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Voluntary control of intracortical 
oscillations for reconfiguration of 
network activity
Juliana Corlier1,2, Mario Valderrama3, Miguel Navarrete3, Katia Lehongre1,4, 
Dominique Hasboun1,2,5, Claude Adam1,2,5, Hayat Belaid1,2,6, Stéphane Clémenceau1,2,6, 
Michel Baulac1,2,5, Stéphane Charpier1,2, Vincent Navarro1,2,5 & Michel Le Van Quyen1,2

Voluntary control of oscillatory activity represents a key target in the self-regulation of brain function. 
Using a real-time closed-loop paradigm and simultaneous macro- and micro-electrode recordings, 
we studied the effects of self-induced intracortical oscillatory activity (4–8 Hz) in seven neurosurgical 
patients. Subjects learned to robustly and specifically induce oscillations in the target frequency, 
confirmed by increased oscillatory event density. We have found that the session-to-session variability 
in performance was explained by the functional long-range decoupling of the target area suggesting 
a training-induced network reorganization. Downstream effects on more local activities included 
progressive cross-frequency-coupling with gamma oscillations (30–120 Hz), and the dynamic 
modulation of neuronal firing rates and spike timing, indicating an improved temporal coordination of 
local circuits. These findings suggest that effects of voluntary control of intracortical oscillations can 
be exploited to specifically target plasticity processes to reconfigure network activity, with a particular 
relevance for memory function or skill acquisition.

An increasing number of studies provides astonishing evidence on the ability of humans and animals to control 
oscillatory rhythms, hemodynamic response, cellular activity or spike-related calcium signals upon presentation 
of sensory real-time feedback of the neural activity in question1–7. Cortical oscillations play a critical role in neu-
ral and cognitive function and represent thus an important target for voluntary control. It has been suggested that 
oscillations regulate network communication8, mediate long-range integration9, contribute to memory forma-
tion10 or to cognitive control11. Previous scalp electroencephalogram (EEG) neurofeedback studies have targeted 
theta, alpha, beta or sensorimotor rhythms, applying the training to boost attention12–14, memory15–18 or executive 
functions19–21. In a more engineering approach brain-computer-interfaces (BCI) based on EEG or electrocorti-
cogram (ECoG) recordings are used to control a computer cursor, robotic limbs or restore motor function by 
modulating neural activity in motor-related areas22–25. The findings of these studies hold great promise for neural 
self-regulation that would permit restoration or enhancement of brain function in regular or clinical contexts. 
However, the fundamental physiological processes that mediate such voluntary control in the human brain are 
not often addressed and remain poorly understood, which would be necessary to capitalize on this technique26,27.

From the mechanistic point of view, neural oscillations represent large-scale cyclic modulations of extracellu-
lar potentials and local excitability of the network, which can attenuate or amplify faster, more local oscillations or 
neuronal discharges. By opposing temporal windows of integration, these self-organizing poles have the potential 
to coordinate local network activity and increase network communication and processing efficiency. Notably, it 
has been proposed that so called cross-frequency coupling may represent an electrophysiological signature of this 
improved coordination process during sensory and memory processes. Given that the communication between 
regions is influenced by the oscillatory coherence between the sender and the receiver8,28, changes in gamma 
oscillatory coherence, imposed by theta oscillatory phase, will selectively route information processing29–33.
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Given this framework, it is likely that voluntarily induced slow oscillations can entrain higher levels of gamma 
coherence, that over time would give rise to more efficient communication between the local networks. Especially 
the theta rhythm, that is associated with high-level functions including cognitive control34–36 is an appropriate 
target for neural self-regulation that may facilitate downstream alterations even at a very local network and cel-
lular level27. To study this question, we measured stereotactic electroencephalography (sEEG) and unit activity 
of seven neurosurgical patients while they learned to voluntarily induce theta oscillatory activity (4–8 Hz) at one 
target electrode and guided by the presentation of its visual real-time feedback. Although similar scalp-EEG 
studies have been conducted previously (e.g. ref. 21), intracortical recordings represent a particularly valuable 
data source to obtain mechanistic insight in neural function37, but also to better link human and animal findings 
on this subject. Combined depth- and micro-electrode recordings allowed us to examine activity from large-scale 
level until the very local neuronal activity of the human brain. We asked: i) Whether voluntary control of intra-
cortical oscillations was possible ii) If so, what were the fundamental neural signatures of it and iii) whether we 
would detect downstream effects of induced oscillations on local circuit and cellular activity?

