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With event-driven algorithms, especially spiking neural networks (SNNs), achieving

continuous improvement in neuromorphic vision processing, a more challenging

event-stream dataset is urgently needed. However, it is well-known that creating an

ES-dataset is a time-consuming and costly task with neuromorphic cameras like

dynamic vision sensors (DVS). In this work, we propose a fast and effective algorithm

termed Omnidirectional Discrete Gradient (ODG) to convert the popular computer vision

dataset ILSVRC2012 into its event-stream (ES) version, generating about 1,300,000

frame-based images into ES-samples in 1,000 categories. In this way, we propose an

ES-dataset called ES-ImageNet, which is dozens of times larger than other neuromorphic

classification datasets at present and completely generated by the software. The ODG

algorithm implements image motion to generate local value changes with discrete

gradient information in different directions, providing a low-cost and high-speed method

for converting frame-based images into event streams, along with Edge-Integral to

reconstruct the high-quality images from event streams. Furthermore, we analyze the

statistics of ES-ImageNet in multiple ways, and a performance benchmark of the dataset

is also provided using both famous deep neural network algorithms and spiking neural

network algorithms. We believe that this work shall provide a new large-scale benchmark

dataset for SNNs and neuromorphic vision.

Keywords: data set, spiking neural network, dynamic vision sensor, brain inspire computation, leaky integrate and

fire

INTRODUCTION

In recent years, spiking neural networks (SNNs) have attracted extensive attention in the fields of
computational neuroscience, artificial intelligence, and brain-inspired computing (Pei et al., 2019;
Roy et al., 2019). Known as the third generation of neural networks (Maass, 1997), SNNs have
the ability to process spatiotemporal information and own stronger biological interpretability than
artificial neural networks (ANNs, or deep neural networks). They have been applied in a number
of tasks, such as pattern recognition (Schrauwen et al., 2008; Rouat et al., 2013; Zhang et al., 2015),
high-speed object tracking (Yang et al., 2019), and optical flow estimation (Paredes-Vallés et al.,
2019) with the help of neuromorphic hardware such as TrueNorth (Akopyan et al., 2015), Loihi
(Davies et al., 2018), DaDianNao (Tao et al., 2016), and Tianjic (Pei et al., 2019). In recent years,
the continuous expansion of datasets in image classification (LeCun et al., 1998; Deng et al., 2009;
Krizhevsky and Hinton, 2009), natural language processing (Nguyen et al., 2016; Rajpurkar et al.,
2016), and other fields has been challenging the ability of AI and promoting the development
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of AI. The researchers hope that AI can surpass humans in the
corresponding tasks. However, for the SNNs, the research is still
in the rising stage with obstacles gradually appearing, where the
lack of suitable datasets is one of the biggest ones. We now
have N-MNIST (Orchard et al., 2015), N-Caltech101 (Orchard
et al., 2015), DVS-Gesture (Amir et al., 2017), CIFAR10-DVS
(Li et al., 2017), and other neuromorphic datasets (or event-
stream datasets, ES-datasets), but those existing datasets designed
for SNNs are relatively small in scale. As more algorithms are
proposed, the scale of SNNs is growing larger. Therefore, the
existing datasets have found it difficult to meet the demand for
training and validation of SNNs.

A compromised solution towards this problem is to train
SNNs on the large-scale traditional static datasets directly. Taking
image classification for instance, the common method is copying
an image multiple times to form an image sequence, and then
the sequence is fed into the spike encoding layer of an SNN, as
Figure 1A shows. However, there is an obvious shortcoming that
the data redundancy makes the training cost increase many times
without any effective information being added. For comparison,
the way to train an SNN on an ES-dataset is also shown in
Figure 1B. Compared to the common method, it is more natural
for SNNs to process such sparse and temporal data by making
full use of temporal characteristics. So the datasets inspired by
the neuromorphic visual sensor imaging mechanism are still
considered to be the most suitable datasets for SNNs.

Since SNNs have benefited from neuromorphic data, efforts
are also devoted to recycling the existing RGB-cameras datasets
to generate neuromorphic datasets.Mainly there are two different
methods for this task. One is to use dynamic vision sensor (DVS)
cameras to record a video generated from raw data with an LCD
screen (Orchard et al., 2015; Li et al., 2017). This method is time-
consuming and costly, which is impossible for manufacturing a
large-scale dataset. The other one is to generate the event data
using software to simulate the principle of DVS cameras (Bi and

FIGURE 1 | (A) An approach for training the LIF-SNN (Dayan and Abbott, 2001) on an ANN-oriented dataset. Here, the SNN uses rate coding and an ANN-like

structure, so it can be trained using frame data naturally. (B) Training an LIF-SNN with GPUs on a DVS-dataset (ES-dataset recorded by DVS). Here we need to

accumulate events within a small period as an event frame and get an event frame sequence with N frames for training. On the neuromorphic processor, these

asynchronous event data can be processed more efficiently.

Andreopoulos, 2017; Gehrig et al., 2020). This kind of method
is more suitable for generating large-scale event-based datasets.
However, the data redundancy caused by the existing converting
algorithms increases the volume of the datasets. In this work, we
optimize the existing algorithms of the second method to obtain
the dataset with less redundancy.

