comprised peak height (PH), percentage of
signal recovery (PSR), and relative cerebral blood volume
(rCBV). The diffusion derivatives included axial diffusivity
(AX), trace (TR), radial diffusivity (RAD), and fractional
anisotropy (FA).

Automated segmentationwas performedwith theDeepMedic32

module and was approved or revised by an experienced ra-
diologist (S.M.) through CaPTk to identify tumoral subregions
such as enhancing tumor (ET), nonenhancing portion of the
tumor core (NC), and peritumoral edema (ED). Definitions can
be found in Akbari et al11 and Bakas et al33. Two additional
tumor subregions representing the tumor core (TC, defined as
the union of ET and NC subregions) and whole tumor volume
(WT, calculated as the union of all three tumor subregions
[ie, ET, NC, and ED]) were also generated.

Radiomic feature extraction. The preprocessed images
were passed through the feature extraction panel of CaPTk.
Relevant imaging features were computed for each patient
from the five tumoral regions (ET, NC, ED, TC, and WT)
and all modalities to capture phenotypic characteristics
of short versus long PFS and near versus distant RP.
The extracted features included volume, shape, and
size; intensity; histogram; and gray-level co-occurrence
matrix (GLCM) features. These features make it possible to

TABLE 1. Characteristics of Patients With Newly Diagnosed GBM Recruited in This Study

Characteristic

Cohorts

Institution 1 (HUP) Institution 2 (OBTS)

No. Mean Range No. Mean Range

No. of patients included for analysis 65 15

Sex

Female 21 4

Male 44 11

Age, years 57.4 22.0-85.8 56.4 34-77

OS, months 22.86 5.7-83.9 16.8 11.1-25.7

PFS, months 8.3 0.63-40.7 10.1 2.3-30.3

MGMT status

Methylated 10 1

Unmethylated 22 4

Unknown 33 10

IDH1 status

Mutated 1 3

Wild-type 37 7

Unknown 27 5

Abbreviations: GBM, glioblastoma multiforme; HUP, Hospital of the University of Pennsylvania; OBTS, Ohio Brain Tumor Study; OS, overall
survival; PFS, progression-free survival.
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quantitatively assess morphologic and spatial heterogeneity
properties of the tumoral regions. A total of 1,980 features
were extracted from data for institution 1, and 1,016 fea-
tures were extracted for multi-institutional analysis.

Quantification schemes for predicting PFS and RP. For
predicting PFS, the patients were stratified into two classes:
short PFS (≤ 8.3 months; institution 1, n = 41; institution 2,
n = 6) and long PFS (. 8.3 months; institution 1, n = 24;
institution 2, n = 9). The number of patients with near re-
currence locations were n = 54 for institution 1 and n = 9 for
institution 2; the number of patients with distant recurrence
locations were n = 11 for institution 1 and n = 6 for institution 2.

The dimensionality of the feature spacewas reduced by using
sequential forward feature selection and a support vector
machine (SVM) model through 10-fold cross-validation to
determine the feature combinations most predictive of PFS
andRP status. Here, six experimental schemeswere designed
for assessing PFS (schemes 1 to 3) and RP (schemes 4 to 6)
for single- and multi-institutional data.

Scheme 1 (PFS) or scheme 4 (RP) for institution 1 data.
The cohort of 65 patients from institution 1 was randomly
partitioned into discovery (70% of the data) and replication
(30% of the data) subsets over 50 iterations. The SVMmodel
was trained using 10-fold cross-validation on the discovery
subset and independently validated on the replication cohort.

Scheme 2 (PFS) or scheme 5 (RP) for institution 1 and in-
stitution 2 data: random discovery and replication cohorts.
This scheme was designed for an integrated cohort of 80
patients from both institutions. Selection of the discovery
and replication cohorts was similar to that in scheme 1.