We have found, for the first time to our knowledge, that voluntary control of intracortical oscillations was pos-
sible in the human brain at various cortical locations. The leaning progress was expressed as an increased stability 
of the target signal and was associated with the functional decoupling of the target site within a larger network. 
This indicates that control of oscillations selectively potentiates and reorganizes existing circuits. Additionally, 
training induced a progressive increase in cross-frequency-coupling and dynamically modulated firing rates and 
spike timing, confirming that downstream effects of voluntary control of oscillations is mediated through changes 
in temporal network dynamics and can reach a very local level.

Materials and Methods
Participants and implantation procedure. Subject population consisted of 7 pharmacoresistant epi-
lepsy patients (3 female, mean age 32.5, SD ±  12.7 years) undergoing pre-surgical evaluation at the Epilepsy unit 
at the Pitié-Salpêtrière Hospital. During presurgical evaluation, they were stereotactically implanted with depth 
electrodes (4–13 probes per patient) to localize the epileptogenic focus for possible resection. For each subject, 
1–4 of the placed probes had additional 8 micro-wires emerging at the tip of the electrode into the grey matter. 
One subject had completed the training, but could not be studied due to an excess of interictal epileptic activity.

The anatomical localization of the electrodes (Fig. 1A) was confirmed by the co-registration of the postop-
erative computed tomography scans with the preoperative 1, 5 Tesla MRI. The MNI coordinates of each con-
tact were recovered automatically using the EpiLoc toolbox developed by the STIM (Stereotaxy: Techniques, 
Images, Models) (http://pf-stim.cricm.upmc.fr) facility at the Institut du Cerveau et de la Moelle Epinière and 
confirmed by visual inspection of postoperative MRI scans. Electrode positions were visualized with BrainNet 
Viewer (http://www.nitrc.org/projects/bnv/)38. All subjects had normal or corrected-to-normal vision and an 
IQ >  80 and gave their written, informed consent to participate in the study. The study was approved by the eth-
ical committee of Pitié-Salpétrière Hospital (Comité Consultatif de Protection des Personnes participant à une 
Recherche Biomédicale, CPP). The experimental methods were carried out in accordance with the guidelines 
approved by the CPP.

Electrophysiology. Stereotactic EEG (sEEG) was recorded with (depth) macro-electrodes (AdTech) of 4–12 
platinum contacts 1 mm in diameter, with nickel-chromium wiring and polyurethane tubing. The macro-micro 
probes of Behnke-Fried type consisted of 8 platinum macro-contacts embedded on the surface of a polyure-
thane tube with a hollow lumen (diameter 1, 3 mm). Eight 40-μ m platinum-iridium micro-wires were protruded 
3–6 mm beyond the macro-electrode tip into the cerebral tissue (Fig. 1A, inset). During surgery, wires were 
trimmed to ensure they entered grey matter. Signals from macro- and micro-contacts were acquired simultane-
ously, at sampling rates of 4 kHz and 32 kHz respectively, with a 160-channel Atlas recording system (Neuralynx 
Inc., Tucson, AZ, Cheetah acquisition software). Bandpass filter settings for the macro- and micro-electrode 
recordings were 0.1–1000 Hz and 0.1–8000 Hz, respectively. Macro-contacts were referenced against the 
macro-channel providing the most flat and artifact-free sEEG signal. The reference for the micro-wires was cho-
sen as a micro-electrode with no unit activity and a flat local-field potential (LFP). The distance between the 
conditioned target macro-electrode and the closest micro-electrode was for S1 to S6 in order (in mm): 35, 5, 33, 
35, 37, 24.

