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OBJECTIVES: This study sought to identify monocyte alterations from septic 
patients after hospital discharge by evaluating gene expression of inflammatory 
mediators and monocyte polarization markers. It was hypothesized that sepsis 
reprograms the inflammatory state of monocytes, causing effects that persist after 
hospital discharge and influencing patient outcomes.

DESIGN: The gene expression patterns of inflammatory receptors, M1 and M2 
macrophage polarization markers, NLRP3 inflammasome components, and pro- 
and anti-inflammatory cytokines in monocytes were assessed.

PATIENTS: Thirty-four patients from the University of São Paulo Hospital, during 
the acute sepsis phase (phase A), immediately after ICU discharge (phase B), and 
3 months (phase C), 6 months (phase D), 1 year (phase E), and 3 years (phase 
F) after discharge, were included. Patients that died during phases A and B were 
grouped separately, and the remaining patients were collectively termed the sur-
vivor group.

MEASUREMENTS AND MAIN RESULTS: The gene expression of toll-like 
receptor (TLR)2 and TLR4 (inflammatory receptors), NLRP3, NFκB1, adaptor 
molecule apoptosis-associated speck-like protein containing a CARD, caspase 
1, caspase 11, and caspase 12 (NLRP3 inflammasome components), interleukin-
1α, interleukin-1β, interleukin-18, and high-mobility group box 1 protein (proin-
flammatory cytokines), interleukin-10 (anti-inflammatory cytokine), C-X-C motif 
chemokine ligand 10, C-X-C motif chemokine ligand 11, and interleukin-12p35 
(M1 inflammatory polarization markers), and C-C motif chemokine ligand 14, C-C 
motif chemokine ligand 22, transforming growth factor-beta (TGF-β), SR-B1, 
and peroxisome proliferator-activated receptor γ (M2 anti-inflammatory polariza-
tion and tissue repair markers) was upregulated in monocytes from phase A until 
phase E compared with the control group.

CONCLUSIONS: Sepsis reprograms the inflammatory state of monocytes, prob-
ably contributing to postsepsis syndrome development and mortality.

KEY WORDS: inflammasome; M1 macrophage; M2 macrophage; postsepsis 
syndrome

Sepsis is caused by an intense unregulated immune response to infec-
tion that damages human tissues and organs (1). Progression to septic 
shock, characterized by persistent hypotension requiring vasopressors 

to maintain a mean blood pressure above 65 mm Hg and elevated plasma lac-
tate concentrations (>18 mg/dL) after adequate blood volume replacement, 
often causes death (1, 2). Septic shock patients in ICUs present the charac-
teristic inflammatory response followed by organ function loss (3). Annually, 
there are approximately 49 million sepsis cases and 11 million sepsis-related 
deaths worldwide (4).

Sepsis survivors often present sequelae collectively called postsepsis syn-
drome (PSS) (5) associated with a prolonged cognitive and functional de-
cline, chronic renal and respiratory dysfunction, fatigue, depression, and 
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reduced physical function, resulting in poor quality 
of life (6–11). In general, septic shock patients typi-
cally exhibit more sequelae post-ICU, persisting for 
6 months or longer (12), than those with sepsis (13). 
The causes of the sequelae in postsepsis patients re-
main under investigation.

It has been reported that infections commonly 
occur in sepsis survivor patients (5, 14). For example, 
a recent study investigated 1,731 postsepsis patients 
and reported higher incidences of abdominal cavity 
(20.6%) and urinary tract (19.2%) infections, and 
lung pneumonia (11.3%). Furthermore, 47% of post-
sepsis patients were diagnosed with an infection less 
than 1-year post-ICU, a value reduced to 38.7% after 
1–5 years, 7.5% after 6–10 years, and 6% after greater 
than 10 years (6).

Concerning sepsis-related mortality, a study re-
ported that 66% and 70% of septic shock patients die 
within 1 and 2 years following hospital discharge, 
respectively (7). In the same study, all septic shock 
patients died less than 5 years post-ICU, whereas 
18.3% of the septic patients survived 8 years. Jagodic 
and Podbregar (15) observed 30% and 70% mortality 
rates in postsepsis patients after 1 and 2 years, respec-
tively. Another study reported that 41.3% of patients 
die within 90 days, and 81.9% within 5 years post-ICU 
(16). Furthermore, a study with 1,083 participants 
found that 27.5% of the patients died 90-day postsep-
sis, and 44.2% died after 1 year (11). However, the spe-
cific underlying factors contributing to these statistics 
remain unknown.