Scheme 3 (PFS) or scheme 6 (RP) for institution 1 (discovery
cohort) and institution 2 (independent replication cohort).
Similar to previous schemes, the SVM model was trained
using a 10-fold cross-validation on the discovery subset and
tested on the replication data.

RESULTS

Classification Performance of the Predictive Models

Performance of our classification schemes in predicting
short versus long PFS or near versus distant RP are pre-
sented in Table 2. Kaplan-Meier PFS curves from the
discovery and replication sets stratified into short-PFS and
long-PFS groups for one of the randomly partitioned itera-
tions in scheme 2 are shown in Figure 3A. The receiver
operating characteristic (ROC) curves for each of our pre-
dictive schemes for stratifying patients based on their PFS or
RP are shown in Figure 3B. A list of the most frequently
selected features is provided in the Data Supplement.

Prediction of PFS. In scheme 1, the selected features
mainly represent imaging markers of neo-angiogenesis
yielded by increased mean PSR value within the ED re-
gion, mean rCBV value within ET, and cellular density in-
dicated by lower values of AX or TR within the WT area for
the short-PFS compared with the long-PFS group. In
scheme 2, as the results in Table 2 suggest, the specificity
of predicting PFS decreases when the features derived
from perfusion or DTI imaging are unavailable. The top-
ranked selected features were mainly among features in-
dicating spatial heterogeneity of T2w images in ED or WT,
shape measure of ED circularity, and TR values within the
WT region, all of which were increased in the long-PFS

Institution 1 Institution 2

Excluded
   Not sufficient follow-up
   scans
   Confirmation of residual
   enhancement on follow-
   up scans

(n = 52)
(n = 33)

(n = 19)

Short PFS
and near 

recurrence
(n = 35)

Short PFS
and distant 
recurrence

(n = 6)

Long PFS
and near 

recurrence
(n = 19)

Long PFS
and distant 
recurrence

(n = 5)

Included
(n = 65)

Assessed for eligibility
(n = 117)

Excluded
   Not sufficient follow-up
   scans
   Unavailable structural
   MRI scans
   Confirmation of residual
   enhancement on follow-
   up scans

(n = 33)
(n = 17)

(n = 3)

(n = 13)

Short PFS
and near 

recurrence
(n = 4)

Short PFS
and distant 
recurrence

(n = 2)

Long PFS
and near 

recurrence
(n = 5)

Long PFS
and distant 
recurrence

(n = 4)

Included
(n = 15)

Assessed for eligibility
(n = 48)

FIG 1. Representation of the data inclusion and exclusion process and analysis. MRI, magnetic resonance imaging; PFS, progression-free survival.
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category. Selected features for classification of patients in
this scheme are presented in the heat map in Figure 4. In
scheme 3, many of the selected features were similar to
those in scheme 2.

Prediction of RP. In scheme 4, by integrating features
derived from advanced imaging (texture features from PH
in NC region and PSR within ED, histogram and texture

features from FA in ED or WT, texture features from FLAIR
within NC, and shape measure of ED eccentricity), area
under the curve (AUC) of 0.88 was achieved for discrim-
ination of near RP from distant RP. Interestingly, in this
scheme, FA within ED as an indirect measure of micro-
structural damage was critical in distinguishing the RP. In
scheme 5, multivariable analysis of the RP based on multi-
institutional data was suggestive of the importance of his-
togram and texture features computed from subtraction of
T1w from T1CE (T1SUB) as a measure of permeability of
tumor vasculature within ED and texture features within ED
on T2w or T2-FLAIR images. This classification scheme
resulted in AUC of 0.71. Because advanced imaging was
unavailable, the sensitivity of this multivariable analysis was
notably reduced. In scheme 6, the AUC for classification of
near from distant recurrence in the independent data (in-
stitution 2) was 0.56. As with scheme 5, textural features
within the ED region on T1SUB, T2w, and T2-FLAIR and
shape measure of eccentricity within ED were among the
selected features.