In this way, an ES-dataset converted from the famous image
classification dataset ILSVRC2012 (Russakovsky et al., 2015)
is generated, which is named event-stream ImageNet or ES-
ImageNet. In ES-ImageNet, there are about 1.3 M samples
converted from ILSVRC2012 in 1,000 different categories. ES-
ImageNet is now the largest ES-dataset for object classification
at present. We have sorted out the information of representative
existing ES-datasets and compared them with ES-ImageNet, the
results are summarized in Table 1. Having more categories and
samples also probablymakes it themost challenging classification
ES-dataset, providing space for continuous improvement of
event-driven algorithms.

A good conversion algorithm is expected to generate a
dataset that is smaller than the source. If it is not required to
imitate the characteristics of DVS, the optimal binary-coding
conversion is able to encode the original information with the
same size of data. So when the conversion algorithm generates
a larger dataset than the original one, there must be data
redundancy. In order to simulate the DVS cameras, we can allow
a little redundancy. However, most of the existing conversion
methods generate a much larger dataset [for example, N-MNIST
(Orchard et al., 2015) and Flash-MNIST’s storage volume is
tens of GB, where the original MNIST is no larger than 100
MB]. This is far from the original intention of DVS sparsity,
and it is not conducive to high-speed efficient processing and
large-scale applications. So a simple bio-inspired algorithm
called Omnidirectional Discrete Gradient (ODG) is applied. This
algorithm captures the sequential features of images and then
places them on the time axis with timestamps to generate
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TABLE 1 | Comparison between existing ES-datasets and ES-ImageNet.

Name Generating speeda Resolution # of samples # number # Type

POKER-DVS (Prez-Carrasco et al., 2013) – 32×32 131 4 Classify

N-MNIST (Orchard et al., 2015) 300 ms/sample 28×28 60, 000 training + 10, 000 test 10 Classify

DVS-Caltech101 (Orchard et al., 2015) 300 ms/sample 302×245 on average 8709 100 Classify

DVS-UCF-50 (Hu et al., 2016) 6,800 ms/sample 240×180 6,676 50 Classify

DVS-Caltech-256 (Hu et al., 2016) 1,010 ms/sample 240×180 30,607 257 Classify

DVS-VOT-2015 (Hu et al., 2016) 30 FPS, 20.70 s/sample 240×180 67 – Track

DVS-CIFAR10 (Li et al., 2017) 300 ms/sample 512×512 10,000 10 Classify

DVS-Gesture (Amir et al., 2017) 6 s/sample 128×128 1,342 11 Classify

Pred-18 (Moeys et al., 2018) 15 FPS 240×180 1.25 h (67.5k frames) 2 Detect

Action Recognition (Miao et al., 2019) 5 s/sample 346×260 450 10 Classify

1Mpx Detection Dataset (de Tournemire et al.,

2020)

60 s/sample 304×240 14.65 h, 255,781 objects 2 Detect

SL-ANIMALS-DVS (Vasudevan et al., 2020) – 128×128 1,102 10 Classify

DVS-Gait-Day/Night (Wang et al., 2021) 3–4 s/sample 128×128 4,000 20 Classify

N-ROD (Cannici et al., 2021) 6.6 s/sample 256×256 41,877 51 Classify

ES-ImageNet 29.47 ms/sampleb 224×224c 1,257,035 training + 49,881 test 1000 Classify

aThe average time taken for generating each sample or average recording time (for directly recorded).
bThreshold = 0.18.
cThe events are generated in a range of 256×256 pixels. But only those in the central 224×224 pixels are meaningful, while others are noise-generated by the image edge’s motion.

event streams. It reduces the information redundancy, which
brings higher generation speed and less data redundancy than
the existing conversion algorithms. It can be regarded as the
streamlining of random saccades for deep learning use, where the
latter is a common bio-inspired generation method.

To guarantee a suitable sparsity of data and the amount of
information, we also conduct preparatory experiments to control
the event rates and the amount of information of the generated
samples. Further analysis about the computation cost of different
algorithms is conducted, which confirms that the dataset is an
SNN-friendly dataset.

The main contributions of this work are 3-fold.
(i) We introduce a new large-scale ES-dataset named ES-

ImageNet, which is aimed at examining SNNs’ ability to extract
features from sparse event data and boosting research on
neuromorphic vision. This work shall provide a new large-scale
benchmark dataset for SNNs and neuromorphic vision tasks.

(ii) A new algorithm called ODG is proposed for converting
data to its event stream version.We consider the guiding ideology
behind it to be a paradigm for conversion from static data to
ES-data, which avoids data redundancy.

(iii) Several ways for analyzing the dataset are provided,
including information loss analysis using 2D information
entropy (2D-Entropy) and the visual perception of the
reconstructed pictures. Also two preparatory experiments
are designed for designing the algorithm, which may provide
inspiration for further improvement.

Related Work
ES-Datasets Collected Directly From the Real

Scenarios
DVS cameras can generate unlabeled ES data directly (Brandli
et al., 2014). The ES data are often organized as a quad (x, y, t, p),

where (x, y) are the topological coordinates of the pixel, t is the
time of spike generation, and p is the polarity of the spike. Such
datasets are easy to generate and close to practical application
scenarios, like datasets that can be used for tracking and detection
(Bardow et al., 2016; Moeys et al., 2018; de Tournemire et al.,
2020), datasets for 3D scene reconstruction (Carneiro et al., 2013;
Kim et al., 2016), neural morphology datasets for optical flow
estimation (Benosman et al., 2013; Bardow et al., 2016), and
datasets for gesture recognition (Amir et al., 2017). Due to the
high sampling rate and authenticity, these kinds of datasets are
of great help to the development of applications in high-speed
scenes. But because of the huge workload of making real scenario
recording datasets, their sizes are often small, which is difficult to
meet the demand of examining deep SNNs algorithms.

