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Electric control of superconducting 
transition through a spin-orbit 
coupled interface
Jabir Ali Ouassou1, Angelo Di Bernardo2, Jason W. A. Robinson2 & Jacob Linder1

We demonstrate theoretically all-electric control of the superconducting transition temperature using 
a device comprised of a conventional superconductor, a ferromagnetic insulator, and semiconducting 
layers with intrinsic spin-orbit coupling. By using analytical calculations and numerical simulations, 
we show that the transition temperature of such a device can be controlled by electric gating which 
alters the ratio of Rashba to Dresselhaus spin-orbit coupling. The results offer a new pathway to control 
superconductivity in spintronic devices.

The dissipationless flow of electric charge and phase coherence are major driving forces for the research and 
development of superconducting electronics along with phase coherence. For example, superconducting logic 
circuits have already been implemented, including computer processors and memory chips that work at frequen-
cies up to several gigahertz1–4. For spintronics5–8 the main aim is to create logic and memory devices that exploit 
both the charge and spin degrees of freedom of electrons, and which offer high operating frequencies and low 
energy consumption9.

In recent years, there has been a surge of interest in the intersection of these fields, and new discoveries have 
enabled the new field of superconducting spintronics10,11. At the interface between a conventional supercon-
ductor and a ferromagnet, the singlet electron pairs |↑​↓​〉​ −​ |↓​↑​〉​ in the superconductor can be transformed into 
spin-polarized triplet pairs through a two-step process involving spin-mixing and spin-rotation10. Spin-mixing 
occurs at magnetic interfaces whereas magnetic inhomogeneities12,13 or spin-orbit coupling14–16 can rotate triplet 
Cooper pairs into each other, leading to long-ranged proximity effects in strong ferromagnets17–31.

One important application of superconducting spintronics is to control the temperature Tc at which a material 
becomes superconducting using spin-valves32–44. These systems consist of a superconductor proximity-coupled to 
two ferromagnetic layers. By changing the relative magnetization direction of two ferromagnets one can toggle 
superconductivity on and off. A key to achieving this effect lies in whether the magnetic configuration allows 
generation of spin-polarized Cooper pairs or not. When permitted, the generation of spin-polarized pairs which 
can penetrate deeper into adjacent ferromagnets opens an extra proximity “leakage channel”. This contributes 
to the draining of superconductivity from the superconductor and therefore further reduces Tc. Although much 
research has been dedicated to magnetic control of Tc, it would be beneficial to be able to electrically control Tc, as 
that would enable integration of superconducting nanostructures into electronic circuits without the requirement 
of applying magnetic fields, e.g. by changing the quasiparticle distribution45,46.

Here we propose a device comprised of a ferromagnetic insulator (FI) and a semiconductor with a 
two-dimensional electron gas (2DEG) in contact with a conventional superconductor (S). Experimentally, it is 
known that the Rashba and Dresselhaus spin-orbit coupling in a 2DEG can be tuned via a gate voltage47–50: this 
voltage can change the Rashba coefficient by a factor of 1.5–2.5 in thin-film structures based on GaAs or InAs47–49, 
and up to a factor of ~6 in nanowires50. These results were obtained for different gate voltage ranges; e.g., ref. 48 
varied it from −​6 V to +​2 V, while ref. 42 used −​1.0 V to +​1.5 V. It has also been shown that a suitably doped 
2DEG can have Rashba and Dresselhaus coefficients of the same order of magnitude, with a ratio of ~1.5 in GaAs/
AlGaAs51. It should therefore be possible to engineer a thin-film semiconductor with approximately matching 
Rashba and Dresselhaus couplings, and dynamically modulate the ratio between them by a factor of ~2 via a gate 
voltage.
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Recently, it was demonstrated that the superconductor proximity effect depends strongly on the amount of 
Rashba and Dresselhaus coupling that is present in the system52. Because of this, we set out to determine if Tc 
could be controlled purely electrically by tuning the ratio of Rashba to Dresselhaus interactions with an elec-
tric field when a 2DEG is in electrical contact to a superconductor via a FI, the latter one serving as a source of 
triplet pairs. In this work, we confirm this conjecture and predict that all-electric control of Tc is possible in a  
S/FI/2DEG device. In addition to a gate voltage control, Tc also responds to a change in the FI magnetization 
orientation, causing our proposed device to function as a combined superconducting transistor and magnetic 
spin-valve. By superconducting transistor, we mean a device where a gate voltage is used to switch on and off 
superconductivity in the structure, thus controlling to what extent a supercurrent can flow through the supercon-
ductor. This type of functionality is of interest since it corresponds to an electrically controlled transition from 
finite to zero resistance.