It has been proposed that immature circulating 
monocytes migrate to sites of tissue inflammation 
(17), releasing pro- and anti-inflammatory cytokines 
and antigenic phagocytosis-produced particles (18) 
and inducing systemic inflammation (19). Indeed, 
depending on microenvironment factors, monocyte-
derived macrophages can differentiate into proinflam-
matory (M1) or anti-inflammatory and tissue repair 
(M2) subtypes (17, 20, 21).

Toll-like receptor (TLR) agonists (e.g., interferon-γ) 
can transform macrophages into the proinflamma-
tory M1 subtype. In contrast, interleukin (IL)-4, 
IL-13, IL-10, and transforming growth factor-beta 
(TGF-β) cytokines induce M2 polarization (17, 22). 
Concomitant to macrophage polarization, there are 
marked changes in cell metabolism, known as meta-
inflammation (23–25). Studies have shown that M1 

macrophages generate high adenosine triphosphate 
(ATP) levels in the cytosol through aerobic glycol-
ysis, whereas the Krebs cycle and mitochondrial oxi-
dative phosphorylation are primarily responsible for 
M2 macrophage ATP production (26). Previously, a 
marked increase in the proportion of proinflamma-
tory M1 macrophages during the acute sepsis phase 
was reported (27). Interestingly, the sepsis-induced 
macrophage inflammatory state persists after hospital 
discharge (28), possibly contributing to PSS develop-
ment (29–33) and involving monocyte reprogram-
ming (18, 34).

Previous studies reported that sepsis-induced epige-
netic changes in leukocyte progenitor cells from bone 
marrow persist in peripheral macrophages, impairing 
their function even after sepsis resolution (35–38). 
Monocytes collected during the acute sepsis phase 
and after 7 days of hospitalization exhibited increased 
phagocytosis capacity and reactive oxygen species and 
nitric oxide production in vitro (32). However, IL-6 
and tumor necrosis factor-α (TNF-α) production was 
attenuated in monocytes from the septic patients com-
pared with healthy volunteers, as observed in endo-
toxin-stimulated monocytes in vitro (29, 30).

In addition to epigenetic mechanisms, immune cell 
reprogramming involves marked alterations in cell 
metabolism (33), switching from a proinflammatory 
to an immunosuppressed state in septic patients (31). 
Septic patients’ monocytes display multiple energy me-
tabolism defects that have been correlated with immu-
nometabolism paralysis characterized by reduced 
cytokine production capacity. Consequently, reduced 
leukocyte function in the late sepsis phase results in 
immunoparalysis, increasing the patient’s suscepti-
bility to secondary and opportunistic infections (39).

Most of the above studies followed patients for up 
to 1 year after hospital discharge. Herein, we hypoth-
esized that sepsis reprograms the inflammatory state 
of monocytes, causing effects that persist for an ex-
tended period after hospital discharge and influence 
patient outcomes. To address the proposed hypothesis, 
the gene expression levels of inflammatory receptors, 
macrophage polarization markers, NLRP3 inflamma-
some components, and pro- and anti-inflammatory 
cytokines in monocytes collected during the acute 
sepsis phase and up to three years post-ICU discharge 
were monitored to investigate sepsis-induced mono-
cyte reprogramming.
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MATERIALS AND METHODS

Patient Selection

Sixty-two clinically diagnosed sepsis patients admit-
ted to the University Hospital at the University of São 
Paulo (HU-USP), São Paulo, Brazil, were enrolled in 
the study. Blood was collected by day 4 of ICU ad-
mission (phase A), immediately after ICU discharge 
(phase B), and 3-month (phase C), 6-month (phase D), 
1-year (phase E), and 3 year (phase F) post-ICU.

The study included patients diagnosed with sepsis 
or septic shock according to the diagnostic criteria 
of Sepsis 3 (1). We excluded patients diagnosed with 
HIV, chronic hepatitis, cancer, and autoimmune and 
inflammatory diseases from the study and volunteers 
who did not participate in all blood collections.

