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Abstract: Head and neck squamous cell carcinoma is the sixth most common cancer worldwide,
with 890,000 new cases and 450,000 deaths in 2018, and although the survival statistics for some
patient groups are improving, there is still an urgent need to find a fast and reliable biomarker that
allows early diagnosis. This niche can be filled by microRNA, small single-stranded non-coding
RNA molecules, which are expressed in response to specific events in the body. This article presents
the potential use of microRNAs in the diagnosis of HNSCC, compares the advances in this field to
other diseases, especially other cancers, and discusses the detailed use of miRNA as a biomarker in
profiling and predicting the treatment outcome with radiotherapy and immunotherapy. Potential
problems and difficulties related to the development of this promising technology, and areas on
which future research should be focused in order to overcome these difficulties, were also indicated.
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1. Head and Neck Cancer

Head and neck cancers (HNC) are a group of heterogeneous diseases, including
tumors formed most often from the epithelial cells (in 85% of cases) of the laryngeal and
oropharynx, lips, mouth, nasopharynx or larynx, all of which are different in their self-
epidemiology, etiology and method of treatment. Head and neck cancers account for about
6% of all cancers and cause about 1–2% of deaths due to neoplastic diseases [1–3]. Further,
90% of all HNCs are squamous cell carcinomas (HNSCCs), arising from the mucosal lining
in these regions. HNSCC is the sixth most common cancer worldwide, with 890,000 new
cases and 450,000 deaths in 2018 [4,5]. The incidence of HNSCC continues to rise and is
anticipated to increase by 30% by 2030 according to the Global Cancer Observatory.

Exposure to carcinogens, diet, oral hygiene, infectious agents and other diseases, indi-
vidually and in combination, may influence the risk of developing HNSCC [6]. Smoking
tobacco products is an independent risk factor for head and neck cancers. The risk increases
with the duration of the addiction and its intensity [7]. Smoking cessation reduces, but
does not completely eliminate, the risk of HNSCC. Passive exposure to cigarette smoke
also increases the chance of developing cancer. Alcohol is another of the independent
factors that lead to cancer development. It has a synergistic effect with the effects of tobacco
smoke. Alcohol in the human body is metabolized into acetaldehyde. This compound
creates adducts with the DNA, thus damaging the cell’s DNA [8]. Human papillomavirus,
especially the highly oncogenic HPV16 type, is responsible for the development of squa-
mous cell tumors of the oropharynx. HPV16 and 18 genomic DNA is found in 25% of
HNSCC cases. Studies published in 2006–2009 show that HPV16 is responsible for ap-
proximately 55% (out of 654 taken into account in the study) of squamous nasopharyngeal
neoplasms [9]. The hereditary diseases that increase the risk of HNSCC include the fol-
lowing: Fanconi’s anemia (FA), ataxia, telangiectasia, Bloom’s syndrome and Li-Fraumeni
syndrome [10]. Fanconi anemia is an autosomal recessive or X-linked disease, predisposing
to the development of solid tumors and leukemias. The mutation concerns one of the 15 FA
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genes involved in DNA repair. HNSCC is one of the most commonly diagnosed solid
tumors in FA patients, and the risk of developing cancer is 800 times higher than that of the
general population. Tumors develop in patients with this disease much earlier than in the
general population. HNSCC in these patients develops mainly in the oral cavity [11]. Other
congenital diseases that predispose to HNSCC include congenital immunodeficiencies.
People with impaired or reduced immunity (immunosuppression) from malnutrition, the
elderly, and those who have had a transplant or have AIDS have a higher risk of developing
cancer. The most common cancers in the latter are Kaposi’s sarcoma and non-Hodgkin’s
lymphoma, but there is also a higher risk of developing oropharyngeal squamous cell
carcinoma [6]. As with other cancers, the risk of developing HNSCC increases with age.
Most cancers affect people over 50 years of age. The mean age of HNSCC development is
78 years for non-smokers, 60 years for tobacco smokers, 58 years for HPV-positive men
and 61 years for HPV-positive women [12].

