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Simple Summary: In this work, we performed a prospective study to compare bacterial communities
in the nasal and laryngeal cavities of pigs with or without clinical signs of respiratory disease which
were followed in a longitudinal fashion, at three critical phases of production, from weaning to the
finishing phase. The findings reported here provide evidence that the composition of the upper
respiratory tract bacterial microbiota differs significantly when comparing pigs with or without
respiratory clinical signs after weaning; these differences were maintained in the nursery phase but
were not observed at the finishing phase. Our results contribute to the knowledge of the porcine
microbiota at different stages of production, providing new insights into the role of bacteria in the
early stages of respiratory diseases.

Abstract: A prospective study was conducted to identify bacterial communities in the nasal and
laryngeal cavities of pigs with or without clinical signs of respiratory disease in a longitudinal
fashion, from weaning to the finishing phase. Nasal and laryngeal swabs were collected from
asymptomatic pigs (n = 30), as well as from pigs with clinical signs of respiratory disease (n = 30) at
the end of the weaning (T1—33 days) phase, end of the nursery phase (T2—71 days), and finishing
(T3—173 days). Total DNA was extracted from each sample, and the V4 hypervariable region of
the 16S rRNA gene was amplified and sequenced with the Illumina MiSeq platform. Principal
coordinates analysis indicated no significant differences between the nasal and laryngeal bacterial
communities. Nevertheless, the microbiota composition in the upper respiratory tract (URT) was
clearly distinct between animals, with or without signs of respiratory disease, particularly at post-
weaning and the end of nursery. In pigs with clinical signs of respiratory disease, Actinobacillus,
Streptococcus Porphyromonas, Veillonella, and an unclassified genus of Pasteurellaceae were more
abundant than in pigs with no signs. Metabolic prediction identified 28 differentially abundant
pathways, mainly related to carbohydrate, energy, amino acid, anaerobic, and nucleotide metabolism
in symptomatic pigs (especially in T2). These findings provide evidence that the composition of
the URT bacterial microbiota differs significantly when comparing pigs with or without respiratory
clinical signs after weaning, and this difference is maintained in the nursery phase; such differences,
however, were not evident at the finishing phase.
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1. Introduction

Swine respiratory diseases are multifactorial conditions that affect growing pigs in
different stages of production, causing long-standing herd problems and significant eco-
nomic losses. The etiology of respiratory problems in pigs is complex, usually involving a
combination of infectious agents and environmental stressors that affect the pigs’ health
and result in reduced feed efficiency and growth rate, increased treatment, and medication
costs, as well as increased morbidity and mortality [1].

Confined populations in commercial farming and production systems are subjected to
stressful environments that may reduce immunity, thus contributing to the occurrence of
respiratory diseases. Environmental conditions, such as temperature, dust, ammonia, car-
bon dioxide, and intense farm management, influence the overall pathogen load, intensity
and frequency of pathogen exposition, and pig immune system [2]. Disease outcome, in
turn, depends on the balance between the pathogen pressure and the pig’s ability to cope
with them.

Among the main infectious pathogens commonly related to respiratory disease, there
are a variety of viral and bacterial agents, including influenza A virus (IAV), porcine repro-
ductive and respiratory syndrome virus (PRRSV), Mycoplasma hyopneumoniae,
Mycoplasma hyorhinis, Pasteurella multocida, Glaesserella parasuis, Bordetella bronchiseptica,
Actinobacillus pleuropneumoniae, and Streptococcus suis [3]. The presence and abundance
of these pathogens vary significantly among farms, production sites, regions, and coun-
tries, making infections difficult to treat and control. In addition, other microorganisms
that reside in the upper respiratory tract of pigs may be involved in the development of
respiratory diseases, thus highlighting the importance of a complete characterization of the
swine’s nasal microbiome. Knowledge of the swine microbiota and its fluctuations may
contribute not only to improving the quality of production but also to understanding the
determinants of health or disease in pigs, as well as the other species that pigs may interact
with, including humans [4].

Studies on the microbial diversity of pigs have mainly targeted the gut microbiome [5–9],
while the microbiome of the upper respiratory tract (URT) has been less frequently inves-
tigated [10–12]. The URT is colonized by a multitude of microorganisms, most of which
bear no association with disease [13]. Yet, such colonization will provide an initial line of
defense against potentially pathogenic agents and occupy sites that could otherwise become
targets for pathogens [10]. Microbial colonization may also act on host immunity, thus altering
susceptibility to disease [14,15].

Previous studies on the pig URT microbiome have focused particularly on defined
stages of commercial pig production, such as the first weeks of life [10] or finishing
phase [16]. Therefore, sequential analyses of respiratory microbiota composition at crit-
ical points during pig production could provide insights into the evolution of microbial
colonization throughout the production process. In the present study, a prospective study
was carried out to compare the bacterial communities of the URT of asymptomatic and
respiratory disease-affected pigs, which were followed in a longitudinal fashion at three
critical phases of production.

2. Materials and Methods
2.1. Herds

A nursery, which housed a total of 1900 pigs, was selected for the study. The farm
was located in Rio Grande do Sul, Southern Brazil, which was selected based on previous
reports of respiratory clinical signs. The pigs were housed on the nursery farm from 21 to
71 days of age, when they were moved and housed in a finishing facility until the day of
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slaughter (around 180 days of age). Thus, the first two samplings were performed on the
nursery farm, with the last one on the finishing farm.

The following vaccination protocol was adopted at weaning (21 days of age) for
the pigs of the study: Actinobacillus pleuropneumoniae (autogenous vaccine, Microvet),
Mycoplasma hyopneumoniae (M+PAC, MSD Saúde Animal), and porcine circovirus type 2
(PCV2; Circumvent PCV, MSD Saúde Animal). Antibiotic treatment in feed was adminis-
tered as part of the farm management (Supplementary Table S1). Tulathromycin was admin-
istered intramuscularly (Draxin®, Zoetis™), and norfloxacin (Farmaflox®, Farmabase™)
was supplied in the drinking water when pigs presented respiratory clinical signs.