Fourteen participants failed to meet the inclusion 
criteria, 10 were not located (three attempts), and four 
withdrew. Of the remaining 34 patients, 11 died during 
hospitalization (phase A death group), six died after 
ICU discharge (phase B death group), 17 survived 1 
year (phase A–E survivor groups), and eight survived 
3 years post-ICU (phase F survivor group). Control 
individuals who never had sepsis and were not regu-
larly taking anti-inflammatory medication were com-
pared with septic patients. The control group’s age and 
sex distributions were similar to those of the septic pa-
tient groups.

The Ethics Committee of HU-USP (Process 
1513/01/29/2016) approved this study. All participants 
or relatives provided informed written consent be-
fore enrolling in the study. The characteristics of the 
selected patients are in Table 1, and Tables S1 and S2 
(http://links.lww.com/CCX/B32). Overall the study.

Blood Collection and Monocyte Preparation

Approximately 20 mL of blood from the antecubital 
vein were collected into BD vacutainer tubes contain-
ing 1-mg/mL EDTA (Becton Dickinson, San Diego, 
CA). Samples were diluted 1:1 in phosphate-buffered 
saline, layered onto Histopaque-1077 (Sigma-Aldrich, 
St. Louis MO), and centrifuged (400 × g, 30 min) at 
room temperature. Peripheral blood mononuclear 
cells (mixture of monocytes and lymphocytes) were 
isolated from the interphase and cultured in RPMI-
1640 culture medium containing 10% fetal bovine 
serum (Sigma-Aldrich) in a 5% CO2 incubator at 37°C 

TABLE 1. 
Characteristics of Patients (n = 34), São 
Paulo, 2016–2017
Sex Female 13 (38.2%) 

Male 21 (61.8%)

Age Average (sd) 59.7 (13.5)

Median  
(min–max)

60 (34-87)

Comorbidities Absent, n (%) Present, n (%)

Arterial hypertension 14 (41.2) 20 (58.8)

Diabetes mellitus 21 (61.8) 13 (38.2)

Acute renal insufficiency 25 (73.5) 9 (26.5)

Heart disease 26 (76.5) 8 (23.5)

Chronic renal insufficiency 32 (94.1) 2 (5.9)

Chronic obstructive pulmo-
nary disease

33 (97.1) 1 (2.9)

Cirrhosis 33 (97.1) 1 (2.9)

Congestive heart failure 33 (97.1) 1 (2.9)

Hyperthyroidism 33 (97.1) 1 (2.9)

Dementia 33 (97.1) 1 (2.9)

Chronic osteomyelitis 33 (97.1) 1 (2.9)

Liver disease 33 (97.1) 1 (2.9)

Sequential Organ Failure 
Assessment, n (%)

2–6 5 (14.7)

7–9 9 (26.5)

10–12 11 (32.4)

13–14 5 (14.7)

15 0

16–19 4 (11.8)

Length of stay in the ICU 
(d)

Average (sd) 13.1 (13.9)

Median  
(min–max)

9.5 (2–75)

Sepsis focus

 Abdominal  9 (26.5)

 Leptospirosis  1 (2.9)

 Osteomyelitis  1 (2.9)

 Pancreatitis  1 (2.9)

 Soft parts  1 (2.9)

 Lungs  10 (29.4)

 Kidney  6 (17.6)

 Skin  1 (2.9)

 Another  4 (11.8)

Status vital Survivors 17 (47.1)

Deaths 17 (52.9)

min = minimum value, max = maximum value. 
Length of stay in the ICU (d): 2 (not informed).

http://links.lww.com/CCX/B32
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for 1 hour. After incubation, monocytes adhered to the 
culture plate were resuspended in Trizol (Invitrogen, 
Carlsbad, CA) and stored at –80°C. The HU-USP 
Clinical Analysis Laboratory performed the biochem-
ical and hematological plasma measurements.