2. MicroRNA

MicroRNAs (MiRNAs) are short (about 22 nucleotides), non-coding RNAs that are
involved in the post-translational regulation of gene expression. So far, it has been found
that they regulate up to 60% of mRNA through participation in the cell cycle, apoptosis,
proliferation and even the cell’s response to stress [13]. Pathological changes of the above
processes occur at every stage of neoplasm. Given this information, microRNA analysis is
performed on every plane. About 2,000 microRNAs are encoded in the human genome,
but not all of them have been described so far [14]. The first studies concerned the analysis
of miRNAs in chronic lymphocytic leukemia B (PBL-B); the influence of microRNAs on
the role of these molecules as key regulators of both suppressor genes and oncogenes was
noticed [15]. MicroRNA is able to play such roles in tumorigenesis. The expression of a
specific microRNA is not only typical for particular tissues of the organism, but also for
specific tumors of various origins. The determination of the miRNA profile for individual
types of neoplastic tumors determines their characteristics and indirectly may indicate the
clinical and pathological features of the changes, such as the degree of tumor differentiation,
the ability to angiogenesis, proliferation and migration of neoplastic cells [16]. Recent
research is focused on the role of microRNA as a factor supporting the determination of the
surgical margin in surgical treatment, and markers helpful in diagnostics are sought [17].
An important element is the stability of the microRNA in the analyzed material. This
makes the material easy to obtain. The presence of microRNA in the blood serum has been
found in hematological neoplasms and solid tumors of various origins. This may mean a
straightforward path to early diagnosis of the degree of development of the neoplasma
process. The presence of microRNA in body fluids as signaling molecules activating cell
receptors was also indicated, which confirms also other tasks of miRNA in intracellular
mechanisms, not only the regulation of genes at the post-transcriptional level. MiRNAs
can function in a cancer cell as oncogenes or suppressor genes [18]. An example is miR-221
acting as a suppressor gene in erythroblastic leukemia, in contrast to solid tumors where it
is an oncogene [19].

3. MicroRNA as an Oncogene and Protooncogene

In the transformed cell, the mechanism of control of the correct gene expression
is impaired. While miRNA in a normal cell affects a given oncogene by inactivating
it, in the case of the deletion of the microRNA gene, the oncogene product undergoes
increased production [20,21]. On the contrary, excessive amplification of the microRNA
gene that regulates the tumor suppressor causes its blockade and also opens the way
to carcinogenesis. MicroRNAs can function either as oncogenes or as genes for tumor
suppression [22]. The first microRNAs reported as a suppressor were miR-15o and miR-16a,
located in arm 13q 14, a region that is found in more than 50% of chronic leukemia patients.
MicroRNA is deleted in the pathogenesis of squamous head and marrow neck carcinomas
(B-CLL) [23]. These are the only known genes in a given fragment, and what is more,
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they are involved in the regulation of the anti-apoptotic BCL-2 gene. All of the B-CLL
patients had no or a very low expression of iniR-15a and miR-16a. Typically, neoplasms
show reduced expression of miRNA genes, which may predispose to uncontrolled disease
development [24]. Another example is the specifically lost expression of miR-126, which
enhances tumor growth and proliferation in lung and bone cancers, and niiR-335 enhances
metastasis and is its marker in breast cancer. In turn, ef-7 is a regulator of the well-known
RAS oncogene (mutated by 15–30◦ in all tumors), which is responsible for cell growth
and differentiation. In lung cancers, when RAS is overexpressed, low let-7 expression is
also observed, and thus uncontrolled growth and development of lung tumors are also
observed [25].

