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Abstract

KCNQ2/KCNQ3 channels are the molecular correlates of the neuronal M-channels, which play a major role in the control of
neuronal excitability. Notably, they differ from homomeric KCNQ2 channels in their distribution pattern within neurons, with
unique expression of KCNQ2 in axons and nerve terminals. Here, combined reciprocal coimmunoprecipitation and two-
electrode voltage clamp analyses in Xenopus oocytes revealed a strong association of syntaxin 1A, a major component of
the exocytotic SNARE complex, with KCNQ2 homomeric channels resulting in a ,2-fold reduction in macroscopic
conductance and ,2-fold slower activation kinetics. Remarkably, the interaction of KCNQ2/Q3 heteromeric channels with
syntaxin 1A was significantly weaker and KCNQ3 homomeric channels were practically resistant to syntaxin 1A. Analysis of
different KCNQ2 and KCNQ3 chimeras and deletion mutants combined with in-vitro binding analysis pinpointed a crucial C-
terminal syntaxin 1A-association domain in KCNQ2. Pull-down and coimmunoprecipitation analyses in hippocampal and
cortical synaptosomes demonstrated a physical interaction of brain KCNQ2 with syntaxin 1A, and confocal
immunofluorescence microscopy showed high colocalization of KCNQ2 and syntaxin 1A at presynaptic varicosities. The
selective interaction of syntaxin 1A with KCNQ2, combined with a numerical simulation of syntaxin 1A’s impact in a firing-
neuron model, suggest that syntaxin 1A’s interaction is targeted at regulating KCNQ2 channels to fine-tune presynaptic
transmitter release, without interfering with the function of KCNQ2/3 channels in neuronal firing frequency adaptation.
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Introduction

The voltage-dependent M-type potassium current (M-current) is

a subthreshold, slowly activating and noninactivating voltage-

gated potassium current that is thought to stabilize membrane

potential and control neuronal excitability by limiting repetitive

firing [1–4].

The heterotetrameric KCNQ2/KCNQ3 channel complex,

which belongs to the KCNQ family of voltage-dependent K+

channels, has been identified as the main molecular correlate of

the M-channel [5–7]. KCNQ2 and KCNQ3 are coexpressed on

the cell bodies and dendrites of many hippocampal and cortical

neurons [2,7]. Also, the initial segment of several neurons in the

hippocampus, neocortex, brainstem and striatum show colocaliza-

tion of KCNQ2 and KCNQ3 expression [8,9]. Notably, KCNQ2,

but not KNCQ3, subunits are expressed presynaptically on axons

and nerve terminals, where they might regulate action potential

propagation or neurotransmitter release [8,10].

Modulation of the M-current has profound effects on brain

excitability. Inhibition of M-channels by muscarinic agonist and

other neurotransmitters enhances action-potential firing in central

and autonomic neurons [2,11,12]. In addition, a number of

neuropeptides [1,2,13,14], and many types of second messengers

[3,12,15–19], have been implicated in M-current modulation.

Recent studies have shown that calmodulin (CaM) binds to the

KCNQ2 and KCNQ3 C termini and may function as an auxiliary

channel subunit [17,20,21].

A new class of proteins capable of interacting with Kv channels

is made up of the SNARE (soluble N-ethylmaleimide-sensitive

fusion protein attachment protein receptor) proteins: the plasma

membrane (PM) syntaxin 1A, SNAP-25 and the vesicle-associated

membrane protein 2 (VAMP2). These proteins form the minimal

molecular complex, common to all secretory processes, controlling

the docking of synaptic vesicles and their fusion with the

presynaptic membrane [22–26]. In particular, syntaxin 1A has

been well-established by our and other laboratories to directly bind

to and modulate three Kv channels: Kv1.1 [27], Kv2.1 [28–30]

and Kv2.2 [31]. These interactions were shown to be mediated by

the cytoplasmic termini of the channels.

In the present study, we demonstrate that syntaxin 1A also

associates with KCNQ2 subunits in the brain, leading to

modulation of KCNQ2 homomeric channel gating in oocytes.
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Interestingly, these interactions are mediated via the C-terminal

helix A of the channel, which constitutes part of the CaM-binding

site [17,20,21]. Colocalization of KCNQ2 and syntaxin 1A at

synaptic terminals suggests a role for their interaction in vesicle

release, similar to the recently identified novel role for the syntaxin

1A-Kv2.1 interaction in the enhancement of dense-core vesicle

release [32,33].

Materials and Methods

Constructs and antibodies
The primary antibodies used were KCNQ2-C terminus,

KCNQ3-C terminus (Alomone Labs, Jerusalem, Israel) and

monoclonal anti-HPC-1 (Sigma Israel, Rehovot, Israel). cDNAs

and mRNAs of the chimeric channels with different transmem-

brane segments were described [34,35]. KCNQ2-HA (tagged with

Ha epitope in the extracellular loop that contacts transmembrane

domains S1 and S2) was kindly provided by Thomas Jentsch

(Zentrum für Molekulare Neuropathobiologie, Hamburg, Ger-

many). KCNQ2-YFP was constructed by subcloning of native

KCNQ2 into PGEMHJ vector containing eYFP at CT position,

between two XbaI restriction sites. DNAs of KCNQ2 and KCNQ3

fragments to create GST fusion proteins were described [35].

Enzymes were purchased from Promega (Madison, WI) or MBI

Fermentas (Vilnius, Lithuania).

Oocyte culture
Oocytes of Xenopus laevis were prepared as described [36].

Oocytes were injected (50 nl per oocyte) with 5 ng/oocyte

KCNQ2/1 ng/oocyte KCNQ2+KCNQ3 (1:1 ratio)/1 ng/oocyte

KCNQ3*+KCNQ3/2.5 ng/oocyte KCNQ2-HA/17.3 ng/oo-

cyte KCNQ2-YFP, with or without 0.75 ng/oocyte syntaxin 1A

mRNAs for electrophysiological and imaging experiments.

Electrophysiological recordings in oocytes
Two-electrode voltage-clamp recordings were performed as

described [37]. Current-voltage relationships were obtained by

depolarizing steps from 285 mV to +20 mV by increments of

15 mV. Net current was obtained by subtracting the scaled leak

current elicited by a voltage step from 2100 to 2110 mV.

Oocytes with a leak current of .3 nA/1 mV were discarded.