RNA Isolation and cDNA Synthesis

Total RNA was extracted from monocytes using the 
RNAqueous Micro Kit following the manufacturer’s 
protocol (Thermo Fisher Scientific, Waltham, MA). 
RNA concentration and purity were assessed using 
a NanoDrop spectrophotometer (Thermo Fisher 
Scientific) by measuring the absorbance at 260 and 
280 nm. The extracted RNA (1 μg) was transcribed 
into cDNA using the High-Capacity cDNA Reverse 
Transcription Kit (Thermo Fisher Scientific).

qPCR

For the qPCR assays, 12.5-μL Power SYBR Green PCR 
Master Mix (Thermo Fisher Scientific), and 40-ng, 1-μM 
forward and reverse primers (Exxtend, Paulínia, SP, Brazil) 
were combined. Then, 6.9-μL nuclease-free water was 
added to the wells of a 96-well plate. The reactions were 
performed on a QuantStudio 3 (Thermo Fisher Scientific) 
following the SYBR Green protocol. Melt curves were ana-
lyzed to determine the qPCR product specificity and mon-
itor primer-dimer formation. Results were normalized to 
the reference gene Syntaxin 5A. Primer sequences are pro-
vided in Table S3 (http://links.lww.com/CCX/B32).

Statistical Analysis

The central tendency and dispersion measures of the 
quantitative variables (mean, median, sd, minimum 
value, maximum value, first quartile, and third quar-
tile) were calculated. The normality of the data was 
tested by the Kolmogorov-Smirnov test under the null 
hypothesis that the data follow a normal distribution. 
Comparison between independent variables was per-
formed using the nonparametric Mann-Whitney U 
test. The generalized estimating equations method 
was used to analyze the data over time, considering 
vital status and time as factors. Paired comparisons 
were performed using the Bonferroni method, and 
the significance level adopted was 5%. Statistical 
analyses were performed using the SPSS for Windows 
Version 25 software (IBM, Armonk, NY).

RESULTS

Clinical Assessment

This study included 34 patients (17 survivors and 
17 deaths) with sepsis and septic shock and 17 con-
trol individuals without any history of the disease. 
Patients were evaluated from phase A (disease onset) 
to phase F (3 years after ICU discharge) of the di-
sease. Most patients were male (61.8%), and the 
mean age was 59.7 years (minimum of 34 and max-
imum of 87 yr) (Table 1).

The most frequent comorbidity was arterial hy-
pertension (58.8%), followed by diabetes mellitus 
(38.2%), renal failure (26.5%), and heart disease 
(23.5%) (Table 1).

Sequential Organ Failure Assessment scores ranged 
from 2 to 19, with 32.4% of patients scoring 10 to 12. 
The mean length of stay in the ICU was approximately 
13 days, ranging from 2 to 75 days. Of the total number 
of enrolled patients, 52.9% died during the study.

As shown in Table  1, the incidences of Gram-
positive and Gram-negative bacteria in septic patients 
were similar. The most frequent infectious foci in-
cluded the lungs (29.4%), abdominal cavity (26.5%), 
kidney (17.6%), skin (2.9%), soft tissue (2.9%), os-
teomyelitis (2.9%), pancreatitis (2.9%), leptospirosis 
(2.9%), and other (11.8%).

The plasma biochemical, hematological, and in-
flammatory data are presented in Table S4 (http://
links.lww.com/CCX/B32).

Gene Expression of M1 and M2 Macrophage 
Polarization Markers

The C-X-C motif chemokine ligand 10 (CXCL10), 
C-X-C motif chemokine ligand 11 (CXCL11), 
IL-12p35, and IL-1β genes were used as M1 markers 
and the C-C motif chemokine ligand 14 (CCL14), C-C 
motif chemokine ligand 22 (CCL22), TGF-β, scav-
enger receptor class B type 1 (SR-B1), and peroxisome 
proliferator-activated receptor γ (PPARγ) genes were 
used as M2 macrophage polarization markers, follow-
ing Jaguin et al (20).

The expression of CXCL10 was downregulated (p 
< 0.05) in survivor phase D (Fig. 1A; and Table S5, 
http://links.lww.com/CCX/B32). CXCL11 expression 
was downregulated (p < 0.05) in phase F (Fig. 1B; and 
Table S5, http://links.lww.com/CCX/B32), IL-12p35 

http://links.lww.com/CCX/B32
http://links.lww.com/CCX/B32
http://links.lww.com/CCX/B32
http://links.lww.com/CCX/B32
http://links.lww.com/CCX/B32
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was upregulated (p < 0.05) in all survivor phases (A–F) 
(Fig. 1C; and Table S5, http://links.lww.com/CCX/
B32), and IL-1β expression was upregulated (p < 0.05) 
in phases A–E (Fig. 1D; and Table S5, http://links.lww.
com/CCX/B32) compared with the control group.