Transformed ES-Datasets With Help of Neuromorphic

Sensors
These datasets are mainly generated by the labeled static image
datasets through neuromorphic sensors. Different from the first
ones, these kinds of datasets are mainly obtained from the
datasets which have been widely studied and used for traditional
ANN tasks, such as N-MNIST (Orchard et al., 2015), DVS-
UCF-50, DVS-Caltech-256 (Hu et al., 2016), and CIFAR10-DVS
(Li et al., 2017). In order to make such datasets, one way is
to use a screen to display a static picture, then face the DVS
camera to the screen and move the camera along the designed
trajectory to generate events. Because of the similarity between
the transformed dataset and the original one, this kind of dataset
can be used and evaluated easily. Therefore, they are also the
most widely used datasets in SNN research. However, during the
recording process, noise is introduced, especially caused by the
flashing LCD screen.
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Completely Software-Generated ES-Datasets

Without Neuromorphic Sensors
The algorithms are used to simulate the characteristics of DVS
cameras with labeled data here. The dynamic sensors can capture
the dynamic information from the video streams or picture
sequences, while this process can also be completed by specific
algorithms (Bi and Andreopoulos, 2017; Yang et al., 2019; Gehrig
et al., 2020). These methods can avoid a large number of
experiments needed for collecting data. However, the existing
algorithms used for converting static data to event data always
extract information with toomuch redundancy that is brought by
the randomness or repetitiveness of the generation algorithms.

MATERIALS AND METHODS

In this section, we will introduce a method to generate the
ES-ImageNet with a corresponding reconstruction method,
including the color space conversion, ODG processing, hyper-
parameters choosing, and sparse storage.

Color Space Conversion
Traditional ES-datasets utilize DVS cameras to record the
changes of intensity asynchronously in the ES format, which
encode per-pixel brightness changes. In RGB (red-green-blue)
color models, a pixel’s color can be described as a triplet
(red, green, blue) or (R,G,B), which does not indicate brightness
information directly. When using a HSV (hue-saturation-value)
color model, it is described as (hue, saturation, value) or (H, S,V).
Generally, the images in the ILSVRC2012 dataset are stored in the
RGB color space, therefore images need to be converted to the
HSV color space, as shown in

H =



























































0◦ if M = m

60×
G− B

M −m
+ 0◦ if M = R and G > B

60◦ ×
G− B

M −m
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M −m
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M −m
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(1)

S =







0 if max = 0

M −m

M
= 1−

m

M
otherwise

(2)

V = M, (3)

where M = max{R,G,B} and m = min{R,G,B}. In this
algorithm, we use V as a reference of light intensity. In the
HSV hex-cone model, the value indicates the brightness of the
color. And for the light source, the value is also related to the
brightness of the illuminant, so it can be used as a reference for
light intensity.

Algorithm 1: ODG event generator

Require: Image
Ensure: Stream

xTrace = [1,0,2,1,0,2,1,1,2], yTrace = [0,2,1,0,1,2,0,1,1],
Thresh= 0.18, T= 8
function GENERATOR(Image)

W= = Image.size[0], H= Image.size[1]
Image= zeroPadding(upSampling(Image, (254, 254)), 2)
V= RGB2HSV(Image).V
for t= 0→ T do

x= xTrace[t], y= yTrace[t]
newImage= V[x : x+W, y : y+H]
if t > 0 then

oldX= xTrace[t-1], oldY= yTrace[t-1]
ImgDiff= newImage - lastImage
posEvent = ImgDiff(ImgDiff ≥ Thresh), negEvent

= ImgDiff(ImgDiff ≤ -Thresh)
for i= 0→ len(posEvent) do

Ex= posEvent[0], Ey= posEvent[1]
if (Ex, Ey) is in valid range then

posStream.append((Ex, Ey,t))
end if

end for

for i= 0→ len(negEvent) do
Ex= negEvent[0], Ey= negEvent[1]
if (Ex,Ey) is in valid range then

negStream.append((Ex,Ey,t))
end if

end for

end if

lastImage= newImage
end for

end function

Event Generator
To stimulate the intensity changes, we use ODG here. Based
on the truth that animals like toads or frogs can only respond
to moving objects (Ewert, 1974), we believe that we can
obtain the necessary information for object recognition by
imitating the frog retinal nerves, specifically, ganglion cells that
generate features. Three important kinds of ganglion cells act
as edge detectors, convex edge detectors, and contrast detectors,
generating sparse local edge information. This inspires the
main idea of ODG, which is artificially changing the light
intensity and detecting the necessary local edge information in
multiple directions.