Immunocytochemistry and imaging in oocytes
To visualize the HA tag, whole oocytes expressing KCNQ2-HA

were fixated in 4% formaldehyde (37%) in Ca-free ND96 solution

for 15 min, 3 days after the injection of mRNA. . Blocking of

nonspecific binding sites was done by 5% skim milk for 1 h. Then

the oocytes were incubated for 1 h with the mouse monoclonal

IgG2a antibody against HA (Santa Cruz Biotechnology), diluted

1:400 in 2.5% skim milk. Residual antibody was washed out with

2.5% skim milk three times, 5 min each. This was followed by 1 h

incubation with the secondary antibody (Alexa-conjugated anti–

mouse IgG, 1:400; Jackson ImmunoResearch Laboratories) in

dark. Free secondary antibody was then washed out with Ca-free

ND96. Oocytes were placed in a chamber with a transparent

bottom, and fluorescence imaging was performed with LSM 510

(620 objective, zoom = 2, pinhole 3 Airy units). Alexa was excited

at 594 nm and the emitted light was collected using long-pass (LP)

615-nm filter. Imaging of KCNQ2-YFP channels was performed

with LSM 510 (620 objective, zoom = 2, pinhole 3 Airy units).

eYFP was excited at 514 nm and the emitted light was collected

using long-pass (LP) 615-nm filter. Because of the strong auto

fluorescence of the vegetal pole and/or from the intracellular

milieu, fluorescence signal was collected from dark animal pole

[38]. All images were obtained from optical slices from the animal

hemisphere close to oocyte’s equator. Quantification of all the

images was done using Zeiss LSM software. The fluorescent

signals were analyzed by averaging the signal obtained from four

standard circular regions of interest as well as four background

regions. Net fluorescence intensity per unit area was obtained by

subtracting the background signal measured in native oocytes [39].

In all confocal imaging procedures, care was taken to completely

avoid saturation of the signal. In each experiment, all oocytes from

the different groups were studied using constant LSM settings.

Immunoprecipitation (IP) and immunoblotting (IB) in
synaptosomes

We used fresh synaptosomes that had been stored in aliquots at

280uC and thawed once. IP was performed as described [22].

Briefly, antibodies were prebound to protein A-Sepharose beads

(Zymed, South San Francisco, CA) in HKA buffer (50 mM

HEPES-KOH, pH 7.4, 140 mM K-acetate, 1 mM MgCl2, and

0.1 mM EGTA) supplemented with 0.1% gelatin and 0.1%

bovine serum albumin (BSA). Synaptosomes were washed gently

twice and solubilized for 1 hr at 4uC in IP buffer containing HKA

buffer with the addition of 2% freshly prepared y3-[(3-cholami-

dopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS).

Protease inhibitors (10 mg/ml aprotonin, leupeptin, and pepstatin;

Boehringer Mannheim) were added to the IP buffer. After

overnight incubation of the prebound beads (4uC) with solubilized

synaptosomes, the bound proteins were thoroughly washed (in IP

buffer with only 0.2% CHAPS), separated by SDS-PAGE, and

subjected to Western blot analysis using the ECL detection system

(Amersham, Buckinghamshire, UK). Special precautions were

taken to avoid nonspecific interactions with syntaxin 1A adhering

to protein A-Sepharose beads. Such adhesion was minimized by

including gelatin in the experiment and 5% glycerol in the final

washing step.

‘‘Pull-down’’ of synaptosomal proteins
GST fusion proteins immobilized on glutathione–Sepharose

beads were incubated with rat brain synaptosomes (P2 fraction) in

HKA buffer with 2% CHAPS and a mixture of protease inhibitors

(Boehringer Mannheim) at 4uC for 12 hr. Samples were washed

four times with HKA containing 0.1% Triton X-100, then boiled

for 10 min in SDS sample buffer, electrophoresed (12%

polyacrylamide gel), immunoblotted and processed as described

above. ECL signals were quantified with TINA software

(Budapest, Hungary).

Immunoprecipitation in oocytes
Oocytes were subjected to immunoprecipitation as described

[37]. Briefly, immunoprecipitates from 1% Triton X-100

homogenates of either plasma membranes (PMs) or internal

fractions (IFs) [separated mechanically, as described [40]] or whole

oocytes were analyzed by SDS–PAGE (usually on gradients of 8%

to separate KCNQ3 from the lower band of KCNQ2). Digitized

scans were derived by PhosphorImager (Molecular Dynamics,

Eugene, OR) and relative intensities were quantitated by

ImageQuant.

In vitro binding of GST fusion proteins with Syntaxin 1A
The fusion proteins were reacted with syntaxin 1A as described

[35]. Briefly, purified GST fusion proteins immobilized on

glutathione–Sepharose beads were incubated with the lysate

containing 35S-labeled syntaxin 1A [syntaxin 1A translated on

the template of in vitro synthesized RNAs using a translation

Syntaxin 1A and KCNQ2
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rabbit reticulocyte lysate kit (Promega) according to the

manufacturer’s instructions] with gentle rocking. After washing,

the GST fusion proteins were eluted with 20 mM reduced

glutathione in 30 ml elution buffer (120 mM NaCl, 100 mM

Tris–HCl, pH 8) and then subjected to SDS–PAGE (12%

polyacrylamide).

Immunocytochemistry in hippocampal neurons
Experiments were performed on dissociated cultures from

hippocampus of E18 rat embryos. The hippocampal neurons

were grown in culture for 10 to 14 days on 13-mm-diameter

coated glass coverslips in 24-well plates. Cells were carefully rinsed

for 10 min in phosphate-buffered saline (PBS), and the neurons

were subsequently fixed for 20 min in 4% paraformaldehyde in

PBS. After extensive washes in PBS, the cells were blocked and

permeabilized by incubation with 10% horse serum (HS) in PBS

containing 0.04% Triton X-100. Cells were then washed for

10 min in PBS containing 3% HS. Neurons were incubated at 4uC
overnight with two or more of the following primary antibodies

diluted in PBS containing 3% HS: a goat polyclonal antibody to

KCNQ2 (N19, 1:150; Santa Cruz Biotechnology Inc., Santa Cruz,

CA), a mouse monoclonal anti-syntaxin 1A (1:2500; Sigma-

Aldrich, St. Louis, MO) and a rabbit polyclonal anti-VAMP-2

(Synaptobrevin 2; 1:800, Alomone Laboratories, Jerusalem,

Israel). After a wash in PBS, cells were incubated for an hour at

room temperature with secondary antibodies: cy2-conjugated anti-

mouse IgG (1:150; Jackson ImmunoResearch Laboratories Inc.,

West Grove, PA), rhodamine red X-conjugated anti-goat IgG

(1:200; Jackson ImmunoResearch Laboratories Inc.) and/or Alexa

fluor 633 ant-rabbit (1:2000; Invitrogen, Carlsbad, CA). Neurons

were viewed and digital images taken using a Zeiss LSM 410

confocal microscope. Colocalization of markers was analyzed with

Image-Pro Plus 4.5 software MediaCybernetics, Inc., Silver

Spring, MD, USA) using Pearson’s correlation. All data were

expressed as mean6SEM.