Comparisons among the study survivors showed 
that the expression of CXCL10 during phase F was 
attenuated (p < 0.05) compared with phases A, B, 
and D (p < 0.05) and that phase D expression was 
reduced (p < 0.05) compared with phases B, C, and E 
(Table S7, http://links.lww.com/CCX/B32). Similar 
to CXCL10, peer comparisons revealed that phase F 
CXCL11 expression levels were decreased (p < 0.05) 
compared with phases A, B, and D (Table S7, http://
links.lww.com/CCX/B32). Furthermore, phase F 
IL-12p35 expression levels were significantly less (p < 
0.05) than that in phase E (Table S7, http://links.lww.

com/CCX/B32). There was no difference in IL-1β ex-
pression between the death and the survivor groups 
(p > 0.05).

Concerning M2 macrophage marker gene ex-
pression, the expression of PPARγ was upregulated 
(p < 0.05) during survivor phases A–E (Fig. 2A; and 
Table S5, http://links.lww.com/CCX/B32), TGF-β was 
upregulated (p < 0.05) in phases A–F (Fig. 2B; and 
Table S5, http://links.lww.com/CCX/B32), SR-B1 was 
upregulated (p < 0.05) in phases A–F (Fig. 2C; and 
Table S5, http://links.lww.com/CCX/B32), and CCL14 
was upregulated (p < 0.05) in phases A, C, D, and E 
(Fig. 2D; and Table S5, http://links.lww.com/CCX/
B32). Interestingly, CCL22 expression was upregulated 
(p < 0.05) in phases C and E but was downregulated (p 
< 0.05) in phase F (Fig. 2E; and Table S5, http://links.
lww.com/CCX/B32) compared with the control group.

Figure 1. Messenger RNA expression of M1 macrophage markers. A, C-X-C motif chemokine ligand 10 (CXCL10). B, C-X-C motif 
chemokine ligand 11 (CXCL 11). C, Interleukin 12 p35 (IL-12p35). D, Interleukin 1-beta (IL-1β). Description of the phases: A—acute 
period; B—immediately after ICU discharge; C—3-mo post-ICU; D—6-mo post-ICU; E—1-yr post-ICU; and F—3-yr post-ICU. Results are 
presented as the median.

http://links.lww.com/CCX/B32
http://links.lww.com/CCX/B32
http://links.lww.com/CCX/B32
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Comparisons among the study survivors demon-
strated that PPARγ expression was higher in phase F 
than in phases A and E (p < 0.05) (Table S7, http://
links.lww.com/CCX/B32), TGF-β expression was 
higher in phase F (p < 0.05) compared with phase E 
(Table S7, http://links.lww.com/CCX/B32), SR-B1 ex-
pression levels were greater (p < 0.05) than those in 
phase E (Table S7, http://links.lww.com/CCX/B32), 
CCL14 expression in phase F was less (p < 0.05) than 
that in phase E (Table S7, http://links.lww.com/CCX/
B32), and CCL22: expression was downregulated in 
phase E (p < 0.05) compared with phase A, and down-
regulated in phase F expression (p < 0.05) compared 
with phases A and E (Table S7, http://links.lww.com/
CCX/B32).

Analysis over time according to mortality identified 
differences between the survivor and death groups (p < 
0.05) for the gene expression of M1 polarization mark-
ers CXCL10 and IL-12p35 (Table S6, http://links.lww.
com/CCX/B32) and M2 polarization markers TGF-β 
and SR-B1 (Table S6, http://links.lww.com/CCX/B32). 
The expression of CXCL10 was upregulated (p < 0.05) 
in the survivor group, whereas the expression levels of 

IL-12p35, TGF-β and SR-B1 were downregulated (p < 
0.05) in the death group (Table S6, http://links.lww.
com/CCX/B32).

The expression of M1 and M2 marker genes 
is upregulated for up to 1 year after hospital dis-
charge. Three years after hospital discharge (phase 
F), the expression levels of all polarization mark-
ers returned to control group levels. These findings 
suggest that sepsis survivors undergo monocyte 
reprogramming, which favors the M1 type and lasts 
up to a year.