4. MicroRNA as a Biomarker

The symbolic date of the discovery of miRNAs is 1993, when Lee published his
article [26]. Only 10 years had to pass from that moment for the first reports on the use of
this discovery in diagnostics to appear. The first disease in which a biomarker potential was
noticed was chronic lymphocytic leukemia, and the discovery was based on the indication
that the expression of miRNA in patients is significantly different from that in healthy
individuals [23]. From that moment on, intensive research into the use of miRNA as a
biomarker in a wide range of diseases began. Over time, miRNA has emerged as having
the potential to be an excellent biomarker as it meets three basic criteria that can be required
for a quick and accurate diagnostic process. First, it is synthesized quickly in response
to a pathological situation. Second, it is highly specific. Third, it remains in the system
for a long time and is easily detectable due to its presence in the plasma [27]. Over time,
research has focused on three main groups of diseases in which miRNA could be used
as a biomarker. The first group consists of cardiovascular diseases, where the need for
a new reliable marker is particularly high, as there is no gold standard for diagnosing
these diseases so far. The existing markers show tissue specificity and require narrow time
windows in the determinations, which often makes the obtained results unrecognizable
or even false [28–30]. MiRNA seems to solve all these problems, hence the large-scale
and advanced research towards its use as a biomarker in cardiovascular diseases [31–34].
The second group of diseases that is studied particularly intensively consists of infectious
diseases. In this case, special emphasis is placed on the speed of the diagnostic process
and its high specificity, which allows to think of miRNA as a potential biomarker for point
of care diagnostics [35]. In addition, the presence of miRNAs in, e.g., sputum, allows for
large-scale screening [36]. So far, attempts have been made to identify specific miRNAs for,
inter alia, HIV [37–39], tuberculosis [40–42], malaria [43–45] or Ebola [46–48]. The latest
developments in the use of miRNAs in the diagnosis of infectious diseases include, of
course, research on COVID-19 [49,50]. Neoplastic diseases are the third particularly studied
group of diseases. In this case, special emphasis is placed on the search for biomarkers
allowing for the early differentiation of various types of cancer, which is often a problem
with traditional diagnostic methods [51]. The second very promising line of research in
cancer is the use of miRNAs for profiling and predicting treatment responses [52–54].

Limitations

Despite all the advantages of using miRNA in diagnostics, this method has still not
found its way to wide application. A number of challenges that face the implementation
of each new method for general use in this case include, first of all, the need to establish
unquestionable relationships between the studied miRNAs and the occurrence of a given
disease, establishing guidelines for sampling and analysis, and the standardization of
procedures [55,56]. The first steps taken to introduce miRNA for widespread use in diag-
nostics resulted in the launch of the miRNA panel in 2012 by Rosetta Genomic, allowing
the identification of cancers of unknown or uncertain primary origin, followed by another
panel that relied on qRT-PCR with improved sensitivity and specificity in 2016 [57]. Unfor-
tunately, two years later the company went bankrupt and the products were withdrawn
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from the market [58]. Other implementation attempts are the pancreatic cancer testing
panel developed by Interpace Diagnostics in 2015 by Interpace Diagnostics [59], or Mintrex
with a panel using miR423-5p as a useful marker of heart failure [58]. All panels brought
to the market face the difficulties of it being only a decade since the first studies showing
differences in the miRNA profile between patients and healthy subjects, meaning there
are no definitive answers and established procedures for controlling the pre-processing
of miRNA detection and normalization experiments, data processing and optimization.
The normalization strategy seems to be particularly important here [60,61], and the fact
that miRNA levels can be affected by factors such as age, gender, sex, physical activity
or smoking should be taken into account [62–65]. Moreover, the factor significantly in-
fluencing the miRNA profile turned out to be diet, in which various components, such
as curcumin, proanthocyanidins, epigallocatechin and resveratrol, modulate the miRNA
expression level, which must be taken into account when using miRNA as a diagnostic
tool [66–69]. An additional potential challenge is to obtain profiles of unquestionable
specificity, which, due to their uniqueness for a given disease, will leave no doubt as to the
result of the diagnostic test. The coexistence of elevated levels of specific miRNA types in
various diseases can lead to misdiagnosis, for example, if the same type is overexpressed
in hepatocellular carcinoma as well as in Hepatitis B infection [70], in addition, this level is
also altered by the use of drugs during therapy in chronic hepatitis C [71]. Therefore, only
the establishment of standardized procedures will allow the introduction of a wider range
of diagnostic tests to the market.