Different from the widely used random saccades
generation (Hu et al., 2016), we only choose necessary
directions in a fixed order and the necessary number
of frames to minimize data redundancy, we will explain
it later. This algorithm generates an event stream for
each picture in ILSVRC2012 with a specific moving path
shown in Figure 2, and the algorithm is summarized
in Algorithm 1. The trigger condition of the events is
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FIGURE 2 | The moving trajectory of images used to generate the events. The numbers in the small blue squares is the timestamp when an image reaches the

corresponding position. The pipeline shows the complete process of generating an event stream.

described in

p(x, y, t) =

{

−1 if V(x, y, t)− V(x, y, t − 1) < −Thresh

1 if V(x, y, t)− V(x, y, t − 1) > Thresh,

(4)
where p(x, y, t) denotes the polarity of the event at (x, y, t), V is
the value of pixel, and Thresh is the difference threshold. This
algorithm only involves linear operations with time complexity
ofO(W2T), whereW denotes the width of the image and T is the
length of time. ES-ImageNet is generated without randomness so
that users can reconstruct the original information using the path
information and design data augmentation freely.

In Algorithm 1, there are four hyper-parameters to be
selected: a sequence of the x coordinate (xTrace), a sequence of
the y coordinate (yTrace), the difference threshold (Thresh) in
Equation (4), and the number of time steps (T). We designed two
preparatory experiments to determine these hyper-parameters.

Select the Hyper-Parameters
Trajectory
The choice of the path is important, which includes designing
xTrace and yTrace along with choosing T. Most of the existing
conversion methods choose fast random saccades or repeated
fixed paths. The former selects eight directions for simulating fast
eye movement (random saccades), while the latter uses only four
directions [repeated closed-loop smooth (RCLS)], as shown in
Figures 3A–C.

To verify the information obtained by these differentmethods,
we evaluate it by comparing their 2D information entropy (2D-
Entropy), which is positively correlated with the amount of
information in an image. The average neighborhood gray value of
the image is selected to represent the spatial characteristics, and
a 3 × 3 field is commonly used. The feature pair (i, j) is used to

calculate 2D-entropy, where i is the gray value of the pixel, and j
is the rounding down of the mean neighborhood gray value. The
2D-Entropy of the gray image is defined as Equation (5), where
p(i,j) denotes the frequency of the feature pair (i, j) and g is the
gray level.

H =

g
∑

i=0

g
∑

j=0

−p(i,j)log2(p(i,j)). (5)

Because these algorithms use the frame difference for event
generation, and the adjacent frames are actually the same image,
the movement with the opposite direction would always generate
events with opposite polarity. Therefore, a new step with an
opposite direction to the existing movement does not add more
effective information into the sample, and that is how the
existing algorithms can be optimized. As shown in Figure 3D,
the number in the cell denotes the pixel value. A row of pixels
move left or right, and calculating the difference under the same
threshold would only obtain a series of events with exactly the
opposite polarity.

Based on this observation, we avoid the repeated or the
opposite path design in the ODG. Furthermore, to quantitatively
illustrate the benefits, we randomly select 100 images from
ImageNet-1K, extract events in different T with the three
different methods, and then reconstruct them into gray images
to calculate 2D-Entropy. In this way, we get Figure 3E, and the
higher curve of ODG may support our modification.

Through analyzing the information (2D-Entropy) curves
calculated for each method over several time steps in Figure 3E,
we find that the 2D-Entropy increases slowly after T ≥ 6,
but the size of the dataset would still increases linearly with T
getting larger. In order to make a balance between the temporal

Frontiers in Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 726582

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lin et al. ES-ImageNet

FIGURE 3 | Comparison of three different kinds of image motion. (A) The candidate moving directions used in random saccades generation of DVS-Caltech-256 and

DVS-UCF-50 (Hu et al., 2016). (B) The path used in RCLS of DVS-CIFAR-10 (Li et al., 2017). (C) Trajectory used in ES-ImageNet. (D) Illustration to explain why

opposite directions in the generation path would only generate opposite events. (E) 2D-Entropy comparison among the three generating paths with different steps (T ).

ODG is superior to the other two methods in the sense of 2D-Entropy based on the reconstructed gray images.

characteristics, the amount of information and the size of dataset,
we set T = 8.

Threshold
An important indicator for the ES-dataset is event rate, which is
defined as the proportion of pixels that have triggered an event.
The most influential parameter for event rate is the threshold
Thresh (when the motion path is fixed). Because of the high
correlation of brightness between adjacent pixels, it is hard to
estimate the distribution of the difference between adjacent pixels
using the static method, so a preparatory experiment is needed.
We randomly select 5 pictures from each category and get 5,000
pictures. The threshold in the experiment varies from 0.1 to 0.4.
The results are shown in Figure 4. After many tests, we choose
0.18 as the threshold value, for an estimated event rate of 5.186%,
with the event rate of most samples being in the range of 1 to
10%. This result will be verified on the whole dataset. It should
be noted that many events may be generated by the movement of
the edge of the image, and they have been wiped out.

In addition, the original images’ longest sides are normalized
to 255 by the nearest-interpolation algorithm. Nearest

interpolation is mapping from the normalized coordinates
after zooming into the integer grid coordinates. The generated
event stream version training set is 99 GB and test set is 4.2 GB,
which are stored in the quad format (x, y, t, p). If converted to a
frame version like a short video, the size of the whole dataset can
be further reduced to 37.4 GB without information loss. For ease
of use, we store all of these tensors as a file in the .npz format,
using the scientific computing package "Numpy" of Python. The
event-frame format version is more suitable for deep learning,
and we will also provide this version, while the quad format
version is the classical ES-dataset.