Gene Expression of Inflammasome 
Components

The expression of NLRP3 was upregulated (p < 0.05) 
in phases A, B, D, E, and F compared with the control 
group (Fig. 3A; and Table S5, http://links.lww.com/
CCX/B32), but there were no significant differences 
(p greater than 0.05) among survivor group patients 
over time (Table S7, http://links.lww.com/CCX/B32). 
Additionally, NFκB1 (Fig. 3B; and Table S5, http://
links.lww.com/CCX/B32) and Adaptor molecule 

Figure 2. Messenger RNA expression of M2 macrophage markers. A, Peroxisome proliferator-activated receptor γ (PPARγ). B, 
Transforming growth factor β (TGF-β). C, scavenger receptor class B type 1 (SR-B1). D, C–C motif chemokine ligand 14 (CCL14). E, 
C–C motif chemokine ligand 22 (CCL22). Description of the phases: A—acute period; B—immediately after ICU discharge; C—3-mo 
post-ICU; D—6-mo post-ICU; E—1-yr post-ICU; and F—3-yr post-ICU. Results are presented as the median.
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apoptosis-associated speck-like protein containing a 
CARD (ASC) (Fig. 3C; and Table S5, http://links.lww.
com/CCX/B32) expression levels were augmented in 
survivor phases A–F (p < 0.05) compared with the 
control group. It is worth mentioning that nuclear fac-
tor kappa B (NF-κB) p105 subunit expression in phase 
C of the survivor group was upregulated (p < 0.05) 
compared with phase F (Table S7, http://links.lww.
com/CCX/B32), but there was no difference between 
the death and survivor groups (Table S6, http://links.
lww.com/CCX/B32).

The expression of caspase 1 (CASP1) and cas-
pase 12 (CASP12) was upregulated (p < 0.05) in 
all survivor phases (A–F) compared with the con-
trol (Fig. 3, D and E; and Table S5, http://links.lww.
com/CCX/B32). Additionally, caspase 11 (CASP11) 
expression (p < 0.05) was increased in phases B, D, 
and F compared with the control group (Fig. 3F; 
and Table S5, http://links.lww.com/CCX/B32). A 
comparison between the survivor and death groups 
revealed significant alterations (p < 0.05) in CASP1 
and CASP12 expressions (Table S6, http://links.lww.
com/CCX/B32). For example, the expression of 
CASP1 was increased (p < 0.05) in the death group, 
whereas the expression of CASP12 was increased (p 

< 0.05) in the survivor group (Table S6, http://links.
lww.com/CCX/B32).

Gene Expression of Pro- and Anti-Inflammatory 
Cytokines

In addition to upregulated IL-1β expression, IL-1α 
gene expression was found to be increased (p < 0.05) 
in survivor group phases A–E compared with the 
control group (Table S5, http://links.lww.com/CCX/
B32) and downregulated (p < 0.05) in monocytes 
from the death groups compared with the survivor 
group (Fig. 4A; and Table S6, http://links.lww.com/
CCX/B32). IL-18 and high-mobility group box 1 
protein (HMGB1) (late proinflammatory cytokine) 
gene expression was upregulated in monocytes from 
all survivor group phases (p < 0.05) compared with 
the control group. The former remained elevated (p 
< 0.001) in phase F (Fig. 4B; and Table S5, http://
links.lww.com/CCX/B32), whereas the expression 
of the latter cytokine was reduced (p < 0.05) in the 
death group compared with the survivor group (Fig. 
4C; and Table S6, http://links.lww.com/CCX/B32). 
Finally, the expression of the anti-inflammatory 
cytokine IL-10 was elevated (p < 0.05) in survivor 

Figure 3. Messenger RNA expression of inflammasome components. A, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3). 
B, Nuclear factor kappa B (NFκB1). C, Adaptor molecule apoptosis-associated speck-like protein containing a CARD (ASC). D, Caspase 
1 (CASP1). E, Caspase 12 (CASP12). F, Caspase 11 (CASP11). Description of the phases: A—acute period; B—immediately after ICU 
discharge; C—3-mo post-ICU; D—6-mo post-ICU; E—1-yr post-ICU; and F—3-yr post-ICU. Results are presented as the median.
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phases A–F (Fig. 4D; and Table S5, http://links.lww.
com/CCX/B32).