5. MicroRNA in Cancer Diagnostics

The detailed analysis of the miRNA profile of a wide variety of cancers has shown
that specific miRNA types are deregulated with the onset of neoplastic transformation.
At a later stage of the study, links with tumor classification, progression, prognosis and
response to treatment were demonstrated [72–74]. This can be considered a unique profile
for a given cancer disease, and can be referred to as an miRNA fingerprint. Due to the
fact that neoplasms may originate from various types of cells, as well as may arise as
a result of various pathological mechanisms, it should be expected that there will be a
wide spectrum of cancers differing in terms of both clinical and genetic characteristics.
In this case, an accurate diagnosis is extremely important for appropriate and effective
treatment. Therefore, using miRNA fingerprint, a more accurate diagnosis can be expected
than in the case of traditional methods. For many years, miRNA has been successfully
linked with the diagnosis of specific types of cancer such as lung cancer [75,76], breast
cancer [77,78], colorectal cancer [79,80], ovarian cancer [81,82], or cervical cancer [83,84].
Currently, however, research is going much further, allowing for far-reaching identification
with a high degree of specialization. MicroRNAs may be used in identifying the tissue in
which cancers of unknown primary origin arose; Rosenfeld et al.’s classification accuracy
reached 100% for most tissue classes, including 131 metastatic samples [85]. Lu et al.
was able to successfully classify poorly differentiated tumors using miRNA expression
profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same
samples [86]. MicroRNA can also be used to classify a specific tumor phenotype, such as in
breast cancer, where it has been possible to connect the miRNA profile with the estrogen
and progesterone receptor status, proliferation and tumor stage [87,88], and even define the
molecular subtype (luminal A, luminal B, basal-like, HER2 and normal-like) [89]. Further
research allowed the use of miRNAs to distinguish ductal carcinoma in situ and in invasive
ductal carcinoma, and thus predict the level of proliferation and aggressiveness of breast
cancer [90]. For lung cancer, the miRNA expression patterns differ between non-small-cell
lung carcinoma and small-cell lung carcinoma, as well as their subtypes [91–93]. Further, it
is possible to distinguish between adenocarcinoma and squamous cell carcinoma, and in
some cases even indicate the cancer stage [94,95]. In the case of leukemia, miRNA studies
have shown not only the possibility of effective early disease identification [96,97], but
also the distinction between chronic and acute forms [98], explaining the aggressiveness of
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the disease using the B-cell receptor signaling mechanism [99], and even the prediction of
specific cytogenetic abnormalities that have prognostic implications allowing to identify
patients with the 17p and 11q deletions, who experience the aggressive form of the disease,
and patients with the 13q deletion or normal cytogenetic profiles, who experience the
indolent form [100].

Another aspect of using miRNA as a biomarker in cancer is the prognosis of the
treatment outcome, a field that has also been very successful. In the case of diffuse large
B-cell lymphoma, high miR-21 expression was associated with relapse-free survival [101].
The levels of four miRNAs were significantly associated with overall survival in non-
small-cell lung cancer patients [102], while others are associated with poor survival [103].
For pancreatic cancer, it is possible to forecast not only general prognosis, but also a
detailed outcome for a specific type of treatment using gemcitabine [104]. Patients with
hepatocellular carcinoma tumors had low miR-26 expression and were corelated with
shorter overall survival, but at the same time had a better response to adjuvant therapy
with interferon alfa [105]. Finally, miRNAs can also potentially be used to evaluate the
efficacy of chemotherapeutic and surgical tumor removal treatments as it allows the
assessment of tumor-specific levels of miRNA expression. Wong et al. specified that not
only miR-184 levels were significantly higher in tongue SCC patients in comparison with
normal individuals, but moreover the levels were significantly reduced after the surgical
removal of the primary tumors [106]. In the case of colorectal cancer, miR-17-3p and
miR-92, identified as markers, were significantly reduced after surgery [107]. In a study
investigating miR-500 as a potential human hepatocellular carcinoma marker, its levels
in sera returned to normal after the surgical treatment [108]. At the same time, however,
when considering the potential benefits of using miRNAs for such advanced profiling of
neoplastic diseases, one cannot forget about the limitations mentioned in the previous
paragraph. One study indicates that many of the miRNAs tested may turn out to be highly
nonspecific and easily lead to a misdiagnosis between breast, colorectal, lung, thyroid and
melanoma tumors [109].

The final issue that should be taken into account when considering miRNA as a
biomarker in cancer is the transcriptome differences between animals and humans. The
standard research route is to test the hypotheses in an animal model and extrapolate the
results in the human system; however, such results are not always directly transferable
between species [110,111]. As demonstrated in the miRNA studies with B-cell chronic
lymphocytic leukemia and B-cell non-Hodgkin lymphomas, the results should be specific
to a human model to ensure diagnostic and therapeutic use [112,113].