2.2. Study Design and Sampling

A total of 20 pigs were selected and sampled at three different time points, resulting
in 60 samples. They were divided according to clinical status, such as asymptomatic
(n = 10) and symptomatic (n = 10, with clinical symptoms of respiratory disease at T1).
The selection criteria were based on the presence of coughing and sneezing, which were
assessed and counted after movement stimulation, according to Morés et al. (2001) [17].
Three two-minute counts were performed, and the average of three counts was used to
define the groups. Body temperature was measured using a digital rectal thermometer,
and anamnesis was performed to monitor clinical signs. These animals were followed
within three time points, representing different phases of pig production, i.e., post-weaning
(T1—33 days), end of the nursery phase (T2—71 days), and finishing—prior to slaughter
(T3—173 days).

Sterile nasal swabs were introduced in the nasal cavity by rotating them clockwise
and counterclockwise, and sterile laryngeal swabs were obtained using a mouth gag and
a laryngoscope for the introduction of the swabs in the larynx [18]. All samples were
stored at −80 ◦C until further processing. The study took place from winter (post-weaning
sampling) to spring (finishing phase prior to slaughter).

2.3. DNA Extraction, PCR, and Sequencing

Prior to DNA extraction, samples were homogenized in Precellys® 24 (Bertin Technolo-
gies S.A.S, Versailles, France). Microbial DNA was extracted using the MagMax Pathogen
DNA/RNA kit (Thermo Fisher Scientific, Waltham, MA, USA) at the Laboratório de Virolo-
gia, Universidade Federal do Rio Grande do Sul (Porto Alegre, Brazil), according to the
manufacturer’s instructions. The V4 region of the bacterial 16S rRNA gene was amplified
by PCR (94 ◦C for 2 min, followed by 35 cycles at 94 ◦C for 30 s, 55 ◦C for 30 s, and 68 ◦C
for 45 s, as well as a final extension at 68 ◦C for 5 min) using 16S—forward (5′ TCG TCG
GCA GCG TCA GAT GTG TAT AAG AGA CAG GTG CCA GCM GCC GCG GTA A 3′)
and reverse (5′ GTC TCG TGG GCT CGG AGT TGT GTA TAA GAG ACA GGG ACT
ACH VGG GTW TCT AAT 3′) primers’, which contain the Illumina adapter sequence
(Kozich et al., 2013). The reactions were performed with Phusion polymerase and 12.5 ng
of DNA, following the standard protocol for this enzyme. Amplicons were purified with
Agencourt® AMPure® XP beads (Beckman Coulter, Brea, CA, USA) and indexed following
the Illumina protocol. Libraries were then quantified using Qubit 2.0 fluorometer (Invitro-
gen, Carlsbad, CA, USA), and concentrations were normalized for sequencing, which was
performed with Miseq Reagent kit v2 500 cycles (2 × 250 paired-end) through the Miseq
desktop sequencer platform (Illumina) located at the Instituto de Pesquisas Veterinárias
Desidério Finamor (Eldorado do Sul, Brazil). Of the 36 samples, six could not be sequenced
(S23, S28, S29, S30, S34, and S35) and, therefore, were not included in the study.

2.4. 16S rRNA Reads Processing

The sequence data exported from the MiSeq System was processed using a custom
pipeline in Mothur [19]. Initially, sequences were depleted of barcodes and primers (where
no mismatches were allowed). A quality filter was then applied to eliminate low-quality
reads. Quality control was conducted by trimming the low-quality reads, including those
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with inadequate lengths, containing ambiguous bases, or with homopolymers longer than
8 bp. All potentially chimeric sequences were identified and removed using VSEARCH [20].

After the initial quality filtering and trimming steps, the remaining sequences were
clustered into operational taxonomic units (OTUs), based on a 99% identity level, and
classified against the SILVA v138 reference database at 97% similarity. Sequences that could
not be classified (i.e., “unknown” sequences), as well as sequences identified as eukaryotes,
mitochondria, and chloroplasts, were removed prior to further analysis.

An additional filtering step was performed by removing OTUs with less than 10 reads,
in order to reduce spurious OTUs caused by PCR or sequencing errors. After all filtering
steps, the resulting OTU table was composed of 1894.081 sequences, with an average of
75,763 sequences per sample (Supplementary Table S2). The OTU table was then rarefied
to the smallest library size. Subsequent analyses of the sequence dataset were performed
in R v. 4.0.0 (using vegan, phyloseq, ggplot2, and MicrobiomeAnalystR packages) or
QIIME2 [21].

2.5. Microbial Communities and Statistical Analysis

Alpha diversity was assessed using species richness (Chao1) and diversity (Shannon
and Simpson) indices. For overall comparison of significant differences among bacte-
rial communities (i.e., beta diversity), principal coordinates analysis (PCoA) based on
Bray–Curtis dissimilarity metric was performed. To achieve statistical confidence for the
sample grouping observed by PCoA, a permutational multivariate analysis of variance
(PERMANOVA) was performed on the distance matrix. To compare additional differences
among the microbial communities, clustering methods based on Bray–Curtis dissimilarity
were performed. The results of hierarchical clustering were visualized using heatmaps
and dendrograms.

To detect potential taxa biomarkers, the linear discriminant effect size (LEfSe) method
was performed [22]. The algorithm performs a nonparametric factorial Kruskal-Wallis
sum rank test and LDA to determine statistically significant different features among taxa
and estimates the effect size of the difference. Benjamini–Hochberg adjusted p-value was
calculated to control the false discovery rate (FDR) in multiple tests. Differences were
considered significant for a LDA score > 2.0 and FDR corrected p-value of 0.05.