Gene Expression of Inflammatory Receptors

Compared with controls, TLR2 gene expression was 
upregulated (p < 0.05) in phases A–E (Fig. 4E; and Table 
S5, http://links.lww.com/CCX/B32). TLR2 gene ex-
pression in phases B, C, D, E, and F was downregulated 
(p < 0.05) compared with phase A (Fig. 4F; and Table 
S7, http://links.lww.com/CCX/B32). Similarly, TLR4 
gene expression was increased (p < 0.05) in phases A–F 
compared with the control group (Fig. 4F; and Table 
S5, http://links.lww.com/CCX/B32), with significantly 
lower (p < 0.05) expression levels in phase F than in 
phase A (Table S7, http://links.lww.com/CCX/B32).

DISCUSSION

The present study showed that M1 and M2 marker 
messenger RNA expression levels were higher in 
monocytes from septic patients than in controls. 
Additionally, the expression of M1 markers, CXCL10, 
CXCL11, and IL-1β, was upregulated during phase 

A and remained above control levels until phase E, 
whereas IL-12p35 remained elevated in phase F. M2 
polarization markers PPARγ, CCL14, and CCL22 
remained above control levels for up to 1 year. TGF-β 
and SRB1 continued to be upregulated for up to 3 years 
post-ICU. The observed upregulation of TLR2, TLR4, 
NF-κB, NLRP3, ASC, CASP1, CASP11, CASP12, IL-1α, 
HMGB1, IL-1β, IL-18, and IL-10 during phase A is 
consistent with previous studies (40–45). Interestingly, 
the gene expression of NLRP3, NFκB, TLR2, IL-1α, 
IL-1β, and IL-10 remained upregulated 1-year post-
ICU, and CASP1, CASP11, CASP12, ASC, TLR4, IL-18, 
and HMGB1 expression was augmented 3-year post-
ICU. These results are summarized in Figure 5.

In healthy subjects, monocytes are nonpolarized cir-
culating cells (20). These cells express chemokine and 
adhesion receptors that mediate their migration from 
the blood to tissue during inflammatory processes. 
When there is an insult, these cells are recruited and 
undergo maturation into macrophages (17). Herein, 
monocytes from healthy individuals exhibited low 
messenger RNA expression levels for M1 and M2 polar-
ization markers, NLRP3 inflammasome components, 

Figure 4. Messenger RNA expression of inflammatory receptors and pro- and anti-inflammatory cytokines. A, Interleukin 1 alpha (IL-
1α). B, Interleukin-18 (IL-18). C, High-mobility group box 1 protein (HMGB1). D, Interleukin-10 (IL-10). E, Toll-like receptor 2 (TLR2). F, 
Toll-like receptor 4 (TLR4). Description of the phases: A—acute period; B—immediately after ICU discharge; C—3-mo post-ICU; D—6-mo 
post-ICU; E—1-yr post-ICU; and F—3-yr post-ICU. Results are presented as the median.
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and pro- and anti-inflammatory cytokines, opposite 
of what was observed in patients with and after sepsis. 
We found that monocytes from the control group have 
basal and constant M1 and M2 polarization marker 
messenger RNA expression. Indeed, monocytes from 
the survivor group displayed increased M1 or M2 po-
larization marker gene expression, with some changes 
lasting for up to 1 year after discharge and mostly re-
turning to control levels after 3 years.

Sepsis causes marked changes in macrophage func-
tions and increases M1 cell proportion, particularly in 
the acute phase. Several groups reported that macro-
phages undergo cell metabolism reprogramming dur-
ing sepsis (29–33). Notably, our results indicate that 
sepsis-induced macrophage reprogramming remains 
for up to 1 year and is elevated for up to 3-year post-
ICU in some cases.