6. MicroRNA in HNSCC Diagnostics
6.1. Onco-MiRNAs and Tumor Suppressor MiRNAs

HNSCC is an interesting type of cancer to exploit the advantages of using miRNAs as
novel diagnostic tools. Due to the high diversity within HNSCC and the need for early and
reliable diagnosis, miRNA has been studied and evaluated for a long time as a potential aid
in cancer identification, treatment prognosis and assessment of its effectiveness. The first
aspect worth noting is the definition of the role of miRNAs as oncogenes and suppressor
genes in HNSCC. The initial research in this field took place more than a decade ago and
confirmed that miR-21 is a putative oncogenic microRNA in head and neck cancer [114].
Oncomir is an miRNA associated with cancer and can be linked with carcinogenesis,
malignant transformation and metastasis. Some oncomir genes are oncogenes and their
overexpression leads to cancerous growth, while others are considered tumor suppressors,
so that the underexpression of the gene leads to cancerous growth [115]. MicroRNAs can
act as oncomirs responsible for the following biological processes: proliferation, migration,
and angiogenesis [116]. Oncomirs are responsible for the regulation of the carcinogenesis
process by activating signaling pathways. Oncomir thus increases the initiation and
progression of the tumor [117]. Individual types of microRNA may influence the oncogenic
mechanisms in head and neck cancers. For example, microRNA-125a is responsible for
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the increased proliferation and migration of cancer cells by inhibiting the expression of
the p53 protein. MicroRNA-134 influences oncogenicity and metastasis by inhibiting
the expression of the WWOX gene. MicroRNA-134 inhibits E-cadherin expression and
promotes cell progression by targeting programmed cell death 7 (PDCD7) [118–121]. Tumor
suppressor miRNA expression was often reduced in tumor samples. The let-7 microRNA
group controls normal cell development and differentiation, and the reduction in let-7
contributes to carcinogenesis. The let-7 group is a group of tumor suppressors in various
types of cancer, including head and neck cancers [122]. The expression of the let-7 group
genes is reduced in patients with head and neck tumors, among them it was shown
that let-7i most significantly suppresses the expression of the chromatin modifier, AT-
rich, interacting 3B domain (ARID3B) [123]. The downregulation of microRNA-101 is
upregulated by the oncogene Zeste homolog 2 (EZH2), which downregulates another
rap1GAP tumor suppressor gene, promoting head and neck tumors. EZH2 is a histone
methyltransferase belonging to the PRC2 group, which facilitates the trimethylation of
H3K27 on the rap1GAP promoter in order to suppress its activation [124]. Reduced levels
of microRNA-29 occur in head and neck tumors. MicroRNA-29b inhibits the inhibition of
three beta DNA methyltransferases, which causes invasiveness by restoring E-cadherin
expression through the demethylation of the promoter region [125]. In Table 1, selected
miRNAs, affected genes and molecular mechanisms of action in HNSCC are presented.
The miRNAs listed in the table should be treated as oncogenes or suppressors due to
their interaction with one specific gene. However, a more advanced issue is the effect of
miRNAs not only on a single gene, but on the entire signaling pathway. An example here
would be deregulation of the PI3K/AKT signaling pathway transduction via p-AKT by
miR-365a-3p in laryngeal squamous cell carcinoma (LSCC) [126]. The results indicating
that miR-365a-3p may act as an oncomir, and may promote growth and metastasis in LSCC
via the PI3K/AKT signaling pathway, shed new light on the intricacy of the processes in
which miRNAs are involved and the complexity of the intracellular interactions, while at
the same time indicating the mechanism that may lead to pathogenesis and thus indicating
a potential therapeutic target for the treatment of LSCC.

Table 1. Selected genes and their action mechanism in HNSCC.

Oncogenes MiRNAs Affected Gene Molecular Mechanism Action Mode Ref

miR-125a p53 miR-125a enhances cell proliferation, migration, invasion Gene expression [117]

miR-134 PDCD7 miR-134 reduces E-cadherin expression by
suppressing PDCD7 Gene expression [118]

miR-134 WWOX miR-134 suppresses WWOX Suppressor inhibition [121]

miR-196b PCDH-17 miR-196b promotes cell proliferation, migration, and invasion
abilities by inhibiting PCDH-17 Suppressor inhibition [127]

miR-106A-5p BTG3 miR-106A-5p inhibits autophagy and activates MAPK
signaling by targeting BTG3 Signal transduction [128]