Closed-loop real-time processing. The real-time closed loop between the ongoing neural activity and 
screen display was realized using a TCP/IP connection between the EEG-recoding PC and a second laptop per-
forming online analysis (Dell Precision M6700 Workstation). One target electrode was selected and followed 
throughout training. This electrode was chosen as a compromise between the maximal distance from sources 
of epileptic activity and proximity to micro-contacts. Target electrode positions for the 6 subjects were as fol-
lows (subject number:MNI coordinates/anatomical structure): S1: − 57.7 − 0.7 − 28.1/left middle temporal gyrus  
(BA 21); S2: 40.2 − 32.7 − 25.1/parahippocampal gyrus (BA 36); S3: 66.3 − 44.3 27.4/supramarginal gyrus (BA 
40); S4: 55.5 − 14.8 − 26/inferior temporal gyrus (BA 20); S5: 57.6 − 8.3 − 4.6/middle temporal gyrus (BA 21); 
S6: 18.9 48.1 − 0.2/anterior cingulate (BA 10). Distance between target electrode and the nearest micro-contract 
varied between 0.3–8 cm. To evaluate instantaneous theta magnitude, the envelope was measured as follows: 1) 
Received data were buffered in intervals of 400 ms, corresponding approximately to 3 oscillation cycles at 6 Hz 
for sufficient frequency resolution; 2) Digital bandpass filtering between 4–8 Hz was implemented through a 
zero-phase forward-backward digital infinite impulse response (IIR) type II Chebyshev filter39; 3) Hilbert trans-
form was applied to this signal; 4) Absolute values corresponding to the amplitude were extracted for envelope 
estimation (Fig. 1B).

http://pf-stim.cricm.upmc.fr
http://www.nitrc.org/projects/bnv/
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Visual feedback was presented on the laptop screen (graphics card NVIDIA Quadro K3000M, 17” screen, 
resolution 1920 ×  1080 pixels) at a distance of 1 m from the subject. A spherical object was shown with vertical 
position on the screen varying as a function of the quantified mean theta envelope. 25 points were interpolated 
between sequential projections to reduce perceived jitter and provide a smooth movement. Continuous move-
ment, which subjects said helped them interpret sphere movements, was further assured by averaging 4 bins (total 
1.6 s). Online artifact control was implemented through a second threshold at > mean +  5 SD interrupting visual 
feedback until the values returned to a lower range. We verified that the visual display corresponded to changes 
in theta power by calculating the correlation between the movement of the spherical object and recorded theta 
activity within time windows of 10 seconds. Correlation values were not equal to 1 due to smoothing and online 
artifact control, but they were constant for all patients (average correlation values across sessions for S1 to S6 were: 
0.39; 0.34; 0.51; 0.55; 0.44; 0.46).

Training procedure. The training protocol included a short screening procedure and the actual training. 
During the screening the subjects explored different cognitive strategies to control the sphere movement. We 
suggested to try out several cognitive tasks, depending on the position of the target electrode and using a cogni-
tive functional atlas database (www.linkrbrain.org. Tasks included visual, auditory, linguistic or spatial imagery, 
mathematical exercises, memory retrieval or executive functions. If a successful strategy could be identified, we 
asked the subjects to maintain it for the training condition.

Subsequently, three to six training sessions of 5 minutes each were conducted per day on 2–4 successive days, 
according to subjects’ willingness and capability to participate (session number: min =  7, max =  19, mean =  15.5, 
Fig. 1C). During the sessions subjects were asked to increase theta activity such that the sphere rose towards a 
target horizontal line on the screen. The thresholds determining this line were quantified as percentiles of a theta 
envelope distribution, measured over 60 s baseline before each session, with subjects in a relaxed but focused 
state40 and were adapted for each session to optimize training progress (used range: 70–95 percentiles). An addi-
tional feature of the feedback was the 30 s history in the form of a moving graph. We chose the 5-min long session 
duration instead of a few seconds-short trials after piloting for several reasons: 1) subjects reported a progressive 
build up in their control ability, such that frequent interruptions were disturbing this ‘tuning in’ process. 2) The 
history graph was a great help to subjects because it allowed to track fluctuations and better integrate different 
mental events. This graph was most informative over periods longer than a minute. 3) We aimed to create a 

Figure 1. Training electrode positions, real-time signal processing and experimental paradigm. (A) 
Selected target macro-electrodes indicated by colored spheres and all other electrodes in grey. Smaller colored 
spheres show closest micro-contact to the target electrode. The color code is specific to different subjects and 
consistent across all figures. (B) Data treatment. Example of raw data trace showing a theta burst (black) with 
overlaid filtered signal (blue) and the corresponding envelope (orange). Arrows indicate the beginning and end 
of an automatically detected oscillatory event. Right panel shows a frequency spectrum of the data with a peak 
near 7 Hz. (C) Experimental procedure: a baseline period is followed by one or several 5-min sessions with 
intermittent pauses. Training is performed on 2–4 consecutive days.

http://www.linkrbrain.org
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training design that is as similar as possible to the normal process of any other skill acquisition, such that the 
learning would be more ecological and transferable to settings outside the laboratory. Reward points were accu-
mulated across sessions for each threshold crossing to enhance motivation. An interview after each session was 
used to assess the utilized strategies, effort needed and subjective experience of voluntary control. Patients were 
asked to maintain their strategy after good performance or to change it if control was less efficient.