Computational Simulation
All simulations used the NEURON (versions 5.9 and 6.0)

simulation environment [41], with an integration time step of 25 ms.

. We used the default NEURON implementation of the classical

Hodgkin-Huxley model of the giant squid axon [42]. This model

contained two conductances, voltage-gated sodium and voltage-

gated potassium conductances. This classical model generated train

of evenly spaced action potentials when depolarizing current was

injected via a simulated electrode. On top of this simple model we

inserted a kinetic model of KCNQ2 or KCNQ2/3 that was based

on data reported in this work. Ion channel models of the KCNQ

conductances were implemented using the NMODL extension of

the NEURON simulation language [43]. In order to simulate an

after depolarizing potential (ADP) we inserted a t-type Ca2+

conductance model in addition to the other conductances [44,45].

The kinetics of the KCNQ2 and KCNQ2/3 conductances were

extracted from the recordings presented in this manuscript using

double exponential curve fitting to the current traces recorded in

the voltage-clamp mode. The curve fitting revealed that the slow

time constant and fast time constant of activation contributed

equally to the current of both KCNQ2 and KCNQ2/3. Thus, the

model of the two currents used the same voltage dependence of

activation and two time constants assuming a single activation gate

according to the Hodgkin-Huxley formalism [42]. The equations

describing the model are similar for all conductances modeled in

this work:

G=Gmax~1
�

1zexp { V{V1=2

� ��
k

� ��

tfast~AfzBf
� exp {zf

� Vð Þ

tslow~AszBs
� exp {zs

� Vð Þ

Where G/Gmax is the conductance normalized to its maximal

value, V is membrane potential; V1/2 is the voltage at which the

conductance is half-maximal and k is the slope factor. The kinetic

parameters for all the conductances were summarized in Table 1.

Statistical analysis. Data are presented as means6SEM. Student’s

t test was used to calculate the statistical significance of differences

between two populations. Graphical presentation, fitting and

statistical analysis were performed using SigmaPlot with integrated

statistical module of SigmaStat (Systat Software, Inc., San Jose,

CA, USA).

Results

Syntaxin 1A strongly associates with KCNQ2 subunits but
not with other KCNQ family members in Xenopus oocytes

Following our previous studies, in which we characterized

syntaxin 1A’s interactions with Kv channels [29–31,46,47], we

studied the interaction of syntaxin 1A with KCNQ2, KCNQ2/3

and KCNQ3 channels in the heterologous expression system of

Xenopus oocytes, where biochemical and electrophysiological

analyses can be performed simultaneously. First, we carried out

a comparative examination of the physical interactions of syntaxin

1A with the channels by performing reciprocal coimmunopreci-

pitation analysis, using antibodies against KCNQ2, KCNQ3 and

syntaxin 1A, in oocytes from a single batch coexpressing the

subunits with syntaxin 1A. Syntaxin 1A associated with KCNQ2,

to a lesser extent with KCNQ2/3 and only weakly with KCNQ3

(Fig. 1A). Further analysis of the specificity of the syntaxin 1A

interaction with KCNQ family members showed that the

Table 1. Values of kinetic parameters used in simulating the physiological effect of the conductances investigated in this paper.

V1/2 (mV) k (mV) Af (ms) Bf (ms) zf (1/mV) As (ms) Bs (ms) zs (1/mV)

KCNQ2 250 5.8 68 18 0.069 290 85 0.071

KCNQ2+syx 250 5.8 100 76 0.040 580 83 0.075

KCNQ2/Q3 250 5.8 143 168 0.061 636 277 0.067

The values were extracted by exponential curve fitting of the voltage dependence displayed by the activation time constant extracted from voltage-clamp recordings.
The parameters relate to equations 1–3 in the text.
doi:10.1371/journal.pone.0006586.t001
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interaction with KCNQ1 is weaker than that with KCNQ2

(Fig. 1B). Quantification over several similar experiments of the

intensity ratios of coprecipitated syntaxin 1A to the different

channel subunits, coexpressed in the same cells, showed that the

amount of syntaxin 1A associated with KCNQ2 was ,two-, five-

and threefold larger than that with KCNQ2/3, KCNQ3 and

KCNQ1, respectively (Fig. 1C).

Syntaxin 1A modulates primarily the KCNQ2

currents. Next, we assessed the functional consequences of

syntaxin 1A binding to the KCNQ2, KCNQ2/3 and KCNQ3

channels by two-electrode voltage clamp analysis of currents

evoked by depolarizing potentials in oocytes coexpressing the

subunits with syntaxin 1A. However, whereas oocytes expressing

KCNQ2 alone or together with KCNQ3 exhibited large outward

non-inactivating potassium currents, oocytes expressing KCNQ3

alone did not exhibit any detectable current, in agreement with

previous studies [5,48–50]. To investigate the functional impact of

syntaxin 1A on KCNQ3 channels, KCNQ3 subunits carrying an

A315T mutation in the inner vestibule (KCNQ3*) were expressed

instead, evoking measurable currents [51]. The effects of syntaxin

1A on homomeric KCNQ2 channels resulted in both decreased

current amplitudes (with no effect on the voltage dependence of

activation; Fig. 2) and slower activation kinetics with increased fast

(tfast) and slow (tslow) time constants, as derived from fitting with an

exponential two-component Boltzmann function (Fig. 2). Whereas

the current amplitudes of the KCNQ2 and KCNQ2/3 channels

Figure 1. Syntaxin 1A interacts physically with KCNQ2, KCNQ2\3 and KCNQ1, but hardly interacts with KCNQ3 in oocytes. A,
Digitized Phosphorimager scan of SDS-PAGE analysis of [35S] Met/Cys-labeled channels (KCNQ2; KCNQ2/3 and KCNQ3) and syntaxin 1A (syx) proteins
coprecipitated by the corresponding antibodies from 1% Triton X-100 homogenates of whole oocytes, that were injected with the channels mRNA
alone or with syntaxin 1A mRNA alone or coinjected with the channels and syntaxin 1A mRNAs (as indicated above the lanes). The protein samples
were analyzed on an 8% gel. Arrows indicate the relevant proteins. B, KCNQ3 and KCNQ1 channels do not interact with syntaxin 1A as strongly as
KCNQ2 in oocytes. Left panel: The channels and syntaxin proteins coprecipitated by the corresponding antibodies (as indicated below the lanes).
Right panel: Reciprocal coimmunoprecipitation in oocytes from the same experiment, carried out using a monoclonal syntaxin 1A antibody (IP syx). C,
Interaction of KCNQ2, KCNQ2\3, KCNQ3 and KCNQ1 with syntaxin 1A. Bars depict ratios (quantified by ImageQuant) of syntaxin to the channels,
precipitated by the corresponding channel antibodies. Numbers in parentheses refer to number of oocyte batches. *p,0.05.
doi:10.1371/journal.pone.0006586.g001
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PLoS ONE | www.plosone.org 4 August 2009 | Volume 4 | Issue 8 | e6586



were reduced by syntaxin 1A, those of the KCNQ3* channel were

not affected. The effect on activation kinetics was only apparent in

KCNQ2 and not in KCNQ2/3 or KCNQ3*. Neither half-

activation voltage (Va1/2) nor the slope factor was affected by

syntaxin 1A in all channels. In addition, syntaxin 1A had no effect

on deactivation kinetics of the channels (data not shown). It should

be noted that both the functional and physical interactions were

studied with syntaxin 1A expressed at 0.75 ng/oocyte and lower

mRNA concentrations; concentrations that were twice as large

had a small impact on KCNQ3 currents (not shown).