Integrated Prediction of PFS and RP

For upfront prediction of recurrence after primary resec-
tion for GBM tumors, the classifiers of schemes 1 and 4,
2 and 5, or 3 and 6 can be integrated. Figure 5 shows
examples of patients with different combinations of time
and location of recurrence (PFS and RP) and the possible
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TABLE 2. Performance Metrics of Different Predictive Schemes
Predictive Scheme Sensitivity (%) Specificity (%) AUC

Prediction of short PFS

Scheme 1 87.8 83.4 0.88

Scheme 2 84.7 71.4 0.82

Scheme 3 88.3 77.8 0.83

Prediction of distant recurrence pattern

Scheme 4 90.9 85.7 0.88

Scheme 5 73.5 56.3 0.71

Scheme 6 60.0 55.6 0.56

NOTE: The results are reported for the validation (or replication) sets: scheme 1
or 4: classification of patients from institution 1 according to their PFS or RP;
scheme 2 or 5: classification of patients from institutions 1 and 2 (with random
partitioning into discovery and replication cohorts) according to their PFS or RP;
scheme 3 or 6: classification of patients based on PFS or RP from institution 1 as the
discovery cohort and institution 2 as the replication cohort.
Abbreviations: AUC, area under the curve; PFS, progression-free survival.
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treatment strategies that it may be helpful to consider for
each patient.

DISCUSSION

This study investigated the application of in vivo MP-MRI
phenomic signatures leveraging ML and the CaPTk soft-
ware suite for predicting PFS and RP in patients with GBM
who received standard-of-care therapy and aiming to offer

advanced imaging-based biomarkers for clinical decision
making and personalized treatment planning.

We designed different multivariable predictive signatures
based on MP-MRI for prediction of PFS or RP for single- or
multi-institutional data. The selected radiomic features for
predicting PFS in the patient cohort of institution 1 with
available advanced MRI consisted mainly of intensity or
histogram features calculated from PSR, AX, and TRmaps.
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In the absence of advanced imaging, PFS was more reliably
estimated by texture (GLCM) features computed from T2w
images or TR maps within ED or WT regions. This finding
suggests that more mathematically sophisticated features
that better represent the spatial heterogeneity of the tumor
from conventional MRI and diffusion weighted imagingmay
partly compensate for the lack of perfusion and other more
advanced imaging measures. Nonetheless, TR in ED,
a marker of diffusion restriction and infiltration of tumorous
cells, played a critical role in stratification of patients on the
basis of their PFS, with higher TR values in patients with
longer PFS.

The importance of infiltrated and edematous peritumoral
tissue in patients’ response to therapy has been shown
in other studies.11,34-36 ED circularity, implying the round-
ness of the region, was among the high-ranked selected
features, highlighting the importance of this feature for
predicting PFS; patients with longer PFS show higher
ED circularity. In previous studies, it has been reported
that more circular peritumoral edema is associated with
longer OS.15,37

When DTI features were included in the analysis, the most
predictive features for near versus distant RP were chosen

from FA maps within ED. FA may be considered an indirect
marker of microstructural disruption of white matter as
a consequence of tumor infiltration.38 Distinct spatial het-
erogeneity within peritumoral edema on FA maps between
near versus distant RP might relate to infiltrated pathways
that the tumor cells use for invading the distant regions.
Near recurrence showed lower AX, RAD, and TR and
higher FA values in the peritumoral edema region, implying
higher diffusion restriction and microstructural damage in
the near compared with the distant RP, as suggested
before.11,18 It has been proposed that the tumor cell sub-
populations with lower cell density that reside farther from
the tumor core tend to progress into distant RP.24

In multi-institutional analysis of RP, texture features on
T1SUB and T2w/T2-FLAIR were significantly discrimina-
tive, suggesting the importance of vascular permeability
and tissue water and cell content. The shape measure of
ED eccentricity was also among the top-ranked features;
patients with distant recurrence had lower ED eccentricity.