2.6. Functional Prediction

Predictive functional gene profiling was based on 16S rRNA gene sequencing data us-
ing Piphillin with an updated KEGG database (from May 2020) and confidence cutoff value
of 97 [23]. The resulting predicted metabolic pathways were then filtered to include only mi-
crobial ones. Dendrogram of KEGG pathways was calculated using the Bray–Curtis metric.
Differentially abundant features were determined using LEfSe [22]. Benjamini–Hochberg
adjusted p-value was calculated to control the false discovery rate (FDR) in multiple tests.
KEGG pathways were considered significantly enriched by satisfying a LDA score of 1.6
and FDR corrected p-value of 0.05.

3. Results
3.1. Microbial Diversity

Principal coordinates analysis (PCoA) based on Bray-Curtis dissimilarity indicated
that no significant difference was observed when samples were clustered, according to
the sampling type, i.e., nasal and laryngeal. However, the structural pattern of the URT
microbiota from pigs with clinical signs was clearly distinct from those without clinical
signs at T1 (r2 = 0.61, p < 0.001). This difference was maintained at T2 (p < 0.001) and not
observed in samples from pigs at the finishing phase (T3), which tended to cluster together,
independent of the health status (Figure 1A,B).
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Figure 1. Beta diversity analysis based on Bray-Curtis distances in Asymptomatic and Symptomatic
(with clinical symptoms of respiratory disease) pigs. Principal coordinates analysis (A) and dendrogram
clustering (B) of the bacterial community structures grouped according to the pigs’ health status.
Principal coordinates analysis (C) and dendrogram clustering (D) of the bacterial community structures
grouped according to pigs’ health status and time of sampling. Statistical confidence for the sample
grouping was accessed using permutational multivariate analysis of variance (PERMANOVA).
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This result was confirmed by the pairwise PERMANOVA test (Table 1).

Table 1. Pairwise PERMANOVA test among the group of samples identified in the beta diversity
analysis based on Bray-Curtis distances in Asymptomatic and Symptomatic (with clinical symptoms
of respiratory disease) pigs, and T3. The resulting p-values were corrected for multiple comparisons
using the Benjamini–Hochberg correction (false discovery rate (FDR), q-value. A q-value < 0.05 was
considered statistically significant.

Group 1 Group 2 Sample Size q-Value

Symptomatic Asymptomatic 23 0.001
Symptomatic T3 18 0.001

Asymptomatic T3 19 0.001

When the results were further stratified, according to sampling time and health status,
the significance increased (r2 = 0.73, p < 0.001), which indicates that these five categories (i.e.,
T1_symptomatic, T1_asymptomatic, T2_symptomatic, T2_asymptomatic, and T3, where all
animals were asymptomatic) better explain the clustering of samples (Figure 1C,D; Table 2).

Table 2. Pairwise PERMANOVA among the 5 groups of samples identified in the beta diversity
analysis based on Bray-Curtis distances in Asymptomatic-T1, Symptomatic-T1, Asymptomatic-T2,
Symptomatic-T2, and T3. The resulting p-values were corrected for multiple comparisons using the
Benjamini–Hochberg correction false discovery rate (FDR), q-value. A q-value < 0.05 was considered
statistically significant.

Group 1 Group 2 Sample Size q-Value

Symptomatic-T1 Symptomatic-T2 11 0.01
Symptomatic-T1 Symptomatic-T3 10 0.01
Symptomatic-T1 Asymptomatic-T1 12 0.01
Symptomatic-T1 Asymptomatic-T2 12 0.01
Symptomatic-T1 Asymptomatic-T3 9 0.01

Symptomatic-T2 Symptomatic-T3 9 0.01
Symptomatic-T2 Asymptomatic-T1 11 0.01
Symptomatic-T2 Asymptomatic-T2 11 0.01
Symptomatic-T2 Asymptomatic-T3 8 0.01

Symptomatic-T3 Asymptomatic-T1 10 0.01
Symptomatic-T3 Asymptomatic-T2 10 0.01
Symptomatic-T3 Asymptomatic-T3 7 0.89

Asymptomatic-T1 Asymptomatic-T2 12 0.01
Asymptomatic-T1 Asymptomatic-T3 9 0.01

Asymptomatic-T2 Asymptomatic-T3 9 0.02

Shannon and Simpson diversity indices indicated that asymptomatic pigs in T1 and
T2 presented a higher diversity, in comparison to the symptomatic and asymptomatic pigs
in T3 (p < 0.001) (Figure 2A,B). On the other hand, the number of observed OTUs was
significantly lower only in symptomatic pigs from T1; a similar profile was observed for
the Chao1 index (p < 0.001) (Figure 2C,D).

No significant differences in alpha-diversity metrics were observed when samples
were clustered according to their status (healthy and symptomatic) or anatomical site of
sampling (nasal or laryngeal).

3.2. Microbial Composition and Distribution

Given the structure of the microbial communities, microbial composition, and dis-
tribution analyses were based on the five identified sample groups (Figure 1; Table 2).
Taxonomy-based analysis of bacterial communities identified 1345 bacterial taxa (OTUs),
which belong to 318 genera, 117 families, and 19 phyla. Proteobacteria (53%) Firmicutes
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(35%), Bacteroidetes (8%), Actinobacteria (4%), and Tenericutes (1%) were the most preva-
lent phyla in all samples (Figures 3A and 4A). These phyla were also differentially abundant
among groups (Figure 5A).
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Figure 2. Alpha diversity analysis according to different metrics in Asymptomatic and Symptomatic
(with clinical symptoms of respiratory disease) pigs. Shannon (A), Simpson (B), Chao1 (C), and
Observed OTUs (D). Statistical confidence for the sample grouping was accessed using permutational
multivariate analysis of variance (PERMANOVA).