Data Analysis
Event Rate
To examine the quality of the data, we calculate the event rates
of the whole generated dataset and summarize them in Table 2.
It can be seen that the pixels which trigger the events are only
about one-twentieth of all pixels. And from this point of view, the
prediction obtained from the preparatory experiment is accurate.
Since our events are generated from the images processed by
nearest-neighbor interpolation, our event rate statistics are also
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FIGURE 4 | A preparatory experiment for determining the threshold in ODG.

We observed that the event rate shows a trend of an exponential decrease in

the threshold. In consideration of the event rate of generated samples and to

avoid generating too many invalid samples that have an extremely low event

rate, we choose threshold = 0.18.

TABLE 2 | Event rate of ES-ImageNet.

Generating process Training set Testing set

Mean σ Mean σ

Events 5.215% 3.776% 5.385% 3.837%

ON 5.211% 3.777% 5.385% 3.838%

OFF 5.22% 3.78% 5.38% 3.84%

Event-frame format Training set Testing set

Mean σ Mean σ

Events 4.461% 3.560% 5.231% 3.770%

ON 4.458% 3.570% 5.229% 3.770%

OFF 4.460% 3.560% 5.230% 3.770%

calculated in this range. When we use the training data, we
often place the positive events and negative events in different
channels and organize them in the unified 2 × 224 × 224 (C ×

W × H) frame format. Therefore, we re-calculate the event
rate during the training process in Table 2, which is lower than
that of the generating process and is more meaningful for the
training process.

Furthermore, we calculate the distribution histogram of
positive and negative events and show it in Figure 5. The results
in the figure show that the distribution of positive and negative
events is very close, which may be because most of the entities in
the original images are represented as closed graphics.

Visualization
To show the quality of the data intuitively, we reconstruct
the original pictures from event streams. Firstly we accumulate
the events into frames, and we obtain eight (T = 8) event
frames. Different from the traditional DVS-dataset, our dataset
is generated along a fixed path with multiple directions, so when

FIGURE 5 | A detailed inspection about fire rate. Most samples have a 5 to

6% event rate, and this figure shows a significant skew distribution. A sample

with a 5% event rate is also at a relatively sparse level when recorded by event

cameras.

Algorithm 2: Edge-Integral

Require: imageList
Ensure: grayImage

function GENERATOR(Image)
Xtrace = [1,0,2,1,0,2,1,1,2]
Ytrace = [0,2,1,0,1,2,0,1,1]
imSize = size(imageList[0])
H = imSize[0], W= imSize[1]
SUM = zeros(H+4,W+4)
T = length(ImageList)
for t = 0 → T do

dx = Xtrace[j]
dy = Ytrace[j]
frame=imageList[t]
SUM[2-dx:2-dx+H,2-dy:2-dy+W] += frame[0]
SUM[2-dx:2-dx+H,2-dy:2-dy+W] -= frame[1]

end for

gray_image = SUM
end function

we try to reconstruct the original pictures, we need to accumulate
the difference frames (so called Edge-Integral used in Le Moigne
and Tilton, 1995) along the opposite direction of the generating
path. The results are shown in Figure 6, and the pseudo-code of
Edge-Integral can be found inAlgorithm 2. A visualization demo
can be found in the Supplementary Materials.

Analyzing the process of conversion, we know that there are
three operations potentially causing the information loss. Firstly,
only the information in the V channel of the HSV color space
is used, and secondly, the gradient information obtained is also
approximate, while thirdly, the information is stored in low-bit.
According to the method in Figure 6, we are able to reconstruct
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FIGURE 6 | (A) The visualization of ES-ImageNet. We show a few samples reconstructed from event streams and the event frames at the last three time steps for

each sample. These examples are from four different categories and can be clearly identified. (B) Quality comparison of the reconstruction results of direct summation

and Edge-Integral. Here I(x, y, t) means the intensity in (x,y) in the event frame at time = t.

the gray images, which can also be directly obtained from the
original color images by the weighted sum of (R,G,B).

Information
To further analyze the loss of information during the conversion,
we still turn to the 2D-Entropy of the gray images defined
in Equation (5). We randomly collect 5000 RGB-images in
ILSVRC2012 (5 per class) and convert them into gray images
with 256 gray levels, 17 gray levels, and 5 gray levels, respectively.
And then we find the converted samples of those RGB-images
in ES-ImageNet and reconstruct the corresponding gray images.
Because the default is T = 8 in ES-ImageNet, and each pixel value
could be 0, 1, or −1, the reconstructed samples will have a total
of 17 gray levels (from 0 to 16).

The ordinal meaning of 2D-Entropy can tell us what level
the amount of information of ES-ImageNet is, which is no less
than that with 5 gray-level compressed RGB-images and almost
the same as that with 17 gray-level compressed RGB-images,
as Figure 7 shows. It should be noted that the reconstruction
process also causes information loss, so the original ES-
ImageNetmay havemore efficient information than we speculate.
Considering that the application of neural morphological data
does not need many high-level features, we believe that the
amount of information can make this dataset a nice validation
tool of SNN.

RESULTS

Training Experiments
Because the size of this dataset is very large, it is difficult to train a
classical classifier (such as K-nearest neighbor) on it compared to
other DVS-datasets (Li et al., 2017). Statistical learning methods
such as support vector machine (SVM) do not perform well on
large-scale datasets with many categories, and it might take days
to train a vanilla nonlinear SVM on a dataset with only 500
K samples (Rahimi and Recht, 2007). To examine the quality
of this dataset, we turn to four different types of deep neuron
networks, two of which are ANNs while the others are SNNs.
The structure of ResNet-18 and ResNet-34 (He et al., 2016) are
applied in the experiments. The results of these experiments
provide a benchmark for this dataset. It is noted that all of the
accuracy mentioned here is top-1 test accuracy.