Notably, a clear correlation between the physical (Fig. 1) and

functional (Fig. 2) interactions of syntaxin 1A emerged from the

analysis of the various subunit compositions: KCNQ2 homomers

were the most sensitive to syntaxin 1A, both functionally and

physically, whereas KCNQ2/3 heteromers were less receptive and

KCNQ3 homomers were practically refractory to syntaxin 1A. It

should be noted that co-injecting KCNQ2 and KCNQ3 results in

the expression of tetrameric channels with various subunit

compositions. Therefore, it is possible that syntaxin 1A affected

only homomeric KCNQ2 channels within a mixture that consisted

of high percentage of KCNQ2/3 channels.

Syntaxin 1A does not impair channel synthesis or surface

expression. The reduced amplitudes in oocytes coexpressing

syntaxin 1A can arise from effects on either channel surface

expression or single-channel conductance and/or open

probability. Surface expression is dependent on total channel

expression, surface-trafficking efficiencies and/or stability. First,

we set out to monitor surface expression of KCNQ2 in oocytes of

which current amplitudes were measured beforehand. Plasma

membrane (PM) levels were measured by confocal imaging of both

Figure 2. Syntaxin 1A modulates primarily the KCNQ2 currents. A, Syntaxin 1A (syx) reduces current amplitudes of KCNQ2 (Aa) and KCNQ2\3
(Ba) channels, expressed in Xenopus oocytes, but not those of KCNQ3* (Ca). Representative current traces from single oocytes of the same batch
injected with the channels mRNA alone or with syntaxin 1A mRNA (0.75 ng/oocyte; +syx). Inset: the voltage protocol used to elicit currents. B,
Syntaxin 1A reduces the maximal conductances of KCNQ2 (Ab), and KCNQ2\3 (Bb), but not of KCNQ3* (Cb). Conductance-Voltage (G–V) relationships
for the channels in the presence and absence of syntaxin 1A, normalized to the maximal conductance in the absence of syntaxin 1A or each
normalized to itself (inset). G values were obtained from peak currents, assuming a reversal potential of 298 mV for K+ ions. Two component
Boltzmann equation G/Gmax = 1/(1+exp(2(V1/22V)/a), ,was fitted to the data. C, Syntaxin 1A slows down only the rate of activation of KCNQ2 (Ac) but
not of KCNQ2\3 (Bc) or KCNQ3* (Cc). Inset: overlay of representative traces elicited at +5 mV showing the activation of KCNQ2 currents in the
presence and absence of syntaxin 1A. The rising phase of the currents elicited at all denoted potentials was fitted by a bi-exponential function,
deriving fast and slow time constants (t fast and t slow). Data in B and C were averaged from three oocyte batches with at least 5 oocytes per batch.
*p,0.05, **p,0.01.
doi:10.1371/journal.pone.0006586.g002

Syntaxin 1A and KCNQ2
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KCNQ2-HA channels containing an extracellular HA tag ([52];

using anti-HA antibody) and KCNQ-YFP channels in oocytes

expressing the channels with and without syntaxin 1A. Both

methods provided very similar assessment of PM expressions,

indicating that syntaxin 1A did not impair KCNQ2 PM levels

(Fig. 3A,B). Notably, in the same oocytes syntaxin 1A did reduce

KCNQ2 current amplitudes (Fig. 3C), suggesting that the

reduction of amplitudes is not due to reduced PM levels of

KCNQ2. Next, we set out to further asses this notion and to test

the effect of syntaxin 1A not only on PM levels but also on total

protein expression, surface trafficking efficiencies and stability. To

this end we performed an immunoprecipitation analysis of the

KCNQ2 content in manually dissected plasma membranes (PM

fraction) versus that in the cytoplasm+intracellular organelles (I

fraction) of the same oocytes, in oocytes expressing wild-type

KCNQ2 with or without syntaxin 1A (Fig. 3D). In three such

experiments, analysis of KCNQ2 expression levels in the I fraction

of oocytes expressing the channel with or without syntaxin 1A

showed similar levels in both groups (Fig. 3D), indicating that total

channel expression was not impaired by syntaxin 1A.

Furthermore, the PM fraction of KCNQ2, calculated as the

intensity ratio of channel content in PM versus I, was similar in the

presence or absence of syntaxin 1A (Fig. 3E). In all, using three

different experimental approaches, we determined that neither

total channel expression nor cell surface trafficking and stability

were impaired by syntaxin 1A and were not the cause of the

syntaxin 1A-induced reduction in KCNQ2 macroscopic currents.