Suppressors MiRNAs Affected Gene Molecular Mechanism Action Mode Ref

let-7i ARID3B let-7i inhibition enhances ARID3B expression and activates
the expression of POU5F1, NANOG, and SOX2 Gene expression [129]

let-7c CXCL8 let-7c inhibition enhances stemness and
radio-/chemoresistance by suppressing CXCL8 Signal transduction [130]

miR-101 EZH2 miR-101 inhibits EZH2 and suppresses metastasis and EMT Signal transduction [131]

miR-101 CDK8 miR-101 inhibits CDK8 expression and subsequently
suppresses Wnt/β-catenin signaling and tumorigenesis Signal transduction [132]

miR-124 STAT3 miR-124 inhibits tumor growth and metastasis by
suppressing STAT3 Signal transduction [133]
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6.2. MicroRNA as Prognostic Marker

Even neoplasms of the same type usually show large genetic diversity, which is often
overlooked in treatment planning, and may result in the selection of inappropriate and thus
ineffective therapy. The possibility of effective and, above all, very precise identification
of the type of cancer allows for the best selection of individual therapy for the patient,
and significantly increases the chances of a cure [134–136]. A variant allele in the KRAS 3’
untranslated region, which arises in the let-7 miRNA complementary site, was associated
with disease occurrence and patient survival in HNSCC, showing significantly reduced
survival time and suggesting that this variant may alter the phenotype or therapeutic
response of this disease [137]. The tumor suppressor protein p53, one of the most common
altered proteins in cancer resulting from the TP53 gene mutation, was evaluated for
survival rate in patients with squamous cell carcinoma of the head and neck, and revealed
decreased overall survival with even stronger association with disruptive mutations [138].
Further p53 studies confirmed these reports and refined the data by adding that this
association was stronger in the clinical subgroup of patients subjected to adjuvant therapy
after surgery [139]. In terms of not only decreased survival, but also the occurrence
of metastases, miR-375 has been reported to be a potential prognostic marker of poor
outcome and metastasis in HNSCC, and that it may function by suppressing the tumor’s
invasive properties [140]. MiRNA can also be used to prognose the risk of recurrence,
as high levels of hsa-miR-210 were associated with locoregional disease recurrence and
short overall survival [141]. Childs et al. showed that low levels of hsa-miR205 are
significantly associated with loco-regional recurrence, independent of the disease severity
at diagnosis and treatment. In addition, combined low levels of hsa-miR-205 and hsa-let-7d
expression in HNSCC tumors are significantly associated with poor head and neck cancer
survival [142]. In terms of the impact on the outcome of chemotherapy, it is worth paying
attention to the reports explaining the role that HMGA2 plays in governing genotoxic
responses. HMGA2 is associated with enhanced selective chemosensitivity towards the
topoisomerase II inhibitor, doxorubicin, in HNSCC [143]. One of the best-studied miRNAs,
miR-21, modulates the chemosensitivity of tongue squamous cell carcinoma (TSCC) cells
to cisplatin. Since chemoresistance is a huge challenge in tongue cancer management,
explaining that miR-21 could modulate the chemosensitivity of cancer cells to cisplatin by
targeting PDCD4 presents itself as a promising discovery and potential target for TSCC
therapy [144]. A unique group of head and neck cancers consists of HPV-16-mediated
cancers, they are more often localized in the oropharynx, and since HPV-infected epithelial
cells are more sensitive to chemotherapy this group is characterized by better survival
rates [145]. Among that group, the HPV-16-mediated downregulation of Hsa-miR-139-3p
may promote oncogenesis in HNC and cervical cancer, and as authors suggest on the basis
of this is the viral modulation of host miRNA expression [146]. Based on the miRNA panel,
it is also possible to distinguish HPV-positive from HPV-negative HNSCC, and the tests
were done in salivary microRNAs. The authors also suggested that the miRNA signature
in saliva can even discriminate different stages of HNSCC tumors [147]. The plasma levels
of a panel of miRNAs, including miR-142-3p, miR-186-5p, miR-195-5p, miR-374b-5p and
miR-574-3p, have been regarded as an HPV-independent prognostic panel for HNSCC
patients who were treated with combined radiochemotherapy [148].