For ANNs, the two dimension convolutional neural network
(2D-CNN) (Krizhevsky et al., 2012) has become a common
tool for image classification. In order to train 2D-CNN on the
ES-dataset, a common approach is to accumulate the events
into event frames according to the time dimension and then
reconstruct the gray images (Wu et al., 2020) for training. Here
we use the Edge-Integral algorithm described in Figure 6 for
reconstruction. The network structures we use here are the same
as those in the original paper (He et al., 2016).
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FIGURE 7 | 2D-Entropy histogram of the different compression levels of

ILSVRC2012 sample groups and the reconstructed ES-ImageNet sample

group. We compare the 2D-Entropy of four sample groups here. The

reconstructed group indicates that the samples in ES-ImageNet potentially

have effective information for object classification.

TABLE 3 | Hyper-parameter setting.

Names Value

Network

T 8

Thresh 0.5

Decay 0.5

Optimizer (ADAM)
Lr 3e-2

β1,β2, λ 0.9,0.999,1e-8

Activation Lens 0.5

StepLR
Nepoch 10

α 0.2

Others
BatchSize 224a/160b

Max Epoch 50

aUsed for the training of ResNet-18.
bUsed for the training of ResNet-34.

Meanwhile, regarding the time dimension as the depth, this
dataset can also be considered as a video dataset, so the classic
video classification methods can also be utilized, like 3D-CNN
(Ji et al., 2013; Hara et al., 2018). By introducing the convolution
of depth dimension, 3D-CNN has the ability of processing time-
domain information. The structures we used are 3D-ResNet-18
and 3D-ResNet-34, and the convolution kernel is chosen to be
3 × 3 × 3, which ensures that the largest receptive field of the
network can cover the whole time (depth) dimension.

For SNNs, we choose an SNN based on leaky integrate-
and-fire (LIF) neurons (Dayan and Abbott, 2001) and an SNN
based on leaky integrate-and-analog-fire (LIAF) (Wu et al., 2020)
neurons. Rate coding (Adrian and Zotterman, 1926) is used to
decode the event information because the significance of the
specific time when the spikes appear in this dataset is weaker than
the number of spikes. Both of the SNN models are trained using
the STBPmethod (Wu et al., 2019) and sync-batch normalization
(Ioffe and Szegedy, 2015), and the network structures similar

to ResNet-18 and ResNet-34 are built as shown in Figure 8.
The basic LIF (Dayan and Abbott, 2001) model is described in
Equation (6),

U =







τm
dU

dt
= −U + EL + RmIe if U < Uthresh

Ureset U ≥ Uthresh

(6)

where U is the membrane potential, EL is adjusted to make the
resting potential match that of the cell L being modeled. Ie is the
input current and the Rm is the membrane resistance. Ureset is a
parameter adjusted according to the experiment data, and τm is
the membrane time coefficient. The LIF neuron will fire a spike
when U reaches the Uthresh, and the spike can be {0,1} in LIF or
an analog value in LIAF. Solving the model, we have the U(t), as
shown in Equation (7).

U(t) = EL + RmIe + (U(0)− EL − RmIe)e
−t/τm . (7)

This equation does not take the reset action into consideration.
For large-scale computer simulation, simplification is needed on
this model and using the discrete LIAF/LIF model. Using l to
present the layer index and t for the time, the LIAF model can
be described by the following equations

ut,l0 = ut−1,l + h(ot,l−1)+ bl (8)

st,l = f (ut,l0 ) (9)

ot,l = g(ut,l0 ) (10)

ut,l = u
tk ,l
0 d(st,l) (11)

where h is the weighted sum function of the input vector ot,l−1,
which is related to the specific connection mode of synapses and
is equivalent to RmIe. s is the spike used to reset the membrane
potential to Ureset and ot,l is the output of neurons to the next
layer. We often use d(x) = τ (1 − x) for simplification in this
model, where d(x) describes the leaky processing and τ is a
constant relative to τm. f is usually a threshold-related spike
function, while g is selected to be a commonly used continuous
activation function. If g is chosen as the same function as f , then
the above model is simplified to the LIF model as

ut,l0 = ut−1,l + h(ot,l−1)+ bl (12)

ot,l = st,l = f (ut,l0 ) (13)

ut,l = u
tk ,l
0 τ (1− st,l) (14)

To build a Spiking-ResNet model, we proposed the spiking
convolutional layer and spiking-ResBlock structure. Only h in
Equation (8) and Equation (12) needs to be changed to become
different types of SNN layers. For the full-connection layer (or
Dense), we choose h(ot,l−1) = Wl ∗ ot,l−1, where Wl is the
weight matrix of the l layer. In the convolutional layer, h(ot,l−1) =
Wl ⊗ ot,l−1, where⊗ is the convolution operation.