Here we investigate a setup where magnetism and spin-orbit coupling are split into two distinct layers rather 
than coexisting in the same material52, the former being experimentally more feasible to achieve. Furthermore, 
whereas previous works have modelled the superconductor/ferromagnet interface using spin-independent tun-
neling boundary conditions, we here use the recently derived boundary conditions for strongly spin-polarized 
interfaces53. This means that spin-dependent tunneling, phase-shifts, and depairing effects for arbitrarily strong 
polarization are included in our new model whereas this has not been possible previously in the literature.

Results
Proposed experimental setup.  Our proposed experimental setup is sketched in Fig. 1. The electrically 
controlled superconducting switch is based on an S/FI bilayer grown on an epitaxial GaAs-based (e.g. AlGaAs/
GaAs) semiconductor thin-film multilayer. To enable electrical control over the Rasha spin-orbit interaction in 
the 2DEG, Au gate electrodes are fabricated by electron-beam lithography on a few-nanometer-thick insulating 
SiO2 layer deposited after the growth and lithographic patterning of the S/FI stack. A four-point probe setup is 
used to measure changes in the superconducting critical temperature as a function of applied gate voltage Vg. 
Although the insulating SiO2 layer should minimize possible modulations in the Curie temperature Tc of the FI 
driven by the applied gate voltage Vg, which can alone have an effect on the superconducting proximity effect, 
control samples without the FI layer should also be fabricated to exclude this possibility. We also note that the 
Rasha spin-orbit coupling is independent on the polarity of Vg

50. In contrast, Vg usually has an opposite effect on 
Tc, meaning that a positive Vg normally enhances Tc, while a negative Vg decreases Tc

54. Therefore, modulations in 
Tc due to Vg can also be excluded by investigating variations in the spin-orbit-driven superconducting proximity 
effect as a function of the Vg polarity.

Analytical results.  To explain the mechanism of the electric control of Tc, we first approximate the multi-
layer structure as an effective monolayer structure where spin-orbit coupling and magnetic exchange fields coex-
ist. This analogy is relevant because the spin-dependent phase-shifts induced by proximity to a FI are known to 
act as an effective exchange field in thin superconducting structures55. Afterwards, we will confirm the analytical 
treatment by full numerical simulations performed without these approximations.

To the linear order in the superconducting pair amplitudes, the diffusion equations of the system are52

∂ = +iD f f h f( /2) , (1)z s s
2 

θ χ θ χ∂ = − +|| ⊥iD f E f R f h f( /2) ( , ) ( , ) , (2)z s
2

θ χ θ χ∂ = − .⊥ ⊥ ⊥iD f E f R f( /2) ( , ) ( , ) (3)z
2

The symbols 
⊥f f f, ,s  refer to the electron pair amplitudes with spin-singlet, short-range spin-triplet, and 

long-range spin-triplet projections, respectively. We have also defined the the triplet mixing factor

θ χ θ χ=R iDA( , ) 2 cos 2 sin 2 , (4)2

and the effective triplet energies

Figure 1.  Schematic of the proposed superconducting device. 
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θ χ θ χ= + +⊥E iDA( , ) 2 [1 sin 2 sin 2 ], (5)2