Mapping the channel domain(s) involved in the syntaxin

1A interaction. Coimmunoprecipitation analysis of syntaxin

1A’s association with different chimeric channels, which contained

different parts of the KCNQ2 transmembrane segment on the

backbone of KCNQ3, showed that the transmembrane segment is

Figure 3. Reduction of currents by syntaxin is not associated with either total channel expression or plasma membrane (PM)
content. A, The amount of KCNQ2 (Q2) channel in PM is not affected by coexpression of syntaxin (syx). Data were obtained by measurements of
confocal images in whole oocytes expressing KCNQ2 channel with external HA tag (obtained with an anti-HA antibody) or YFP tag, as indicated, alone
or together with syntaxin. B, Summary of KCNQ2 PM expression and comparison of the two imaging methods. Gray bars show PM amount of KCNQ2-
HA/YFP channels expressed alone. Black bars show the amount of KCNQ2-HA/YFP coexpressed with syntaxin. In both methods the PM expression
level in the presence of syntaxin was normalized to the control group of oocytes expressing the channel alone. Numbers above lanes indicate the
numbers of oocytes. C, The effect of coexpression of syntaxin on currents (I), corrected to the corresponding PM expression of KCNQ2-HA or KCNQ2-
YFP, was measured from the same oocytes as in A. Currents were evoked by a voltage step from a holding potential of 295 mV to +5 mV and
normalized to the control group of oocytes expressing the channel alone. Numbers above lanes indicate the numbers of oocytes. *p,0.05, **p,0.01.
D, Syntaxin (syx) affects neither total protein expression nor PM content of KCNQ2. Digitized Phosphorimager scan of SDS-PAGE analysis of [35S] Met/
Cys-labeled KCNQ2 and syntaxin proteins, immunopurified from 110 plasma membranes (right panel; PM) or 10 internal fractions (left panel; I) of
oocytes precipitated by KCNQ2 antibody. KCNQ2 was expressed alone (KCNQ2) or together with syntaxin (+syx) and protein samples were analyzed
on an 8% gel. E, Histogram showing normalized amount of KCNQ2 (Q2; quantifies by ImageQuant) expressed with or without syntaxin, precipitated
with KCNQ2 antibody from internal fractions (I) of oocytes. F, Histogram showing ratios (quantified by ImageQuant) of KCNQ2 amounts in plasma
membranes versus internal fractions in oocytes expressing KCNQ2 alone or together with syntaxin, in the same experiments. Numbers above lanes
indicate the numbers of experiments.
doi:10.1371/journal.pone.0006586.g003
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not a target for syntaxin 1A-binding and modulation (Figure S1).

These findings put forward the intracellular N- and C- termini
of KCNQ2 as potential structural determinants that are
critical for syntaxin 1A interaction, both physical and
functional.

To probe for the involvement of N- and C- termini, we started

with an in-vitro binding assay using immobilized glutathione S-

transferase (GST) fusion proteins corresponding to parts of the N

and C termini of both KCNQ2 and KCNQ3, and 35S-labeled full-

length syntaxin 1A, synthesized in reticulocyte lysate. The long

(æ500 amino acids) C termini harbor four regions with high

probability of forming an a-helical structure (helices A–D)

(Fig. 4A). As shown in Figure 4B, syntaxin 1A bound to both

channels, but preferentially to channel domains that included helix

A (aa 310–450 in KCNQ2 and aa 350–458 in KCNQ3, which

share 46% identity); the binding to KCNQ2 was somewhat

stronger than to KCNQ3 (Fig. 4B). Interestingly, syntaxin 1A also

bound a tandem of helices B+C of KCNQ2 (albeit to a much

lesser extent than helix A), although it did not interact with helix B

alone. Although one cannot rule out the possibility that other

regions of the channel also interact with syntaxin 1A, helix A

appears to be sufficient to anchor syntaxin 1A. The binding of

syntaxin 1A to helix A of KCNQ2 was further evaluated by using

different concentrations of a recombinant hexahistidine (His6)-

tagged cytoplasmic part of syntaxin 1A. Under our binding

conditions, the binding was half-maximal at ,0.025 mM syntaxin

1A, and at a saturating concentration of syntaxin 1A, the ratio of

the binding was 1:2 (,2 pmol of syntaxin 1A bound per 4 pmol of

helix A) (Fig. 4C). We concluded that the in-vitro binding of

syntaxin 1A to KCNQ2 is targeted to a defined region, strong,

dose-dependent and saturable.

We further aimed to establish the role of helix A in the

KCNQ2-syntaxin 1A interaction in oocytes by performing a

coimmunoprecipitation analysis with two KCNQ2 deletion

mutants, one lacking helix A itself (L339-W360) and the second

lacking a dispensable stretch that separates helix A from helix B

(L372-W493), which served as a control. Syntaxin 1A bound

strongly to KCNQ2 and D372–493 deletion mutant, but did not

bind D339–360 deletion mutant at all and therefore figure 4D

clearly shows that helix A is crucial for the binding. Unfortunately,

since helix A is also critical for the binding of CaM [20,21], which

regulates surface trafficking of KCNQ2 channels [53], the helix A

deletion mutant did not express any current.

Colocalization of KCNQ2 and syntaxin 1A is concentrated

at synaptic sites in cultured rat hippocampal neurons. Since

our results suggested a strong interaction between syntaxin 1A and

KCNQ2 subunits, we checked whether the two proteins colocalize in

dissociated cultures of hippocampal neurons. Confocal double-

staining immunofluorescence microscopy, using antibodies against

KCNQ2 and syntaxin 1A, showed staining for KCNQ2 proteins and

an apparent high colocalization of syntaxin 1A both in the somata and

along the neuronal processes (Fig. 5A). Indeed, quantification of

KCNQ2 and syntaxin 1A colocalization yielded a Pearson’s

correlation coefficient of 0.7460.01 (13 images were quantified

from two different cultures). Next, we determined whether KCNQ2

and syntaxin 1A are colocalized at synaptic sites. We performed a

triple-staining immunofluorescence assay, using an additional

antibody that recognizes VAMP2 (an integral protein of the

vesicular membrane): puncta stained for VAMP2 indicate axonal

presynaptic varicosities (Fig. 5B; [54]). We looked for VAMP2-positive

puncta colocalizing with puncta positive for both KCNQ2 and

syntaxin 1A, and not those colocalizing with the uniformly KCNQ2-

or syntaxin 1A-stained somata or processes. Indeed, colocalized

KCNQ2+syntaxin 1A appeared to be concentrated at synaptic sites

marked by VAMP2 immunoreactivity (Fig. 5C). Quantitative analysis

revealed that 53.5610.8% of VAMP2- and syntaxin 1A-positive

varicosities were also positive for KCNQ2 (six images were

quantified).

KCNQ2 associates with syntaxin 1A in cortical and

hippocampal synaptosomes. Follow-up experiments to

further evaluate the interaction between syntaxin 1A and

KCNQ2 at presynaptic terminals were carried out using two

different assays in rat cortical and hippocampal synaptosomes.

First, coimmunoprecipitation analysis using an antibody against

KCNQ2, showed that brain syntaxin 1A precipitates with brain

KCNQ2. The specificity of this interaction was verified by using

KCNQ2 antibody that was preincubated with the peptide against

which it was raised: as a consequence, syntaxin 1A precipitation

was blocked (Fig. 6A). The second assay was a pull-down assay of

synaptosomal KCNQ2 using immobilized GST-syntaxin 1A

(corresponding to the cytosolic part of syntaxin 1A). The

specificity of this interaction was verified using immobilized

GST alone, which did not pull down any KCNQ2 (Fig. 6B).

In addition, we compared the binding of brain syntaxin 1A to

KCNQ2 and KCNQ3 in a pull-down assay from synaptosomes

(Fig. 6C). Thus, brain syntaxin 1A, similar to in-vitro-synthesized

syntaxin 1A (Fig. 4B), bound the GST-fused protein corresponding

to a tandem of helices A+B+C of KCNQ2 more strongly than that

corresponding to KCNQ3.