The residual block structure we used in the SNN is a little
bit different. For better performance in deep SNN training,
we add a 3D-BatchNorm layer on the membrane potential,
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FIGURE 8 | SNN structure used in the experiments. On the right, we show the internal structure of LIAF neurons. By changing synaptic connections, we can obtain a

variety of layer structures, where CN denotes the convolutional layer and BN denotes the 3D-BatchNorm layer. Using these layers, we can build a scalable LIAF

residual network structure.

where we treat the temporal dimension in the SNN as the
depth of the general 3D data. In Figure 8, CN denotes the
convolutional layer and BN denotes the 3D-BatchNorm layer, the
mem_update layers are described by Equations (9)–(11) in LIAF-
ResNet, and Equations (13)–(14) in LIF-ResNet. To keep the
coding consistent, before each output of residual block, we add
amem_update layer.

The best test results are obtained based on the same set of
hyper-parameters and different random seeds, which are shown
in Table 3, and the results are listed in Table 4. During the
training, the initial learning rate is 0.03, the optimizer is ADAM
(Kingma and Ba, 2014), and the learning rate is optimized by
the StepLR learning schedule. NVIDIA-RTX2080Tis are used
for training and the Pytorch (Paszke et al., 2019) deep-learning
framework is used for programming for all of these experiments.

Test Results
As Table 4 shows, the highest test accuracy based on the ResNet-
18 structure is obtained by the 3D-CNN, which is 43.140%. And
the best result on ResNet-34 reaches 47.466% obtained by the
LIAF-SNN. In order to show the relationship between parameter
quantity and accuracy more intuitively, we provide Figure 9

and use the area of the disk to show the number of parameter,
highlighting the efficiency of SNN. The experimental results of
LIF-SNN, which is the traditional SNN model, will provide a
baseline for this dataset, and we expect more advanced and

large-scale SNNs or other neuromorphic algorithms to be tested
on this dataset.

DISCUSSION

Performance
Observing the results, we will find that the SNN models
can obtain a relatively high classification accuracy with fewer
parameters. The sparsity of the data in ES-ImageNet may lead
to this phenomenon, for SNN can deal with spatiotemporal
information efficiently, and a large number of parameters in an
ANNs-based video classification algorithm (like 3D-CNN tested
in this article) may cause over-fitting on this dataset.

We find the other two reasons for the accuracy loss. Wrongly
labeled samples may also seriously interfere with the training
progress. This problem is obvious in ImageNet (Northcutt et al.,
2019), and we also found this problem when we conducted
a manual inspection, but there is currently no good method
for efficient and accurate screening. Another problem is the
information loss. Given this problem, we propose several possible
ways to optimize it. One is to filter out more samples with the
highest and lowest information entropy (representing the largest
noise rate and the smallest amount of information, respectively)
in the training set. The other is to increase the number of time
steps of the transformation, but it will increase the storage cost.

It should be noted that in the experiments we do not use
any data augmentation method. In fact, placing event frames in
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FIGURE 9 | Testing accuracy with the structure of ResNet-18 and ResNet-34.

The radius of the data points represents the relative size of the parameters of

the networks.

TABLE 4 | Test results & benchmarks.

Structure Type Test Acc/% # of Para

ResNet18

2D-CNN 41.030 11.68M

3D-CNN 43.140 28.56M

LIF (baseline) 39.894 11.69M

LIAF 42.544 11.69M

ResNet34

2D-CNN 42.736 21.79M

3D-CNN 45.380 48.22M

LIF (baseline) 43.424 21.80M

LIAF 47.466 21.80M

random order, using dynamic time length, or processing each
frame with random clipping are acceptable on this dataset and
may bring significant performance boost. Research is under way
on such data augmentation and pre-training technologies, andwe
hope more related research can use this dataset.

Computation Cost
To make a more objective comparison, we also count and
compare the theoretically minimum number of FP32 operands
required by the feed-forward process of these networks by
measuring the power consumption in a field-programmable gate
array (FPGA).

Here we compare the number of necessary calculation
operands required by the feed-forward process of eight different
networks used in the main article. It should be noted that we
calculate the number of floating-point multiplication operands
and floating-point addition operands separately (not MACs),
and the operands of normalization layers are not included in
the calculation.

2D-CNNs use the ResNet structures with 18/34 layers, and
most of the operands are bolstered by convolution layers. In this

work, we compress and reconstruct the 4-dimensional event data
in ES-ImageNet into 2-dimensional gray images, then feed them
into 2D-CNNs. The process is then the same as the way we train
a ResNet on ImageNet. In the network, the dimensions of the
features change in the following order: [1(channel)×224(width)×
224(height)] → (maxpooling)[64 × 110 × 110] → [64 × 55 ×

55] → [128× 28× 28] → [256× 14× 14] → [512× 7× 7] →
[512] → [1000].

3D-CNNs consider the depth dimension (Ji et al., 2013),
and treat this dataset as a video dataset (Hara et al., 2018),
so the feature is kept in four dimensions in ResBlocks. In the
network, the dimensions of the features change in the following
order: [2(channel) × 8(depth) × 224(width) × 224(height)] →

(maxpooling)[64 × 8 × 110 × 110] → [64 × 4 × 55 × 55] →

[128×2×28×28] → [256×1×14×14] → [512×1×7×7] →
[512] → [1000].