While Proteobacteria was abundant in T3, Firmicutes and Bacteroidetes were less
frequent in this group. Actinobacteria was prevalent in asymptomatic pigs (asymptomatic-
T1 and asymptomatic-T2), and Tenericutes were prevalent in asymptomatic-T1.

The most frequent families in all samples were Moraxellaceae (33%), Pasteurellaceae
(17%), Streptococcaceae (16%), Lachnospiraceae (4%), and Lactobacillaceae (4%). The
10 most abundant families represented 91% of all observed taxa. Their composition and
distribution in the samples are presented in Figures 3B and 4B, respectively. In total,
19 families were differentially abundant among sample groups (Figure 5B).

The most frequent genera in all samples were Moraxella (32%), Streptococcus (16%),
Actinobacillus (9%), Pasteurellaceae_unclassified (8%), and Lactobacillus (4%). The 10 most
abundant genera represented 80% of all observed taxa. Their composition and distribution
in the samples are presented in Figures 3C and 4C, respectively. In total, 34 genera were
differentially abundant among the analyzed groups (Figure 5B).

3.3. Core and Rare Microbiota

In order to characterize the core and rare microbiota of asymptomatic pigs and those
with respiratory clinical signs, we further analyzed the frequency of abundant, rare, and
unique OTUs in the samples. In total, 524 OTUs were shared among the five groups
and may be considered the core microbiota, while 101 OTUs were exclusive to one group
and considered the rare taxa (Figure 6A). The highest number of unique OTUs was ob-
served in T3 (132 OTUs), followed by the T1 samples, while only two unique OTUs were
observed in the T2 samples. From the 59 OTUs present in all samples, 8 had relative
abundance >1%, and 51 had relative abundance between 1–0.01%. The highest number
of shared OTUs in all samples belonged to Lachnospiraceae (12 OTUs), Prevotellaceae
(11 OTUs), Ruminococcaceae (9 OTUs), and Moraxellaceae (4 OTUs); other relevant taxa
include Clostridium_sensu_stricto_1 (2 OTUs), Streptococcus (2 OTUs), Rothia (1 OTU),
and Mycoplasma (1 OTU). Between healthy and symptomatic pigs (from T1 and T2), 235
OTUs were shared, while 23 were unique to asymptomatic pigs and 41 were unique to
symptomatic pigs (Figure 6B).
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Figure 5. Lefse analysis at the phyla (A), family (B), and genus level (C) in Asymptomatic and
Symptomatic (with clinical symptoms of respiratory disease) pigs. Statistical confidence was assessed
using the Kruskal-Wallis test. Genera were ranked by LDA score. Differences were considered
significant beyond a logarithmic LDA score threshold of ±2.0 and a p-value < 0.05.
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3.4. Functional Prediction

Metabolic prediction indicated that the clustering of samples was similar to the taxo-
nomic analysis, with asymptomatic, symptomatic, and T3 in different clusters (Figure 7A);
the only difference was that T3 was closely related to symptomatic pigs.
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In total, 28 differentially abundant pathways were identified among groups (Figure 7B),
mainly related to carbohydrate, energy, amino acid, and nucleotide metabolism in symp-
tomatic pigs (especially in T2). Other relevant pathways associated with symptomatic
pigs in T2 included the metabolism of cofactors and vitamins (folate and other terpenoid-
quinone biosynthesis), membrane transport systems (phosphotransferase system and ABC
transporters), and biofilm formation. Only six pathways were related to healthy pigs or
T3: ribosome and aminoacyl-tRNA biosynthesis (translation), oxidative phosphorylation
(energy metabolism), and flagellar assembly (cellular motility), as well as starch/sucrose
and galactose metabolism (carbohydrate metabolism).

4. Discussion

In this study, a prospective analysis was performed to compare the URT microbiota of
asymptomatic and respiratory clinically-affected pigs at three critical stages of production,
raised under the same management conditions. The results showed a different microbiota in
symptomatic animals, when compared to asymptomatic, at the onset of the symptoms (T1),
and the difference was maintained at the end of the nursery (T2), suggesting that respiratory
clinical signs and/or the use of antibiotics to treat these animals had a long-term impact
on URT microbiota. A previous study also observed an association between health status
and richness/diversity of bacteria in weaned pigs, revealing a high frequency of genera
such as Moraxella and Weeksella, which might act as potential probiotics [11]. On the other
hand, bacteria commonly associated with pneumonia, such as Mycoplasma hyopneumoniae,
Pasteurella multocida, Streptococcus sp., and Actinobacillus pleuropneumoniae, were more fre-
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quently detected in pigs with respiratory clinical signs than pigs with no signs, suggesting
their involvement in respiratory disease [24].

It is important to point out that the pigs included in this study received five dif-
ferent antibiotics in their feed during the entire nursery phase; at the finishing phase,
they received four antimicrobials in 80.3%, representing only 23 days without medication
(Supplementary Table S1). The extensive use of antibiotics during the nursery and finishing
phases is a common practice in pig production, not only to prevent disease in intensive
production systems, which provide optimal conditions for the spread of pathogens. The
impact of antibiotics on the swine nasal microbiota is a topic of major concern and has
been already investigated in a few studies [25,26]. Correa-Fiz et al. (2019) observed that
the removal of antimicrobial treatment early in piglets’ lives increased bacterial diver-
sity at weaning and the abundance of favorable bacterial genera, such as Prevotella and
Lactobacillus [25]. Moreover, changes in nasal microbiota composition improved the per-
formance and health status of those piglets in the nursery phase. Zeineldin et al. (2018)
showed a pronounced, antimicrobial-dependent microbial shift in the composition of nasal
microbiota over time, showing that parenteral antimicrobial administration has a consid-
erable impact on modulating the nasal microbiota structure [26]. In our study, the use of
antibiotics may have altered the upper respiratory tract microbiota; however, a noticeable
tendency to uniformization of the colonizing bacterial populations was identified at the
finishing phase, when no significant differences were observed in the bacterial communities
detected in pigs, with or without respiratory clinical signs. In addition to major changes
in the microbiota, the main concern with the extensive use of antibiotics is the emergence
of antimicrobial resistance, which has already been extensively demonstrated [27,28]. For
these reasons, the development of novel non-antibiotic strategies to prevent infection in
food-producing animals, subsequently increasing animal productivity, has been a topic of
intense research in the swine industry [29,30].