Simulation of syntaxin 1A interaction in a firing

neuron. To investigate the possible physiological impact of the

interaction of syntaxin with KCNQ2 and KCNQ3 we performed

numerical simulations. A kinetic model of KCNQ2 conductance

added to the regular firing Hodgkin-Huxley model (Fig. 7A)

generated, as predicted for the M-channel conductance,

substantial spike frequency adaptation (Fig. 7B). It is important

to note that our modeling was designed to qualitatively investigate

the physiological impact of the interaction of syntaxin with

KCNQ2 and KCNQ3. Thus, while reproducing the general effect

it cannot be used for quantitative analysis. The interaction of

syntaxin 1A with KCNQ2 prolonged the activation time constants

of this conductance and reduced the conductance of the current

roughly twofold (Fig. 2). Therefore, this slowed activation could be

predicted to reduce spike frequency adaptation relative to the

KCNQ2 conductance in the absence of syntaxin 1A interaction.

Indeed, when we replaced the kinetics of KCNQ2 with the kinetics

of KCNQ2+syntaxin 1A in the model and halved the conductance

density, the simulated neuron generated more action potentials for

the same current injection (Fig. 7C).

Recently the M-channel has been implicated in control of the

action potential after depolarization (ADP) [55,56]. To investigate

the effect of KCNQ2 on the ADP, we added T-type voltage-gated

Ca2+ conductance—to simulate ADP in the model—to the regular

firing Hodgkin-Huxley model (Fig. 7D). Increasing the conduc-

tance of the KCNQ2 model reduced the ADP considerably

(Fig. 7D). Replacing the KCNQ2 model with that of

KCNQ2+syntaxin 1A and halving the conductance density

produced a larger ADP than that simulated in the presence of

KCNQ2 alone (Fig. 7D).

Next, we turned to simulating the effect of KCNQ2/3 on spike

frequency adaptation and on ADP. The activation time constant

for KCNQ2/3 was slower than that for KCNQ2 (Table 1), and

thus, more action potentials were generated in the presence of a

similar conductance density (Fig. 7E) than with KCNQ2 (Fig. 7B).

The activation time constants of KCNQ2/3 were not affected by

the interaction with syntaxin 1A and the total conductance was

reduced by only 25% (Fig. 2). When the conductance density of

the KCNQ2/3 model was reduced by 25%, more action

Syntaxin 1A and KCNQ2
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Figure 4. Syntaxin 1A binds preferentially to helix A in the C-terminus and is pivotal for the binding. A, Schematic representation of the C-
terminus of KCNQ2, in which the syntaxin 1A (syx) binding domain is indicated. B, Top: Interaction of syntaxin 1A with GST fusion proteins corresponding
to different parts of the C-termini of KCNQ2 and KCNQ3. In vitro synthesized 35S labeled syntaxin 1A was reacted with the indicated GST fusion proteins.
Bottom: Coomassie blue (CB) staining of the protein gel. Numbers denote molecular weight markers. The bar diagram shows the normalized syntaxin 1A
binding values. The intensity of the immunoreactive band of syntaxin 1A (syx) in different groups was normalized to the corresponding intensity of the
coomassie blue (CB) staining of the peptide. The data were averaged from several independent experiments and includes the binding of syntaxin 1A to
helices A, A+B and A+B+C. C, Top: Stochiometry of the binding of syntaxin 1A to helix A of KCNQ2, derived from binding curves that show saturation.
Recombinant hexahistidine-tagged (His6) cytoplasmic part of syntaxin 1A at the indicated concentrations was bound to immobilized GST-helix A
(150 pmol) in a 1 ml reaction volume. Bound syntaxin 1A was determined by SDS-PAGE and immunoblotting with syntaxin 1A antibody (inset). ECL
signal intensities were quantified with TINA software and converted to picomoles by the use of standard curves for the corresponding proteins. Bottom:
Calibration gel which demonstrates the amount of syntaxin 1A coprecipitated in the experiment. Unbound recombinant hexahistidine-tagged (His6)
cytoplasmic part of syntaxin 1A at the indicated concentrations was loaded on an 8% gel and immunoblotted with syntaxin 1A antibody. D, helix A (aa
339–360) is required for syntaxin 1A’s binding to KCNQ2. Oocytes were injected with syntaxin 1A mRNA alone or co-injected with syntaxin 1A and
KCNQ2/D339–360 deletion mutant/D372–493 deletion mutant. The binding assay was performed as described.
doi:10.1371/journal.pone.0006586.g004
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potentials were generated for the same current injection (Fig. 7F)

but the decrease in spike frequency adaptation was not as

substantial as in the model of KCNQ2+syntaxin 1A (Fig. 7C).

Finally, we investigated the possible effect of the interaction of

KCNQ2/3 with syntaxin 1A on the ADP. Similar to KCNQ2,

KCNQ2/3 reduced its amplitude. When the maximal conduc-

tance of KCNQ2/3 was reduced by 25%, to simulate the

association with syntaxin 1A, there was only a small effect on the

amplitude of the ADP and not as substantial as in the model of

KCNQ2+syntaxin 1A (Fig. 7D).

Discussion

Along with their involvement in the fusion process, the SNARE

proteins have been shown to interact directly with ion channels.

To date, a number of potassium channels belonging to the Kv1,

Kv2 and Kv4 families of the Kv superfamily have been recognized

to be regulated by SNARE proteins [27–31,46,57–60]. Specifi-

cally, syntaxin 1A interacts with distinct domains, on either the N

or C cytosolic termini, within the different Kv members and

induces distinct functional modulations that include diverse effects

on activation and inactivation gating and trafficking of the

channels [61].

The present study establishes a novel interaction between

syntaxin 1A and a specific member of the Kv7 family, KCNQ2,

but not KCNQ3 or KCNQ1, which bind syntaxin 1A more

weakly (Fig. 1B,C). Here, we demonstrated that syntaxin 1A

colocalizes with KCNQ2 subunits at hippocampal presynaptic

boutons (Fig. 5A), binds to KCNQ2 in both synaptosomal

membranes (Fig. 6C) and oocytes (Fig. 1A,B), and modulates the

function of the homomeric KCNQ2 channels expressed in oocytes

(Fig. 2) by slowing the activation rate ,2 fold and decreasing the

current amplitudes by about 50%; the latter is not due to reduced

total expression or cell surface trafficking and stability of the

channels (Fig. 3). Notably, a clear correlation between the physical

(Fig. 1) and functional (Fig. 2) interactions of syntaxin 1A emerged

from the analysis of channels with various subunit compositions.