The training procedure of LIF-SNNs is like running eight 2D-
CNNs along with the processing of the last moment of membrane
potential memory information and the spikes inputs for every
layer, then averaging the spike trains in the time dimension in
the final linear layer to decode the spiking rate. These networks
keep the data in four dimensions with T = 8 unchanged until
the decoding layer, so the dimensions of the features change
in the following order: [2(channel) × 8(T) × 224(width) ×

224(height)] → (max pooling)[64× 8× 110× 110] → [64× 8×
55×55] → [128×8×28×28] → [256×8×14×14] → [512×
8×7×7] → [8(depth)×512](rate decoded) → [512] → [1000].

The training procedure of LIAF-SNNs is almost the same as
LIF-SNNs, the only difference with LIF-SNNs is that they do not
use binary spikes to convey information between layers, instead
they use an analog spike. The dimensions of the features are the
same as the ones in LIF-SNNs.

It is worth noting that since the input of LIF-SNNs is only
0 and 1, convolution does not need to compute floating-point
multiplication, but does need to compute addition under a
limited combination. As a large number of zeros appear in the
input of each layer of LIF-SNNs, the optimization of sparse
input for LIF-SNNs has become a formula in SNN accelerators.
Therefore, in order to make a fair comparison, we can use the
average fire rate obtained in the experiment multiplied by the
input of the SNN as the proportion of the number of floating-
point numbers that need to participate in the addition calculation
(FP32 +), so as to estimate the actual amount of computation
of SNNs and CNNs. We observe that the fire rate always shows
a downward trend with the increase of training epochs, which
means a decrease of meaningless spikes.

In this experiment, the initial fire rate of SNN is no larger than
30%, and with the increase of training epochs, the fire rate would
gradually reduce to less than 10%. To compare the results of SNN
in the worst case, we take 30% as the sparsity rate. Based on these
conditions we can get Figure 10.

One of the advantages of an SNN compared with an ANN
is its power consumption (especially in SNNs’ accelerators). On
FPGAs the SNNs could have a significant power advantage if
the training algorithm is well designed. The data in Wu et al.
(2019) about the basic operands’ power consumption can provide
an estimation of the power consumption of the networks in the
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FIGURE 10 | The comparison of FP32 addition (FP32 +) and FP32 multiplication (FP32 x) operations in the feed-forward process between the models we use in the

experiments. It should be noted that the number of FP32+ operands of LIF have been multiplied by a sparsity factor (30%) for a fair comparison.

FIGURE 11 | Energy and power consumption in the experiments. (A) The comparison on energy cost. The LIF-SNNs have shown a significant advantage in energy

consumption, whose energy cost is half of that of the CNN. (B) The power of each model in the Frame time unit is also the energy required for one feed-forward

process.

experiments. Each FP32+ operation requires 1.273 pJ of energy,
and each FP32 operation requires 3.483 pJ of energy. Then we can
get the result in Figure 11A. In addition, we also give the power
comparison commonly used for SNNs (Deng et al., 2020) in
Figure 11B, where we calculate the energy for each feed-forward
process (so we call it power). It should be noted that SNNs need
T frames to give one prediction, and both the 3D-CNN and
2D-CNN give one prediction based on one frame.

These results also support the SNNs’ energy advantages in
this task. For these reasons, we think ES-ImageNet would be an
SNN-friendly dataset. We still hope that more ANNs algorithms
will be proposed to solve these challenges elegantly and
efficiently, which may also provide guidance for the development
of SNNs.

Limitations
For the conversion algorithm, we generate temporal features by
applying artificial motion to static images like most conversion
methods, which is still different from the real scene. It is the
limitation for those dynamic datasets derived from static data.
In addition, in order to compress the volume of the dataset and
extract more information, we reduce the randomness of data
during generation, thus losing a certain feature of DVS camera
recording but being more friendly to SNNs.

In the analysis part, due to the limitation of mathematical
tools, the 2D-Entropy we adopt can reflect only the amount of
information, not the amount of effective information. Therefore,
it can only be used as a reference rather than a standard.
In addition, the reconstruction method and the compression
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method used in measurement would influence the information,
though we have compared them as fairly as possible.

In the training method, due to the limitation of hardware
conditions and algorithms, we can only provide the benchmarks
of SNNs and ANNs based on ResNet-18 and ResNet-34. It is
hoped that more research will participate in the training of larger
and better models.

CONCLUSION

In this paper, we provide a new neuromorphic vision dataset
named ES-ImageNet for event-based image classification
and validation of SNN algorithms. We proposed a method
called ODG, transforming a famous image classification
dataset ILSVRC2012 into its event-based version with a
method called Edge-Integral to reconstruct the corresponding
gray images based on these event streams. The ODG
method includes a carefully designed image movement,
which results in the value changes in the HSV color space
and provides spatial gradient information. This algorithm
can efficiently extract the spatial features to generate
event streams.

For testing the properties of datasets, we use the Edge-
Integral method to exhibit some of the reconstructed samples,
and also calculate the 2D-Entropy distribution of the dataset.
Furthermore, a comparative experiment is conducted using 2D-
CNN, 3D-CNN, LIF-SNN, and LIAF-SNN, these results provide
a benchmark for later research, and also confirm that this dataset
is a suitable validation tool for SNNs.

This dataset solves the problem of lacking a suitable large-scale
classification dataset in the SNNs’ research field. It fills in this gap
of a suitable dataset for the verification of large-scale SNNs so that
the corresponding algorithm is expected to be better optimized,
and more SNNs’ structures and training algorithms will be
explored, thereby promoting practical applications of SNNs.
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