The results related to alpha diversity revealed that, in T1, the number of observed
OTUs was significantly lower in symptomatic pigs with a similar profile for Chao1 index.
Since Chao1 is a metric based on the rare taxa and Shannon/Simpson considers the whole
microbial community, these results suggest that the diversity of members of low abundancy
of the community is primarily affected right before the signs of respiratory disease appear
after weaning (T1), while the whole diversity community tends to get even at the end of
the finishing period (T3). Different results were observed in a previous study, in which the
oropharynx microbiota of pigs with respiratory disease had higher diversity [31].

Microbial communities detected in the nasal cavity and larynx were not significantly
different. While the nasal microbial community is being extensively studied in animals
and humans, the larynx is less explored. However, given the importance of both sites
to respiratory diseases, a comparison between the microbial populations in these two
anatomical sites was considered of interest. Correa-Fiz et al. (2016) observed a maximum
of 1603 OTUs clustered in five phyla in the nasal cavity of pigs [11]. On the other hand,
the larynx leads to the lower respiratory tract, and it is not exposed, as the nasal cavity is,
which could limit the diversity of bacteria. This was not the case in the current study, since
the bacterial populations in the nasal cavity and larynx were quite similar.

The shared and unique OTUs also presented some interesting features; the number of
unique OTUs decreased in T2 groups (with and without clinical signs), while it increased
significantly in T3, indicating how distinctive the microbiome is at the finishing phase.
When considering the health status, symptomatic pigs presented nearly twice the number
of unique OTUs, when compared to asymptomatic pigs, indicating that the initial phase of
respiratory disease is accompanied by a significant increase in the number of opportunistic
microbial taxa.

Besides the differences associated with the clinical conditions of the piglets, signifi-
cant differences in the structure and diversity of the microbiome were also related to the
time of sampling (i.e., T1, T2, and T3), indicating that age and/or dietary changes had a
major influence on the composition of the bacterial community. Although changes in the



Biology 2022, 11, 1111 13 of 17

long-term development of the pig microbiome are not a novelty, our results have some
differences, when compared to the consensus literature. According to recent studies, the
diversity of the microbiome of healthy pigs feeding in a uniform condition and without the
use of antibiotics increases with age [32,33]. On the contrary, our results showed that the
diversity decreased in T3, which could be related to the cumulative effect of the extensive
use of antibiotics in feed. Recent studies demonstrate that early-life microbial colonization
is the most critical time for shaping intestinal and immune development, with perturba-
tions to the microbiota during this time having long-lasting negative implications for the
host [34,35]. Under the rearing conditions adopted at the farms sampled here, animals
presented different microbiomes at an early age (T1 and T2), which adapted to a more
uniform microbial community at finishing. We cannot state, however, that such adaptations
were positive or negative for the animals; clearly, all pigs were able to reach the finishing
phase in apparently healthy condition and good corporal state, suggesting that the animals
were positively adapted to that particular rearing environment.

A closer exploration of the overall changes in the nasal microbial membership among
the groups revealed significant changes in the relative abundances of specific taxa, from
phyla to genera, which may have contributed to the clinical signs of respiratory disease. At
the genus level, Actinobacillus, Streptococcus Porphyromonas, Veillonella, and an unclassified
genus of Pasteurellaceae were more abundant in pigs with clinical signs of respiratory
disease. Similarly, other studies also detected a higher abundance of these genera in
symptomatic pigs, suggesting their involvement in respiratory clinical signs [24,31]. The
lack of differences in the microbiomes of animals at T3 (which displayed no clinical signs)
and reduction of those differentially abundant taxa in T1 and T2 indicate that the dysbiosis
related to respiratory signs was “resolved” at the finishing phase.

The genera Actinobacillus and Pasteurella compose the complex and diverse microbiota
of the upper respiratory tract of pigs, but their species Actinobacillus pleuropneumoniae and
Pasteurella multocida are also involved in the porcine respiratory disease complex, as primary
or secondary pathogens [36]. The A. pleuropneumoniae maternal immunity decreases around
2–12 weeks of age, predisposing pigs to field infection [37]. Additionally, P. multocida is an
opportunistic pathogen that is commonly associated with primary infections by viruses or
other bacteria [38].

The predominance of the genus Streptococcus in symptomatic pigs in T1 and T2
may reflect a decrease in maternal antibodies against S. suis, which occurs at around
5–10 weeks [39]. This bacterium is commensal to the upper respiratory tract of pigs, but the
association of stressful situations (e.g., weaning) with a low immunity level may increase
its potential to invade and disseminate in the host, thus causing a systemic disease [40]. It
is one of the most important bacterial swine pathogens affecting post-weaned pigs [41].
The infection caused by the pathogen not only results in severe economic losses but also
raises animal welfare concerns. Not just this species, but also the genus Streptococcus is
considered a potential reservoir for antibiotic resistance and represents a high risk of trans-
mission of such resistance to other veterinary and human pathogens, due to the presence of
mobile genetic elements carrying resistance genes transferable at high frequency. This issue
highlights the need for further studies to evaluate the pathogenicity of Streptococcus strains
in pigs with clinical signs of respiratory disease. In addition, whole metagenomic studies
would allow for new insight into the diversity and dynamics of the antibiotic resistance
genes that are harbored by the URT microbiota.