θ χ θ χ= + − .E iDA( , ) 2 [1 sin 2 sin 2 ] (6)
2

The ferromagnetism is described by an in-plane exchange splitting h =​ h(cos θ ex +​ sin θ ey), which is para-
metrized in terms of a magnitude h and direction θ. We also assume an in-plane spin-orbit coupling, which is 
described in polar coordinates by a magnitude α β≡ +A 2 2  and type χ ≡​ atan(α/β), where α and β are the 
Rashba and Dresselhaus coefficients. The spin-orbit coefficients are defined by the single-particle Hamiltonian 

σ σ σ σ= − + −α β
⁎ ⁎H p p p p( ) ( )

m y x x y m y y x x , where m*​ is the effective mass, p the momentum, and σ the spin. 
Finally, D is the diffusion coefficient of the material, and  is the quasiparticle energy.

The singlet component fs is produced in all conventional superconductors. When these pairs leak into the 
adjoining ferromagnet, eqs (1–3) show that a magnetic exchange splitting h induces a nonzero short-ranged tri-
plet component f , as is well-known13. When spin-orbit coupling is present (A ≠​ 0), with both Rashba and Dresselhaus 
contributions (sin 2χ ≠​ 0), one also generates the long-range15 triplet component f⊥ so long as the magneti-
zation direction satisfies cos 2θ ≠​ 0. It is the latter observation which offers several ways to control the long-ranged 
triplet generation. Firstly, since the triplet mixing term is proportional to cos 2θ, we may enable this mechanism 
by letting θ →​ 0, or disable it by letting θ →​ ±​π/4. Secondly, since the same term is also proportional to sin 2χ, 
where we defined χ =​ atan(α/β), the mechanism is enhanced for α ≅​ β, but suppressed when α ≪​ β or α ≫​ β. 
Since the magnetization direction θ can be changed using an external magnetic field, and the Rashba coefficient 
α can be changed using an external electric field, this means that the triplet mixing can be in principle be con-
trolled using either a magnetic field by itself 56–60, an electric field by itself, or a combination thereof.

It is important to note that the spin-orbit coupling not only introduces a coupling between the different types 
of spin-polarized Cooper pairs, but that it also has a depairing effect. This is seen by how A modifies the diagonal 
terms in the equations above, resulting in an alteration of the effective energies in eqs (5) and (6) associated with 
the superconducting correlation functions f. Imaginary terms in the effective energy can be interpreted as a dest-
abilization and suppression of the given correlations, so the spin-orbit coupling can suppress either f , f⊥, or both, 
depending on the parameters χ and θ. It follows from eq. (5) that increasing the magnitude of A and sin 2χ 
increases this pair-breaking effect, meaning that the same spin-orbit coupling that maximizes the triplet mixing 
also maximizes the depairing. However, while the mixing term is proportional to cos 2θ, the depairing terms are 
proportional to sin 2θ. A key observation which enables the purely electric control over Tc is that for a fixed mag-
netization orientation θ, the depairing energy is controlled by the ratio of Rashba and Dresselhaus spin-orbit 
coupling χ =​ atan(α/β). This argument is of importance since we from the numerical simulations find that the 
dominant effect of the spin-orbit coupling on the critical temperature is not the long-range triplet generation, but 
rather the short-range triplet suppression. In fact, the most extreme results were obtained for θ =​ ±​π/4, which are 
precisely the configurations where the linearized diffusion equations disallow triplet mixing.

Numerical results.  We have calculated Tc numerically and the results are shown in Fig. 2. S is taken as con-
ventional (e.g. Nb), the FI (e.g. GdN, EuO) is treated as a polarized spin-active interface, and the semiconducting 
layer (e.g. GaAs, InAs) is treated as a normal metal with a Rashba–Dresselhaus spin-orbit coupling. We used the 
Ricatti-parametrization61 including the case of spin-orbit coupling52 together with general magnetic boundary 
conditions53 valid for arbitrary polarization of the interface region. We provide a detailed exposition of the com-
putation of the critical temperature in the Methods section.