6.3. Markers of Radiotherapy and Immunotherapy

Radiotherapy (RT) is a significant treatment for patients with head and neck cancer.
Despite the advances to improve treatment, many tumors acquire radiation resistance,
resulting in poor survival. The differential radiosensitivity has been largely associated
with altered cellular DNA damage response mechanisms in HPV-positive HNSCC, and
particularly with the signaling and repair of DNA double-strand breaks [149,150]. Since the
biological effect of RT differs between patients, there is a strong need for markers that will
help to assess the efficacy of therapy, which will allow to classify patients into appropriate
groups and assign them personalized treatment, which will significantly increase the
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chances of higher effectiveness, and perhaps even more importantly allow patients to avoid
unnecessary side effects. Unfortunately, while many patients with locally advanced disease
are cured with some combination of radiation, and chemotherapy or surgery, others will
develop recurrent/metastatic disease and are considered incurable [151]. For such patients,
immunotherapy may be an appropriate treatment choice. One of the major advantages
of immunotherapy over other forms of systemic cancer therapy is that responses can be
quite durable—with clinical benefit sometimes measured in years. Since most patients
with metastatic HNSCC do not have a clear tumor-specific target, the discovery of new
biomarkers will be essential for improving their outcomes with immunotherapy [152].
The microRNAs suggested as markers in radiotherapy and immunotherapy are presented
in Table 2.

Table 2. MicroRNA as radiotherapy and immunotherapy markers.

Radiotherapy

MicroRNA Regulation Potential Use Ref

miR-186-5p, miR-374b-5p, and miR-574-3p None Shorter progression-free or overall survival
rate in RT patients [148]

miR-296-5p Upregulated Resistance to radiotherapy marker [153]

miR-93, miR-200a Upregulated Treatment monitoring post-radiation [154]

miR-324-3p, miR-93-3p, miR-4501 Downregulated Resistance to radiotherapy marker [155]

miR-371a-5p, miR-34c-5p, miR-1323 Upregulated Resistance to radiotherapy marker [155]

miR-150, miR-1254, miR-16, miR-29b Upregulated Resistance to radiotherapy marker [156]

miR-141, miR-18b, miR-301a Downregulated Resistance to radiotherapy marker [157]

Immunotherapy

MicroRNA Regulation Potential Use Ref

miR-199a-3p, miR-21-5p, miR-28-5p Downregulated Immunotherapy predicting marker [158]

miR-200c-3p, miR-21-5p, miR-28-5p Downregulated Anti PD-1/PD-L1 treatment response marker [159]

let-7 family Downregulated Immunotherapy predicting marker [160]

6.4. Circulating MicroRNAs as a Liquid Biopsy

Liquid biopsy is recently gaining attention for the early diagnosis of cancers, including
the HNSCC. It is simple in the procedure and is a relatively quick test examining for
circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating miRNAs, and
tumor-derived extracellular vesicles (EVs), which are shed from primary tumors and their
metastatic sites into the peripheral blood; liquid biopsy seems to be a response to the urgent
need for a biomarker that will allow to raise diagnostics to a higher level. Speed, ease
of implementation and, above all, non-invasiveness, resulting in a significant reduction
in discomfort and risk for the patient, cannot be underestimated in this case [161,162].
However promising this direction may seem, it should be remembered that this approach
is innovative and still needs a lot of research, and due to its early stage it tackles the
problem of the lack of unified procedures and standardization, already described in earlier
chapters [163,164]. However, the potential behind the use of this type of diagnostic and
its benefits are pushing research on this topic at a very fast pace, which resulted in the
first registration by the US Food and Drug Administration (FDA) of the liquid biopsy test
in 2017 [165], which allowed to identify specific changes in single genes only, and soon
a modified version based on NGS that can evaluate many different genes at the same
time [166]. In regards the use of miRNA as a biomarker in liquid biopsy in HNSCC, the
few studies to date seem to be promising. Mazumder et al. showed the potential use of
miR-371, miR-150, miR-21 and miR-7d as prognostic markers, and miR-134, miR-146a,
miR-338 and miR-371 as metastasis markers in oral cancer [167]. Moreover, the prognostic
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markers, miR-21 and miR-7d, were also found to be significantly correlated with resistance
to chemotherapy. At the same time, the authors point to the still unbeatable difficulties in
unravelling the exact regulation of these miRNAs before using them for targeted therapy.
In the 2019 meta-analysis, Rapado-González et al. performed a comprehensive synthesis
of the possibility of using miRNA in liquid biopsy in the diagnosis of oral squamous cell
carcinoma [168]. The author points out that standard biopsy still remains the gold standard,
and this situation is mainly due to the lack of validation of miRNA biomarkers and the
enormous degree of tumor heterogeneity. Cancer heterogeneity remains one of the greatest
problems both in diagnosis and in treatment [169]. Tumor heterogeneity is associated
with poor prognosis and outcome, and is one of the leading determinants of therapeutic
resistance and treatment failure as well as one of the main reasons for poor overall survival
in cancer patients [170]. The very high degree of heterogeneity associated with HNSCC
presents an additional challenge in the attempt to use miRNA as a biomarker [171]. On
the one hand, an ideal biomarker requires a very high degree of specificity to undoubtedly
identify a given type of cancer, but on the other hand, due to the same heterogeneity, a
high degree of specificity comes with the risk of not covering all cases [172,173]. Finally
worth emphasizing is the use of miRNAs in liquid biopsy not only in peripheral blood, but
also in the saliva of patients with HNSCC. In this case, there are also no standards and the
research is at a very early stage, but the results seem to be promising and indicate rapid
development of this diagnostic branch [174].