Treatment strategies in the management of GBM are often
a shared process between the health care providers and
the patients, balancing the potential benefits and risks with
the goals of the patient. The proposed CIPh predictive
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FIG 4. Heat map of the 26 top-ranked features most frequently selected for classification of multi-institutional data on the basis of progression-free survival
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signatures can provide upfront information about the be-
havior of the disease after primary resection, which allows
for a more personalized approach to treating each patient.

We propose that accurate prediction of PFS and RP may
allow for more individualized treatment planning for pa-
tients with GBM, with one of the following possible options
(it should be noted that these approaches need to be
proven effective in well-designed clinical trials before they
are routinely implemented in the clinic). First, for short PFS
and near recurrence, aggressive local therapy or supratotal

resection plus dose-escalated radiation therapy or other
aggressive local therapies should be used for first-line
treatment. Second, for short PFS and distant recurrence,
patients should be recruited for trials that evaluate early use
of aggressive systemic therapies, including immunotherapy
or chemotherapy rather than aggressive local therapy. The
standard of care for local therapy after surgery (radiation
and temozolomide) may not provide much benefit for
a patient with a high chance of rapid distant recurrence.
The survival of such patients is generally less favorable, so

Possible

Personalized

Treatment Strategy

Short PFS and 

near recurrence

Most aggressive therapy: 

supratotal resection 

and dose escalation

Short PFS and 

distant recurrence
Systemic therapy

Long PFS 

and near recurrence

Aggressive local 

therapy without 

supratotal resection

Long PFS and 

distant recurrence

Additional systemic 

therapies to the standard 

chemoradiation therapy

Baseline Scan Recurrence Scan Radiomic Finding

FIG 5. Examples of different schemes of progression-free survival (PFS) and recurrence pattern with possible therapy
personalized treatment strategies: the first and second columns indicate the baseline and recurrence scans for each
example, the radiomic finding for each example is displayed in the third column, and the fourth column shows the
suggested personalized therapy plan for each example.
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physicians may be more inclined to pursue comfort or best
supportive care rather than aggressive and expensive an-
tineoplastic therapy that may cause toxicity without benefit.
Third, for long PFS and near recurrence, patients should be
recruited for trials that evaluate aggressive local therapy
(eg, escalation of radiation dose). The decision to use ag-
gressive supratotal resection may be justified for prolonged
PFS. Alternatively, if simple gross total resection leads to long
PFS, physicians may prefer to take the standard surgical
approach and avoid the possible risks of supratotal resection
if the patient values the quality of life over PFS or OS. Fourth,
for long PFS and distant recurrence, additional systemic
therapies on trial after standard surgery and chemoradiation
therapy could possibly be used to try to prevent or delay the
distant recurrence. The benefit of supratotal resection may
be limited in these patients.

CaPTk software provides researchers and the clinical
community with systematic quantification tools, from image
preprocessing to extraction of a comprehensive set of
standard radiomic features, including measures of shape
and texture that represent the spatial heterogeneity of
the tumor landscape. Furthermore, generating predictive
models for risk stratification and prognostication could help

extract markers that reveal the underlying pathophysiology,
including diffusion and perfusion signatures, and identifi-
cation and integration of the most discriminative features.

PFS is difficult to define; therefore, to address this problem,
we tried to standardize the definition using patients with
pathologically proven recurrence who had sufficient follow-
up scans after initial resection, so that the date of re-
currence could be more reliably determined. Our study
population was small secondary to a strict inclusion criteria,
and future studies with larger prospective cohorts could
help with better generalization of the predictive models. In
future studies, radiomic models should be compared or
added to the predictive models designed on the basis of
clinical and/or genomic information for a comprehensive
patient prognosis.

In conclusion, our results imply that CIPh signatures that
were developed by using radiomic models in CaPTk could
predict PFS and RP in patients diagnosed with GBM. These
predictions, based on the images acquired before the initial
resection, may aid the multidisciplinary neuro-oncology
team in planning a more personalized treatment strategy
that would then lead to improved outcomes.
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