For all structures, we assumed a thickness of 0.65ξ for the superconductor and 0.15ξ for the 2DEG, where ξ is 
the zero-temperature coherence length of a bulk superconductor. Assuming ξ =​ 30 nm, this would imply a super-
conductor thickness of ~20 nm and thickness of ~4 nm for the spin-orbit coupled layer. As for the magnitude of 
the spin-orbit coupling, we normalized both α and β to ξ/2 . If the effective quasiparticle mass m*​ is assumed 
equal to the bare electron mass, and we again set ξ =​ 30 nm, we find that α, β =​ 1 in dimensionless units corre-
sponds to a coupling α/m*, β/m* =​ 2.2 ×​ 10−12 eV m. The spin-active interface was taken to have an experimen-
tally realistic spin-polarization of 50%, a tunneling conductance GT/G ∈​ {0.2, 0.3}, and a spin-mixing conductance 
Gϕ/GT =​ 1.25, where G is the bulk normal-state conductance of both materials (taken as equal for simplicity). We 
have run extensive Tc calculations for other parameter values as well (not shown here), where we find qualitatively 
the same behavior as in Fig. 2, but quantitatively less variation if either the tunneling conductance GT is reduced, 
the spin-mixing conductance Gϕ is reduced, or the spin-polarization is increased. In particular, depending on the 
quality of the contact between the 2DEG and the FI layer, the tunneling conductance could be very small com-
pared to the normal-state conductance, GT ≪​ G.

The results in Fig. 2 display the same basic dependence on the magnetic field direction: the critical tempera-
ture is maximal when θ →​−​ π/4, and minimal when θ →​ +​π/4. It is interesting to note how spin-valve function-
ality is obtained in the present structure with just one magnetic layer, tuning Tc from a maximum to minimum 
upon 90 degrees rotation of the magnetization. The magnitude of this variation depends strongly on the param-
eters. For strong spin-orbit coupling and moderate interface conductance, we see a variation of nearly 0.6Tcs in 
Fig. 2, where Tcs is the critical temperature of a bulk superconductor. This corresponds to 5.5 K for niobium; for 
comparison, the current experimental record for spin-valve effects is around 1 K62. Furthermore, in the region 
where θ >​ 0, the critical temperature drops to zero, which means that such a device could in principle function 
as a spin-valve even at absolute zero. Increasing the interface polarization or weakening the spin-orbit coupling 
diminishes this effect.



www.nature.com/scientificreports/

4Scientific Reports | 6:29312 | DOI: 10.1038/srep29312

The most interesting observation is nevertheless that we can achieve all-electric control over Tc for a fixed 
orientation θ of the FI magnetic moment. One particularly striking example is seen in Fig. 2: for a range of mag-
netization orientations θ, Tc increases from absolute zero at α/β =​ 1 to a substantial fraction of the bulk critical 
temperature Tcs as α/β is either increased or decreased. For instance, when θ/π =​ −​0.125, Tc =​ 0 at α/β =​ 1 while 
Tc =​ 0.42Tcs at α/β =​ 1.5. For e.g. niobium, this yields a variation of 3.9 K by increasing the Rashba coefficient α 
by 50%. We highlight this behavior in Fig. 3, where Tc is plotted against the spin-orbit coupling ratio α/β for a 
fixed magnetization orientation. Moreover, we show in Fig. 3 the large change in Tc that occurs when altering the 
in-plane magnetization orientation θ for a fixed α/β.

Let us now interpret the numerical findings in terms of the previous analytical treatment. Although the 2DEG 
by itself has no intrinsic exchange field, rendering the distinction between short-ranged and long-ranged pairs 
more accurately described by the terminology “opposite and equal spin-pairing states relative the FI orientation”, 
we will continue to refer to f  as short-ranged pairs for brevity and easy comparison with the analytical treatment. 
When α →​ β and θ →​−​ π/4, the short-ranged triplet energy → +E iDA4 2 , resulting in a strong suppression of 
these triplet pairs. By closing the triplet proximity channel, this reduces the leakage of Cooper pairs from the 
superconductor, thus increasing the critical temperature of the structure. On the other hand, when α →​ β and  
θ →​+​ π/4, the energy →E , resulting in a minimal suppression of short-ranged triplets. This causes a larger 