The relative abundance of Porphyromonas and Veillonella was also differentially abun-
dant in pigs with clinical signs of respiratory disease. Although both genera are described
as members of the core nasal microbiota, their relationship with respiratory diseases has not
yet been clarified. For this reason, an investigation into the potential role of these neglected
genera, in relation to the increased risk of developing respiratory diseases, should be the
focus of further work.

An interesting result was the high presence of Mycoplasma sp. in both T1 groups
(symptomatic and asymptomatic), followed by low abundance in T2 and T3. This genus is
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highly prevalent in Brazilian pig herds as a primary agent of pneumonia (M. hyopneumoniae).
It is possible that the large use of antibiotics active against mycoplasmas (six out of seven
drugs) in our study contributed to the reduction of the bacterial load in the upper respiratory
tract, especially in T2 and T3. It is already reported that the antibiotic treatment reduces,
but does not eliminate, mycoplasmas from the respiratory tract [42].

The genera Acinetobacter, Agathobacter, Anaerovibrio, Blautia, Catenibacterium, Lach-
nospiraceae_unclassified, Phascolarctobacterium, Prevotella_2, Prevotella_9, Rothia, and
Subdoligranulum were more abundant in both groups of asymptomatic pigs and could be
associated with a healthy status. Indeed, some of these bacteria are considered healthy farm-
and model-associated taxa, such as Blautia, Prevotella, Rothia, and Lachnospiraceae [12,31,43].
Although the Acinetobacter species is important in the emergence and spread of antimi-
crobial resistance, the prevalence of this genus in asymptomatic pigs may be an indicator
of its beneficial impact on the maintenance of a healthy physiological conditions in pigs.
Lactobacillus and Moraxella were more prevalent in asymptomatic pigs and T3 and could
also be associated with a healthy status. The statistically significant predominance of these
genera suggests a potential protective role against respiratory diseases, and further studies
accessing the administration of targeted prebiotics and probiotics to maintain stability in
the nasal microbiota might be a useful strategy to prevent or treat respiratory diseases.

To further explore the underlying changes observed in the microbiota, a functional
prediction analysis was performed. While the starch/sucrose/galactose metabolism and
prokaryotic oxidative phosphorylation pathway were significantly decreased in symp-
tomatic pigs, the methane and sulfur pathways were increased, indicating a tendency for
an anaerobic energy supply mechanism in the development of respiratory diseases. We
hypothesize that during the initial phase of respiratory diseases, opportunistic pathogens
adapt to those conditions, thus forming biofilms and changing to anaerobic metabolism, as
well as increasing their capacity to metabolize carbohydrates, amino acids, and nucleotides.
Indeed, anaerobes are relatively frequent pathogens in respiratory infections, and they are
associated with a variety of diseases [44]. However, the role and molecular mechanisms of
anaerobic bacteria and their metabolism in respiratory disease are not well-understood. The
increase in membrane transport system pathways may also be an indicator of a pathogenic
status. The ABC transport system, for example, is responsible for supplying energy for
the uptake of a variety of nutrients and extrusion of drugs, such as antibiotics [45]. In
addition, different studies indicate that these transporters play a significant role in the
survival and proliferation of pathogens within the host [46]. Altogether, the results of the
functional prediction indicate that identifying the metabolic pathways in symptomatic and
asymptomatic pigs might be useful for the development of health-promoting strategies,
based on the control of the metabolic activity of the microbiota in production systems.

5. Conclusions

The findings reported here provide evidence that the composition of the URT bacterial
microbiota differs significantly when comparing pigs with or without respiratory clinical
signs after weaning; these differences were maintained in the nursery phase but were not ob-
served at the finishing phase. At the genus level, Actinobacillus, Streptococcus Porphyromonas,
Veillonella, and an unclassified genus of Pasteurellaceae were more abundant in pigs with
clinical signs of respiratory disease. Based on the observed changes in the metabolic path-
ways, we hypothesize that, during the initial phase of respiratory disease, opportunistic
pathogens adapt to those conditions, thus forming biofilms and changing to anaerobic
metabolism, as well as increasing their capacity to metabolize carbohydrates, amino acids,
and nucleotides. Our results contribute to the knowledge of the porcine URT microbiota at
different stages of production, providing new insights into the role of bacteria in the early
stages of respiratory diseases.
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9. Knecht, D.; Cholewińska, P.; Jankowska-Mąkosa, A.; Czyż, K. Development of swine’s digestive tract microbiota and its relation
to production indices—A review. Animals 2020, 10, 527. [CrossRef]

10. Slifierz, M.J.; Friendship, R.M.; Weese, J.S. Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig.
BMC Microbiol. 2015, 15, 184. [CrossRef]

11. Correa-Fiz, F.; Fraile, L.; Aragon, V. Piglet nasal microbiota at weaning may influence the development of Glässer’s Disease
during the rearing period. BMC Genom. 2016, 17, 404. [CrossRef]

12. Pirolo, M.; Espinosa-Gongora, C.; Bogaert, D.; Guardabassi, L. The porcine respiratory microbiome: Recent insights and future
challenges. Anim. Microbiome 2021, 3, 9. [CrossRef] [PubMed]

13. Lowe, B.A.; Marsh, T.L.; Isaacs-Cosgrove, N.; Kirkwood, R.N.; Kiupel, M.; Mulks, M.H. Defining the “core microbiome” of the
microbial communities in the tonsils of healthy pigs. BMC Microbiol. 2012, 12, 20. [CrossRef] [PubMed]

14. Niederwerder, M.C. Role of the microbiome in swine respiratory disease. Vet. Microbiol. 2017, 209, 97–106. [CrossRef] [PubMed]
15. Palm, N.W.; de Zoete, M.R.; Flavell, R.A. Immune-microbiota interactions in health and disease. Clin. Immunol. 2015, 159, 122–127.