As mentioned above, the expression of IL-1α, 
HMGB1, and CASP-12 was higher (p < 0.05) in the 
survivor group than in the death group (Table S6, 
http://links.lww.com/CCX/B32). CASP1 is linked to 
the assembly of the inflammasome complex through 
the classical pathway, cleaving and releasing the active 
forms of the cytokines IL-1β and IL-18. On the other 
hand, CASP12 inhibits the inflammasome assembly. 
Interestingly, monocytes of the death group express 
more CASP1 and less CASP12 than the survivor group. 
This result indicates an association between NLRP3 
inflammasome downregulation via CASP12 and sur-
vival. The expression of proinflammatory cytokines 

from the nonclassical NLRP3 inflammasome pathway 
corroborates this proposal. It should also be pointed 
out that survivors’ monocytes expressed more HMGB1 
and IL-1α than patients who died. Thus, it is plausible 
that the downregulation of the classical pathway and 
the nonclassical NLRP3 inflammasome might play a 
role in sepsis survival.

As shown in Figure  5, monocytes from septic 
patients remained activated for up to 1 year and 
slightly activated for 3-year post-ICU, contributing to 
persistent systemic inflammation. The expression of 
IL-1α and IL-1β was markedly enhanced during and 
after sepsis (Fig. 5A), with values greater than 5,000 
times higher than the control group 1-year post-ICU. 
However, the values were not different from the con-
trol after 3 years. Previous reports demonstrated that 
some stimuli cause long-term cellular reprogramming 
(35–37), supporting our evidence of such an event in 
the monocytes of septic patients. Several parameters 
did not return to control levels after 3 years (Fig. 5).

Concerning TLRs, these receptors play an impor-
tant role in the pathogenesis of sepsis (40). Our data 
show that TLR2 and TLR4 messenger RNA expression 
in the survivor group during phase A increased com-
pared with the control group. It already has reported 
that TLR signaling pathways were upregulated dur-
ing sepsis and correlated with disease severity (41). 
Although TLR2 and TLR4 gene expression was upreg-
ulated in monocytes of septic patients compared with 
the control group, mortality was only associated with 

Figure 5. Messenger RNA expression of NLRP3 inflammasome compounds. A, Interleukin 1 alpha (IL-1α) and interleukin 1 beta 
(IL-1β). B, NLRP3, Toll-like receptor 4 (TLR4), Toll-like receptor 2 (TLR2), High-mobility group box 1 protein (HMGB1), Caspase 11 
(CASP11), Caspase 12 (CASP12), Caspase 1 (CASP1), adaptor molecule apoptosis-associated speck-like protein containing a CARD 
(ASC), Interleukin-18 (IL-18), and nuclear factor kappa B (NFκB). Description of the phases: A—acute period; B—immediately after ICU 
discharge; C—3-mo post-ICU; D—6-mo post-ICU; E—1-yr post-ICU; and F—3-yr post-ICU. Results are presented as the median.
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TLR2 in blood monocytes and correlated with reduced 
IL-10 and TNF-α expressions.

The initial inflammatory response of monocytes/
macrophages is associated with the release of TNF-
α, IL-1β and other early inflammatory mediators of 
shock and tissue injury. In sepsis, HMGB1 is released 
by activating innate immune cells in the late phase of 
the disease (42, 43). Another study demonstrated that 
plasma HMGB1 concentration correlates with disease 
severity mortality levels in ICU patients with severe 
pneumonia (44). Plasma HMGB1 concentrations have 
also been correlated with the trauma severity and are 
significantly higher in patients with multiple organ 
failure and those who die (43, 45, 46). Furthermore, 
plasma HMGB1 was higher in individuals who died 
during the first year after sepsis when compared with 
survivors (28).

The small number of septic patients that survived 
3-year post-ICU (n = 8) is one limitation of the study. 
However, the results are highly relevant to sepsis re-
search, especially postsepsis diagnosis and follow-up. 
Most previous studies focused only on the acute sepsis 
phase, used animal models/immortalized cell lines, 
or did not follow up with the patients. It remains un-
clear whether cell reprogramming occurs in the bone 
marrow and/or plasma or if epigenetic and metabolic 
mechanisms are involved, but these studies are cur-
rently underway.

In conclusion, we demonstrated that sepsis induces 
monocyte reprogramming. Some gene expression of 
macrophage polarization markers, NLRP3 inflamma-
some components, and proinflammatory cytokines 
remained elevated for 3 years after ICU discharge, thus 
representing potential postsepsis survival indicators. It 
is plausible that these reprogrammed monocytes with 
a sepsis-induced memory (Msepsis monocytes) could 
contribute to PSS onset and development, influencing 
post-ICU outcomes.
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