Figure 2.  Critical temperature results. (a–c) Critical temperature normalized by the bulk value Tc/Tcs (colors) 
as a function of the in-plane magnetization angle θ/π (horizontal axis) and spin-orbit ratio α/β (vertical 
axis). We have used the parameters (a) β =​ 1, GT/G =​ 0.2, (b) β =​ 5, GT/G =​ 0.2, and (c) β =​ 5, GT/G =​ 0.3. 
(d) Variation [Tc(α/β) −​ Tc(0.5)]/Tcs in the critical temperature as a function of α/β when θ/π =​ −​0.25. The 
different curves correspond to the systems used in (a–c). For other magnetization angles |θ/π| ≠​ 0.25, the 
variation of Tc with α/β is non-monotonic since such orientations allow for long-range triplet generation.

Figure 3.  Critical temperature highlights. Normalized critical temperature Tc/Tcs as function of the spin-
orbit coupling ratio α/β (blue line, θ/π = −0.125), and as function of the in-plane magnetization θ (red line, 
α/β = 1.5). The other parameters are the same as in Fig. 2.
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leakage from the superconductor, and decreases the critical temperature. This leading-order analysis of the physics 
is in accordance with the numerical results in Fig. 2, as is reasonable since the weak proximity effect described by 
the linearized equations is expected to be a good approximation for T ≅​ Tc.

Discussion
In the quasiclassical theory used to compute the critical temperature, one assumes that the thickness of the layer 
exceeds the Fermi wavelength. This criterion is not satisfied in a 2DEG, which means that phenomena such as 
weak localization/antilocalization cannot be described by quasiclassical theory. However, the coupling mecha-
nism governing the appearance of a superconducting triplet proximity channel in the system is not expected to 
change because of this and hence our results should remain qualitatively valid even in this scenario. Moreover, we 
have considered the diffusive limit of transport which is of relevance for the in-plane motion, whereas the 2DEG 
thickness is much smaller than the mean free path. There is nevertheless scattering at the multiple interfaces of 
our structure which is expected to enhance the effective diffusive character of quasiparticle motion considered in 
our model. 2DEGs can also feature a rather strong spin-orbit interaction, in which case corrections to the Usadel 
equation have been examined63. It could also be of interest to go beyond quasiclassical theory to study Tc and 
other proximity effects in this kind of system64, although this is beyond the scope of the present work.

Semiconductors such as GaAs and InAs are known to provide both an intrinsic Dresselhaus coupling and an 
electrically tunable Rashba coupling48–50. By combining such 2DEG materials with a superconductor and a ferro-
magnetic insulator, we have shown both analytically and numerically that Tc responds to changes in both electric 
and magnetic fields, either individually or combined. It should therefore be possible to create a device that can 
function as a superconducting transistor, superconducting spin-valve, or both, depending on whether electric or 
magnetic stimuli are used as the input signal.

Methods
Diffusion equation.  In the diffusive and quasiclassical limit, we can describe the structures discussed herein 
with the Usadel diffusion equation15,16,52

τ∇ ∇ = + ∆ +˜ ˆ ˜ ˆ ˆ ˆ ˆ ˆiD g g h g( ) [ , ], (7)z

where ĝ  is the retarded quasiclassical propagator in Nambu ⊗​ Spin space, τ̂z is the third Pauli matrix in Nambu 
space,  is the quasiparticle energy of the electrons and holes, ∆ = + ∆ − ∆ + ∆ − ∆ˆ ⁎ ⁎antidiag( , , , ), Δ​ is the 
superconducting gap, σ σ= ⋅ˆ ⁎hh diag( , ), h is the ferromagnetic exchange field, σ is the Pauli vector in spin 
space, and D is the diffusion coefficient. The notation ∇ ⋅ = ∇ ⋅ − ⋅ˆ˜ Ai( ) ( ) [ , ] is used for the gauge covariant 
derivative, where = −ˆ ⁎A A Adiag( , ) is a background field that accounts for spin-orbit coupling. In this paper, we 
assume that we have a thin-film structure oriented along the z-axis so ∇​ →​ ∂​z. We assume the exchange field and 
Rashba–Dresselhaus coupling are both confined to the xy-plane, so they can be parametrized as