[CrossRef]
16. Weese, J.S.; Slifierz, M.; Jalali, M.; Friendship, R. Evaluation of the nasal microbiota in slaughter-age pigs and the impact on nasal

methicillin-resistant Staphylococcus aureus (MRSA) carriage. BMC Vet. Res. 2014, 10, 69. [CrossRef]
17. Morés, N.; Barioni Junior, W.; Sobestansky, J.; Dalla Costa, A.O.; Piffer, A.I.; Paiva, D.P.; Guzzo, R.; Coimbra, J.B.S. Estimating

of pneumonia by coughing and atrophic rhinitis by sneezing indices in swine. Arq. Bras. Med. Veterinária Zootec. 2001, 53, 1–6.
[CrossRef]

https://www.mdpi.com/article/10.3390/biology11081111/s1
https://www.mdpi.com/article/10.3390/biology11081111/s1
http://doi.org/10.1053/tvjl.1999.0421
http://www.ncbi.nlm.nih.gov/pubmed/10640410
http://doi.org/10.1017/S1466252311000120
http://www.ncbi.nlm.nih.gov/pubmed/22152290
http://doi.org/10.1093/ilar/ilv006
http://www.ncbi.nlm.nih.gov/pubmed/25991699
http://doi.org/10.1093/jas/skz208
http://www.ncbi.nlm.nih.gov/pubmed/31250899
http://doi.org/10.3390/ani9030076
http://doi.org/10.1186/s40104-018-0308-3
http://doi.org/10.1186/s40168-020-00888-9
http://doi.org/10.3390/ani10030527
http://doi.org/10.1186/s12866-015-0512-7
http://doi.org/10.1186/s12864-016-2700-8
http://doi.org/10.1186/s42523-020-00070-4
http://www.ncbi.nlm.nih.gov/pubmed/33499988
http://doi.org/10.1186/1471-2180-12-20
http://www.ncbi.nlm.nih.gov/pubmed/22313693
http://doi.org/10.1016/j.vetmic.2017.02.017
http://www.ncbi.nlm.nih.gov/pubmed/28318782
http://doi.org/10.1016/j.clim.2015.05.014
http://doi.org/10.1186/1746-6148-10-69
http://doi.org/10.1590/S0102-09352001000300003


Biology 2022, 11, 1111 16 of 17

18. Pieters, M.; Daniels, J.; Rovira, A. Comparison of sample types and diagnostic methods for in vivo detection of Mycoplasma
hyopneumoniae during early stages of infection. Vet. Microbiol. 2017, 203, 103–109. [CrossRef]

19. Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.;
Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing
and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [CrossRef]

20. Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016,
4, e2584. [CrossRef]

21. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumgam, M.;
Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019,
37, 852–857. [CrossRef]

22. Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery
and explanation. Genome Biol. 2011, 12, R60. [CrossRef] [PubMed]

23. Iwai, S.; Weinmaier, T.; Schmidt, B.L.; Albertson, D.G.; Poloso, N.J.; Dabbagh, K.; DeSantis, T.Z. Piphillin: Improved prediction of
metagenomic content by direct inference from human microbiomes. PLoS ONE 2016, 11, e0166104. [CrossRef]

24. Li, Z.; Wang, X.; Di, D.; Pan, R.; Gao, Y.; Xiao, C.; Li, B.; Wei, J.; Liu, K.; Qiu, Y.; et al. Comparative analysis of the pulmonary
microbiome in healthy and diseased pigs. Mol. Genet. Genom. 2021, 296, 21–32. [CrossRef] [PubMed]

25. Correa-Fiz, F.; dos Santos, J.M.G.; Illas, F.; Aragon, V. Antimicrobial removal on piglets promotes health and higher bacterial
diversity in the nasal microbiota. Sci. Rep. 2019, 9, 6545. [CrossRef] [PubMed]

26. Zeineldin, M.; Aldridge, B.; Blair, B.; Kancer, K.; Lowe, J. Microbial shifts in the swine nasal microbiota in response to parenteral
antimicrobial administration. Microb. Pathog. 2018, 121, 210–217. [CrossRef]

27. Zhu, Y.G.; Johnson, T.A.; Su, J.Q.; Qiao, M.; Guo, G.X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant
antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [CrossRef]

28. Zeineldin, M.; Aldridge, B.; Lowe, J. Antimicrobial effects on swine gastrointestinal microbiota and their accompanying antibiotic
resistome. Front. Microbiol. 2019, 10, 1035. [CrossRef]

29. Thacker, P.A. Alternatives to antibiotics as growth promoters for use in swine production: A review. J. Anim. Sci. Biotechnol. 2013,
4, 35. [CrossRef]

30. Santana, M.B.; Melo, A.D.B.; Cruz, D.R.; Garbossa, A.C.P.; Andrade, C.; Cantarelli, C.S.; Costa, L.B. Alternatives to antibiotic
growth promoters for weanling pigs. Cienc. Rural 2015, 45, 1093–1098. [CrossRef]

31. Wang, Q.; Cai, R.; Huang, A.; Wang, X.; Qu, W.; Shi, L.; Li, C.; Yan, H. Comparison of oropharyngeal microbiota in healthy piglets
and piglets with respiratory disease. Front. Microbiol. 2018, 9, 3218. [CrossRef]

32. Ke, S.; Fang, S.; He, M.; Huang, X.; Yang, H.; Yang, B.; Chen, C.; Huang, L. Age-based dynamic changes of phylogenetic
composition and interaction networks of health pig gut microbiome feeding in a uniformed condition. BMC Vet. Res. 2019,
15, 172. [CrossRef] [PubMed]

33. Lim, M.Y.; Song, E.J.; Kang, K.S.; Nam, Y.D. Age-related compositional and functional changes in micro-pig gut microbiome.
Geroscience 2019, 41, 935–944. [CrossRef] [PubMed]

34. Holman, D.B.; Gzyl, K.E.; Mou, K.T.; Allen, H.K. Weaning age and its effect on the development of the swine gut microbiome and
resistome. mSystems 2021, 6, e0068221. [CrossRef] [PubMed]

35. Nowland, T.L.; Kirkwood, R.N.; Pluske, J.R. Review: Can early-life establishment of the piglet intestinal microbiota influence
production outcomes? Animal 2021, 11. [CrossRef]

36. Yaeger, M.J.; Van Alstine, W.G. Respiratory System. In Diseases of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A.,
Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 393–407.