Heteromeric KCNQ2/3 channels, which bind syntaxin 1A to a

smaller extent, were less sensitive to syntaxin 1A’s action: their

activation kinetics were not affected at all and their amplitudes

Figure 5. Colocalization of KCNQ2 and syntaxin 1A at synaptic sites marked by VAMP-2 immunoreactivity in hippocampal neurons.
A, Immunocytochemistry experiments show colocalization (overlay, yellow) of KCNQ2 (red) and syntaxin 1A (syx; green) in rat hippocampal neurons.
High colocalization areas of KCNQ2 and syntaxin 1A are indicated by arrows. B, Colocalization of KCNQ2, syntaxin 1A and VAMP-2 in rat hippocampal
neurons as detected by triple immunocytochemistry and illustrated by the merge images. KCNQ2 (red), syntaxin 1A (green) and VAMP-2 (blue) are
indicated in the top images from left to right. The bottom images from left to right show the colocalization of KCNQ2 and VAMP-2 (merge, pink),
syntaxin 1A and VAMP-2 (merge, light blue) and KCNQ2 and syntaxin 1A (merge, yellow). A varicosity colocalized with VAMP-2, syntaxin 1A and
KCNQ2 is indicated by arrow. C, The same image as in B showing all three markers; KCNQ2 (red), syntaxin 1A (green) and VAMP-2 (blue). A linescan
was placed through the varicosity indicated by arrow in B. The varicosity was shown to colocalize all three signals and thus, is indeed a synaptic one.
doi:10.1371/journal.pone.0006586.g005
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were decreased by only 20% (Fig. 2). KCNQ3 homomeric

channels, which bound syntaxin 1A weakly as compared to that of

homomeric KCNQ2 channels, were practically resistant to

syntaxin 1A. Consequently, homomeric KCNQ2 channels are

the primary target of syntaxin 1A modulation.

Importantly, the selective and robust syntaxin 1A-induced

impact on the activation gating of KCNQ2 compared to

KCNQ2/3 may be of physiological significance. KCNQ2 and

KCNQ3 channels are expressed at different subcellular locations,

including somatodendritic, axonal and terminal sites. This

multifaceted subcellular distribution of KCNQ2/3 channels

enables them to be involved in both pre- and postsynaptic

modulation of neurotransmission. KCNQ2 and KCNQ3 subunits

are found to be coexpressed at the nodes of Ranvier and at the

axon initial segments of several central and peripheral neurons

[8,9,62]. Many axon initial segments of pyramidal neurons in

hippocampal CA1 and CA3 layers and of temporal neocortex

express both KCNQ2 and KCNQ3 subunits. The axon initial

segment is a strategic site for M-channels to shape the spike ADP

waveform and modulate spike frequency adaptation [55,56,63].

Thus, KCNQ2/3 channel activity may influence intrinsic

excitability at the initial segment, where fast spikes as well as

spike ADPs are initiated [64,65]. ADP depends on the interplay

between persistent sodium currents (INaP), which tend to increase

the ADP to the point of bursting, and M-currents, which restrain

the ADP and prevent repetitive discharge [55,56]. Thus, a very

slow M-current (KCNQ2/3) activation would not be able to

prevent the escalation of the ADP into a spike burst (demonstrated

in Fig. 7).

In contrast, a selective robust slowing and reduction of KCNQ2

activation at presynaptic terminals would be nicely shaped to

modulate the release of neurotransmitters. Several recent studies

have indicated that activation of M-channel with openers inhibits

the release of dopamine in vitro and in vivo [66,67]. M-channels

have been shown to play an important role in the presynaptic

control of dopamine (DA) release from striatal nerve endings

induced by direct membrane depolarization. Blocking of M-

channels has been found to enhance striatal release of catechol-

amines and to reinforce the depolarization-induced DA release

evoked by presynaptic muscarinic receptor activation [67].

Presynaptic M-channels have been suggested to regulate neuro-

transmitter release in hippocampal synaptosomes preloaded with

[3H]noradrenaline, [3H]GABA and D-[3H]aspartate [68]. More

recently, it was found that activation of M-channels by a channel

opener decreases the frequency of miniature excitatory and

inhibitory postsynaptic currents (mEPSC and mIPSC, respective-

ly) without affecting their amplitude or waveform, thus suggesting

that M-channels presynaptically inhibit glutamate and GABA

Figure 6. Syntaxin 1A associates with KCNQ2 in cortical and hippocampal synaptosomes. A, Syntaxin 1A (syx) coprecipitates with KCNQ2
from 2% Chaps synaptosomal lysate by anti-KCNQ2 antibody. Lysates were incubated with KCNQ2 antibody in the absence or presence (+peptide) of
antigen peptide-HC (heavy chain). Numbers indicate molecular weight markers. B, GST-syntaxin 1A fusion protein ‘‘pulls down’’ KCNQ2 from
synaptosomal lysates. Syx-GST (corresponding to the cytosolic part of syntaxin 1A) or GST immobilized on GSH-agarose beads (each at 150 pmoles)
were incubated with 2% CHAPS lysate (200 mg) for 12 h at 4uC. Precipitated proteins were separated by SDS-gel (8% polyacrylamide) and
immunoblotted with anti-KCNQ2 antibody (upper panel). The lower panel shows a Ponceau S staining of the blot, which demonstrates the equal
protein loading of syntaxin 1A-GST and GST proteins. C, The binding of syntaxin 1A to helices A+B+C of KCNQ2 is stronger than its binding to the
same helices in KCNQ3. Syntaxin 1A coprecipitated with KCNQ2 and KCNQ3 from 2% Chaps synaptosomal lysate by anti-KCNQ2/KCNQ3 antibody.
Precipitated proteins were separated by SDS-gel (8% polyacrylamide) and immunoblotted with anti-syntaxin 1A antibody.
doi:10.1371/journal.pone.0006586.g006
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Figure 7. Simulating the effect of the interaction of syntaxin 1A, KCNQ2 and KCNQ2/3 on neuronal physiology. A, A regular firing train
of action potentials generated by a 2 nA current injection into a spherical neuron containing the Hodgkin-Huxley model (current step is shown below
panel c and is similar for A, B, and C). B, Similar simulation to a containing, in addition to the Hodgkin-Huxley model, also a model of the KCNQ2 as
described in the Materials and Methods and Table 1 at a density of 5 pS/mm2. The scale bar in B applies also to A, C, E, F, and G. C, Similar simulation to
a containing, in addition to the Hodgkin-Huxley model, also a model of the KCNQ2+syntaxin 1A (syx) as described in the Materials and Methods and
Table 1 at a density of 2.5 pS/mm2. D, Simulation of the effect of KCNQ2 on the action potential ADP in a single compartment model containing the
Hodgkin-Huxley model and a T-type voltage-gated Ca2+ conductance (smooth line). Adding 5 pS/mm2 KCNQ2 to the ADP model reduced the
amplitude of the ADP (dotted line). Simulating the effect of the interaction of syntaxin 1A with KCNQ2 by using the relevant time constants from
Table 1 and halving the maximal conductance generated a larger ADP (dashed lines). The scale bar in D applies also to H. E, Same as in B only with
KCNQ2/3. F, Same as is c only with KCNQ2/3.
doi:10.1371/journal.pone.0006586.g007
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release [69]. Also, it was shown that M-channels modulate the

release of noradrenaline in superior cervical ganglion neurons

[70]. Notably, KCNQ2 but not KCNQ3 subunits have been

suggested to play a major role in the regulation of neurotransmit-

ter release [68].