θ θ= +h e eh(cos sin ), (8)x y

βσ ασ ασ βσ= − + − .A e e( ) ( ) (9)x y x x y y

Note that it is the orientation of the spin-orbit field A that defines the x- and y-axes of our coordinate system, 
since the Dresselhaus spin-orbit coupling is determined by the crystal structure. Thus, the magnetic orientation 
is measured relative to the crystal structure.

Numerically, solving directly for the propagator ĝ  is impractical for two reasons. Firstly, the elements of ĝ  are 
unbounded, and can be arbitrarily large complex numbers. Secondly, the propagator satisfies a normalization 
condition and particle-hole symmetry which reduces the number of degrees of freedoms, such that solving for 
each individual matrix element in ĝ  would be redundant. Because of this, we have used the so-called Riccati par-
ametrization of the propagators in the numerical simulations61:

γγ γ
γ γγ

=


 −








+

+








 

ˆ ˜ ˜g N
N

N
N

0
0

1 2
2 1

,
(10)

where the Riccati parameters γ and γ


 are 2 ×​ 2 matrices in spin space which are related by tilde-conjugation 
γ ε γ ε+ = −


⁎( ) ( ), and the normalization matrices are defined by γγ≡ − −


N (1 ) 1. For an in-plane spin-orbit 
interaction, eq. (7) parametrizes as

σ σγ γ γ γ γ σ γ σ γ γ γ

γ γ γ γ γ γ

∂ + ∂ ∂ = − ∆ + ∆ + ⋅ −

+ − + + +





˜

˜

⁎ ⁎

⁎ ⁎ ⁎ ⁎

h

AA A A A A A A

iD N

iD N

[ 2( ) ( )] 2 ( )

[ 2( ) ( )], (11)

z z z y y
2 

which is the form we use numerically. For more information about the derivation and interpretation of the above, 
see ref. 52.

Gap equation.  Before we can calculate the critical temperature of a material, we require not only a way to 
calculate the propagator ĝ , but also a way to dynamically update the superconducting gap Δ​ based on the calcu-
lated propagators. This gap equation can be written52
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 


∫λ
π

∆ =





∆ 




λ∆
z f z

e T T
( ) d Re[ ( , )]tanh

2
/
/

,
(12)s c

s

cs0

cosh(1/ )
0s0

where λ is a dimensionless coupling constant, fs the singlet component of the anomalous propagator, Δ​0s the 
zero-temperature gap of a bulk superconductor, Tcs the critical temperature of a bulk superconductor, and c the 
Euler–Mascheroni constant. In terms of the Riccati parametrization, fs =​ [Nγ]12 −​ [Nγ]21, where the subscript 
notation refers to individual matrix elements.

Boundary conditions.  Since our purpose is to model a system where the superconductivity, ferromagne-
tism, and spin-orbit coupling originate from different thin-film layers, we need boundary conditions that connect 
the propagators of these materials at the interfaces. Numerically, we focused on S/FI/N structures, in which case 
the ferromagnetic insulator itself is modelled as a strongly polarized spin-active interface. We have used the 
low-transparency limit of the general spin-active boundary conditions derived in ref. 53,

= + + − ϕ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆI G g g G g mg m G g g m iG g m2 [ , ] [ , ] [ , { , }] [ , ], (13)L T L R 1 L R MR L R L

where ÎL is the 4 ×​ 4 matrix current on the left side of the interface, GT is the tunneling conductance of the inter-
face, G1 describes the interfacial depairing, GMR describes the magnetoresistance, Gϕ describes the spin-mixing, 

σ σ= ⋅ˆ ⁎mm diag( , ), m is a unit vector that describes the interface magnetization, and ĝ L and ĝ R describes the 
propagators on the left and right side of the interface, respectively. An equivalent equation for the other side  
of the interface can be found by letting → −ˆ ˆI IL R and L ↔​ R in the equation above. Assuming that all the  
interface scattering have the same polarization P, it can be shown that = + −/[ ]G G P P/ 1 1MR T

2  and 
= − − + −[ ]/[ ]G G P P/ 1 1 /1 11 T

2 2 , so we can calculate G1 and GMR directly from the interface 
polarization.