37. Vigre, H.; Ersbøll, A.K.; Sørensen, V. Decay of acquired colostral antibodies to Actinobacillus pleuropneumoniae in pigs. J. Vet. Med.
Ser. B 2003, 50, 430–435. [CrossRef] [PubMed]

38. Hurtado, R.; Maturrano, L.; Azevedo, V.; Aburjaile, F. Pathogenomics insights for understanding Pasteurella multocida adaptation.
Int. J. Med. Microbiol. 2020, 310, 151417. [CrossRef]

39. Baums, C.G.; Bruggemann, C.; Kock, C.; Beineke, A.; Waldmann, K.H.; Valentin-Weigand, P. Immunogenicity of an autogenous
Streptococcus suis bacterin in preparturient sows and their piglets in relation to protection after weaning. Clin. Vaccine Immunol.
2010, 17, 1589–1597. [CrossRef]

40. Gottschalk, M.; Segura, M. Streptococcosis. In Diseases of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz,
K.J., Stevenson, G.W., Zhang, J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 934–950.

41. Obradovic, M.R.; Segura, M.; Segalés, J.; Gottschalk, M. Review of the speculative role of co-infections in Streptococcus suis-
associated diseases in pigs. Vet. Res. 2021, 52, 49. [CrossRef]

42. Le Carrou, J.; Laurentie, M.; Kobisch, M.; Gautier-Bouchardon, A.V. Persistence of Mycoplasma hyopneumoniae in experimentally
infected pigs after marbofloxacin treatment and detection of mutations in the parC gene. Antimicrob. Agents Chemother. 2006, 50,
1959–1966. [CrossRef]

43. Valeris-Chacin, R.; Sponheim, A.; Fano, E.; Isaacson, R.; Singer, R.S.; Nerem, J.; Leite, F.L.; Pieters, M. Relationships among
fecal, air, oral, and tracheal microbial communities in pigs in a respiratory infection disease model. Microorganisms 2021, 9, 252.
[CrossRef]

44. Bartlett, J.G. Anaerobic bacterial infection of the lung. Anaerobe 2012, 18, 235–239. [CrossRef] [PubMed]

http://doi.org/10.1016/j.vetmic.2017.02.014
http://doi.org/10.1128/AEM.01541-09
http://doi.org/10.7717/peerj.2584
http://doi.org/10.1038/s41587-019-0209-9
http://doi.org/10.1186/gb-2011-12-6-r60
http://www.ncbi.nlm.nih.gov/pubmed/21702898
http://doi.org/10.1371/journal.pone.0166104
http://doi.org/10.1007/s00438-020-01722-5
http://www.ncbi.nlm.nih.gov/pubmed/32944788
http://doi.org/10.1038/s41598-019-43022-y
http://www.ncbi.nlm.nih.gov/pubmed/31024076
http://doi.org/10.1016/j.micpath.2018.05.028
http://doi.org/10.1073/pnas.1222743110
http://doi.org/10.3389/fmicb.2019.01035
http://doi.org/10.1186/2049-1891-4-35
http://doi.org/10.1590/0103-8478cr20140407
http://doi.org/10.3389/fmicb.2018.03218
http://doi.org/10.1186/s12917-019-1918-5
http://www.ncbi.nlm.nih.gov/pubmed/31126262
http://doi.org/10.1007/s11357-019-00121-y
http://www.ncbi.nlm.nih.gov/pubmed/31659582
http://doi.org/10.1128/mSystems.00682-21
http://www.ncbi.nlm.nih.gov/pubmed/34812652
http://doi.org/10.1016/j.animal.2021.100368
http://doi.org/10.1046/j.0931-1793.2003.00700.x
http://www.ncbi.nlm.nih.gov/pubmed/14633196
http://doi.org/10.1016/j.ijmm.2020.151417
http://doi.org/10.1128/CVI.00159-10
http://doi.org/10.1186/s13567-021-00918-w
http://doi.org/10.1128/AAC.01527-05
http://doi.org/10.3390/microorganisms9020252
http://doi.org/10.1016/j.anaerobe.2011.12.004
http://www.ncbi.nlm.nih.gov/pubmed/22209937


Biology 2022, 11, 1111 17 of 17

45. Ahmad, A.; Majaz, S.; Nouroz, F. Two-component systems regulate ABC transporters in antimicrobial peptide production,
immunity and resistance. Microbiology 2020, 166, 4–20. [CrossRef] [PubMed]

46. Tanaka, K.J.; Song, S.; Mason, K.; Pinkett, H.W. Selective substrate uptake: The role of ATP-binding cassette (ABC) importers in
pathogenesis. Biochim. Biophys. Acta (BBA)-Biomembr. 2018, 1860, 868–877. [CrossRef] [PubMed]

http://doi.org/10.1099/mic.0.000823
http://www.ncbi.nlm.nih.gov/pubmed/31204967
http://doi.org/10.1016/j.bbamem.2017.08.011
http://www.ncbi.nlm.nih.gov/pubmed/28847505

	Introduction 
	Materials and Methods 
	Herds 
	Study Design and Sampling 
	DNA Extraction, PCR, and Sequencing 
	16S rRNA Reads Processing 
	Microbial Communities and Statistical Analysis 
	Functional Prediction 

	Results 
	Microbial Diversity 
	Microbial Composition and Distribution 
	Core and Rare Microbiota 
	Functional Prediction 

	Discussion 
	Conclusions 
	References