7. Conclusions and Future Directions

More than a decade of research continues to strengthen the position of miRNAs as a
potentially extremely useful biomarker in HNSCC. This is not only in the primary scope of
the association with cancer risk modulation, but perhaps even more importantly, in such
detailed aspects as predicting the outcomes of chemotherapy, radiotherapy or immunother-
apy, and overall survival prognosis. This process is in line with the trend towards the use
of miRNAs in medicine, a branch that has already resulted in the implementation of the
commercial diagnostic tests, based on microRNA, mentioned earlier. However, as with
other neoplastic diseases, and in the use of miRNAs in medical diagnosis in general, the
application of HNSCC faces serious problems. The two basic directions in which particu-
lar emphasis should be placed include the unquestionable establishment of connections
between the aspect under study and a particular miRNA, and the standardization of the
diagnostic procedures. In the first aspect, reports on the non-specificity of miRNA as a
biomarker return inconclusive results of correlation with clinical events, and sometimes
conflicting research results indicate the need for a final determination of the role of miRNA
in the pathogenesis, development and response to cancer treatment. The problem of tumor
heterogeneity is also important here, which requires a very delicate approach and finding
the perfect compromise between the sensitivity and specificity of the biomarker, and the
risk of obtaining false negative results. In the second aspect, which also has an undeni-
able impact on the problems described in the first point, methodological problems and
the lack of unambiguous standardization criteria make it impossible to validate miRNA
as a biomarker in HNSCC and implement it for use in clinical practice. The creation of
standardized guidelines and protocols is a solution leading to both obtaining reliable
research results and a contribution to clinical implementation. The creation of a database
compiling the existing knowledge on the use of miRNAs in diagnostics, treatment and
prognosis would be extremely helpful in such standardization. Currently, there are several
projects grouping the existing data, but none are at the stage of clinical implementation. It
seems that we are at the stage of emerging a leader in this field, who will play such a role
in the future. Currently, one can use databases such as miR2Disease (manually curated
database for microRNA deregulation in human disease) [175], SomamiR 2.0 (a database
of cancer somatic mutations altering microRNA–ceRNA interactions) [176], dbDEMC (a
database of differentially expressed miRNAs in human cancers) [177], miRmine (a database
of human miRNA expression profiles) [178] or TANRIC (an interactive open platform
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to explore the function of lncRNAs in cancer) [179]. Over time, some of these databases
have become obsolete, e.g., miR2Disease offers only about 30 entries about all types of
HNSCC, all from before 2010, while others are dynamically developing—SomamiR 2.0
accumulates almost 300 entries only for the lower third part of esophagus squamous cell
carcinoma. Moreover, although there is no database dedicated exclusively to HNSCC,
with the data offered in existing sources for all types of cancer, you have access to almost
all miRNA alterations. However, it should be emphasized once again that the issue of
standardization of these data remains unresolved, and the fact that at the present stage of
their development, the data contained therein can be used primarily for scientific research
and not for clinical implementation. However, both of the abovementioned main aspects
(lack of standardization and no compelling data), while currently problematic, are not
unsolvable and, although they require a lot of work, they cannot rule out the potential
benefits of implementing miRNA as a biomarker in HNSCC. Obtaining a fast, reliable,
standardized and non-invasive diagnostic path for HNSCC patients will certainly bring
great benefits and is worth further work.
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