The matrix current is related to the propagators at the interface by = ∇ˆ ˆ ˜ ˆI GL g g( ) where G is the normal-state 
conductance and L the length of the material. It can then be shown that the Riccati parameters must satisfy the 
boundary condition

γ γ∂ = −−GLN I I(2 ) ( ), (14)z
1

12 11

where I12 and I11 refers to the top-right and top-left 2 ×​ 2 blocks of the 4 ×​ 4 matrix current Î . In this equation, the 
matrix current Î  should be interpreted as either ÎL or ÎR, depending on which side of the interface the boundary 
conditions should describe.

Critical temperature.  The critical temperature can be defined as the temperature Tc such that the supercon-
ducting gap Δ​ =​ 0 if and only if T ≥​ Tc. However, in practice, we cannot expect to obtain the exact result Δ​ =​ 0 in 
simulations due to inexact numerical methods and random floating-point errors. For numerical simulations, we 
therefore use a more relaxed criterion |Δ​| <​ δ to define the critical temperature Tc, where we have set δ =​ 10−5Δ​0s,  
and Δ​0s is the zero-temperature gap of a bulk superconductor. See the solid black curve in Fig. 4 for a sketch of 
how Δ​(T) typically behaves, and how this is related to the critical temperature Tc.

Conceptually, the simplest way to find this critical temperature is to explicitly calculate the superconducting 
gap Δ​ as a function of temperature T, and check directly at which temperature we first find |Δ​| <​ δ. However, 
such a linear search can be very costly when a high accuracy is desired. For instance, to determine the critical 
temperature to a precision of 0.0001Tcs, where Tcs is the critical temperature of a bulk superconductor, this would 
require that Δ​(T) be calculated for 10,000 different values of T. For each of these temperatures, we need to solve a 
set of nonlinear diffusion equations for 150 positions and 800 energies, and repeat this procedure in one material 

Figure 4.  Sketch of the superconducting gap Δ as a function of temperature T for a superconducting 
hybrid structure. When performing a binary search for the critical temperature, we check whether Δ​ >​ δ at a 
certain number of temperatures–in other words, whether the black solid line is above the red dashed line. The 
numbered markers show which points on the curve would be evaluated during the first five bisections of such a 
binary search, and in what order. Note that since the algorithm is actually looking for the intersection between 
the black solid curve and red dashed curve, we need δ ≪​ Δ​0s to obtain accurate results.
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of the hybrid structure at a time until a selfconsistent solution is found. Thus, the calculation at each of these 
10,000 temperatures can in some cases take hours, making this method quite inefficient.

We have instead used a much more efficient binary search algorithm to determine the critical temperature 
numerically. The main benefit of this algorithm is that after calculating Δ​(T) for N particular values of T, we 
can determine the critical temperature to a precision Tcs/2N+1. So in contrast to the linear search algorithm, an 
accuracy of around 0.0001Tcs would require calculations at 12 temperatures instead of 10,000. Furthermore, we 
do not actually need to calculate Δ​(T) exactly at these temperatures–it is sufficient to check whether |Δ​| <​ δ or  
|Δ​| >​ δ to determine whether T >​ Tc or T <​ Tc. Thus, at each of these 12 temperatures, we only have to initialize 
the entire system to a BCS superconducting state with Δ​ =​ δ, then solve the Usadel equation and gap equation a 
fixed number of times in each material, and finally check whether |Δ​| <​ δ or |Δ​| >​ δ to determine whether T is an 
upper or lower bound on Tc. How the binary search algorithm converges is illustrated in Figs 4 and 5.
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