A C-terminal syntaxin 1A-association domain in KCNQ2, helix

A, was pinpointed by analysis of different KCNQ2 and KCNQ3

chimeras and deletion mutants, combined with in-vitro binding

analysis. The strong in-vitro binding of syntaxin 1A (Fig. 4B) and

the inability of syntaxin 1A to associate with KCNQ2 lacking helix

A in oocytes (Fig. 4D), gave support to the notion that helix A is a

crucial region for KCNQ2-syntaxin 1A binding. However, the in-

vitro binding potencies of helix A in KCNQ2 and KCNQ3 were

not that different (Fig. 4B), and probably do not account for the

different syntaxin 1A-binding potencies of the respective channels

in oocytes (Fig. 1A,C). Therefore, we can only hypothesize that the

target site in KCNQ2 for syntaxin 1A may be comprised of parts

additional to helix A, such as the tandem of helices B+C that could

bind syntaxin 1A in vitro to some extent (Fig. 4B); together with

helix A, these might create an optimal binding pocket for syntaxin

1A, which may not exist in KCNQ3. Alternatively, the syntaxin

1A binding pockets may be similar in the KCNQ2 and KCNQ3

channels but differ in their interaction with other parts of the

channels, which may interfere with the interaction of syntaxin 1A

with helix A by preventing appropriate access to this site.

The binding of syntaxin 1A to KCNQ2 affected channel

function without altering plasma membrane channel density (N;

Fig. 3), suggesting that single channel open probability (Po) and/or

conductance (c) were affected. Indeed, we have previously

demonstrated that the binding of syntaxin 1A to the cytoplasmic

N tail of another Kv channel, Kv1.1 affects both Po and c
(Michaelevski 2007). The question arising is the molecular

mechanism by which syntaxin 1A binding to Helix A at the

cytoplasmic C tail causes allosteric conformational changes in the

gating and/or pore machineries. In this regard, it has been shown

that PIP2 binding to the C terminus at a region following Helix A

affects Po [71]. It was suggested that this was achieved through

exertion of force that pulls the sixth transmembrane segment (S6),

which contains the main gate of Kv channels [72], relatively to the

pore [73]. Similar mechanism could apply also for syntaxin 1A

effect on KCNQ2.

However, because the in vitro binding of KCNQ3 were not

significantly different from those of KCNQ2, and KCNQ3 still

bound syntaxin 1A in vivo (albeit weakly as compared to KCNQ2),

it may well be that the differences in syntaxin 1A functional

potencies between KCNQ2 and KCNQ3 may not be due to the

differential binding affinities, but rather to differential coupling

efficiencies between syntaxin 1A binding domain and the gating

and/or conductance machinery. This suggests involvement of

different intramolecular interactions in the function of syntaxin 1A

on the channels. Similar considerations were suggested to account

for the differences in PIP2 efficacies between KCNQ2 and

KCNQ3 [73]. We favor the idea of involvement of interdomain

interactions between the N and C tails for the following two

reasons: i) there is a body of evidence for N/C interactions as a

mechanism for the regulation of Kv channel gating (e.g., [74–79];

ii) we have previously suggested that the differences between the N

termini of KCNQ2 and KCNQ3 account for their different Po

values [51,80].

Remarkably, Helix A forms a critical part of the KCNQ2 Ca2+-

CaM interaction site [17,20,21,81–83], which is critical not only

for channel surface expression [53,84], but also for a voltage-

independent regulation of channel Po [80]. This suggests a possible

interplay between the modulations by syntaxin 1A and Ca2+-CaM,

resulting from either mutually exclusive or, vice-versa, synergistic

bindings of the two proteins. Mutually exclusive binding of Ca2+-

CaM and other proteins to a common binding domain have been

shown to play a role in the regulation of NMDA (N-methyl-D-

aspartic acid) receptors, TRP (Transient Receptor Potential)

channels and metabotropic glutamate receptors. Thus, Ca2+-

CaM and Gbc bind to partially overlapping domains located in

the N-terminal part of the mGluR 7 C-tail, and mutations that

prevent Ca2+-CaM binding selectively inhibit mGluR 7 signaling

through Gbc subunits but do not affect trimeric G-protein

recruitment to the receptor [85]. Common binding sites for Ca2+-

CaM and inositol 1,4,5-trisphosphate receptors [IP(3)Rs] have

been identified on the C termini of TRP channels [86]. Ca2+-CaM

can also compete for a common binding site on NR1 (NMDA

receptor 1) with myosin RLC (regulatory light chain) [87]. In

addition, our lab reported the binding of syntaxin 1A and Gbc to

partially overlapping domains at the N terminus of the voltage-

gated potassium channel Kv1.1, forming a complex which plays a

role in the modulation of Kv1.1 inactivation [47]. Thus, it remains

possible that Ca2+-CaM and syntaxin 1A, and possibly other

signaling molecules, interact with KCNQ2 subunits at sequences

overlapping or adjacent to helix A, mutually affecting their

binding and hence channel function.

Taken together, this study suggests that the interaction of

KCNQ2 homomeric channels with syntaxin 1A may play a role in

the regulation of presynaptic vesicle release, similar to that of the

Kv2.1-syntaxin 1A interaction in neuroendocrine dense-core

vesicle release [32,33].

Supporting Information

Figure S1 The transmembrane segments do not confer syntaxin

the ability to bind the channels. a, Schematic representation of the

chimeras. The boxes indicate transmembrane segments and the

loop represents the pore between S5 and S6. Segments from

KCNQ2 are shaded in black and those from KCNQ3 in white. b,

Digitized Phosphorimager scan of SDS-PAGE analysis of [35S]

Met/Cys-labeled channels, chimeras and syntaxin (syx) proteins

coprecipitated by the corresponding antibodies from 1% Triton

X-100 homogenates of whole oocytes, that were injected with the

channels/chimeras mRNA alone or coinjected with syntaxin

mRNAs (as indicated above the lanes). c, syntaxin affected neither

the current amplitudes (upper panel) nor the time constants of

activation (lower panels) of the chimera Q3/Q290-310.

Found at: doi:10.1371/journal.pone.0006586.s001 (0.19 MB TIF)
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