Offline analysis. After training was completed, signals from all macro-contacts were re-referenced to a com-
mon average reference montage of at least 30 artifact-free channels for offline analysis. Possible muscle, move-
ment or epileptic artifacts were screened visually across complete data sets. In total 403 macro-contacts were 
recorded, and signal from 326 artifact-free channels was used for further analysis (see Supplementary Figure S1  
for individual electrode positions and Supplementary Table ST1 for anatomical regions). Electrical 50 Hz 
noise was suppressed by the same zero-phase forward-backward digital infinite impulse response (IIR) type 
II Chebyshev bandstop filter as used for real-time analysis. All analyses were implemented in MATLAB (The 
MathWorks).

Evaluation of control performance. Throughout the article we will use the terms “control index” to refer 
to the degree of control in a specific session, and “learning index” to indicate progress in theta control of each 
subject across all sessions. The control index was defined the average theta envelop during sessions expressed 
as a percentage of the baseline mean value. Learning index was calculated as the slope of the linear, least-square 
fit of control indices for all sessions. Statistical significance of learning progress was tested by two measures: 
a) Pearson’s correlation coefficient between all control indices and temporal evolution and b) a paired-sample 
Student’s t-test comparing the control indices of the first and the last sessions for all subjects. The sample size for 
the t-test was n =  6, for the individual correlation analysis n =  19; 7; 15; 19; 15; 18 (number of sessions S1 to S6) 
and for group-wise correlation analysis n =  93 (sum of individual session numbers).

To calculate the individual power spectra, we first performed Gabor wavelet transform of the initial baseline 
condition and expressed the resulting matrix as z-scores (every value in the matrix was normalized by subtracting 
the frequency-wise average and dividing by the frequency-wise standard deviation). Next, spectra were obtained 
by averaging the normalized Gabor wavelet matrix along the temporal condition (for Fig. 2B).

Oscillatory event detection. To analyze successful modulation periods in more detail, we extracted inter-
vals of strong theta activity from all sessions. Automatic detection of these ‘oscillatory events’ was based on two 
criteria: amplitude threshold > mean +  1 SD of baseline (above the 68th percentile of the baseline distribution), 
and a duration of at least 600 ms (about 4 theta cycles). Detection based on power or envelope yielded comparable 
results. Detected events were selected for further offline analysis from each subject, after visual inspection and 
removal of possible artifacts (number of selected events per subject, S1 to S6 in order: 886, 255, 384, 645, 255, 433, 

Figure 2. Training evolution, and baseline-performance relationship. (A) Evolution of control indices for all 
sessions and subjects. Each point represents the percentage of mean 4–8 Hz activity during that session relative 
to the baseline. The lines are least-square fits and the overall learning index is obtained from their slope. Subject 
color code as in Fig. 1A. (B) Upper panel: Proportion of 4–8 Hz activity in baseline spectrum before the first 
training session. Power units are transformed to z-score values to facilitate comparison across subjects. Lower 
panel: Proportion of 4–8 Hz activity within the 1–30 Hz spectrum of the initial baseline is strongly related to the 
overall learning index of every subject (r =  0.93**).
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total 2858 events). The timing of identified events was consistent with threshold crossings detected online during 
experiments (data not shown).

Spatial analysis of theta modulation. Spatial specificity of training was assessed by comparing control 
indices for trained vs. non-trained channels. Distances between the target and all other electrodes were first 
computed using Euclidian distance function, and then indices were calculated for nearest electrodes on the same 
probe.

Connectivity was analyzed using the approach of Adhikari and co-workers41. Pair-wise correlations of theta 
envelope time series during intervals of oscillatory events were calculated between the target and all other elec-
trodes with Pearson’s correlation coefficient. Subsequently, binary connectivity matrices were generated by apply-
ing the threshold of r >  0.5.

Regression analysis. Individual control indices for each session were regressed to a single linear predictor 
term, namely the number of connections per session. Models were generated with Matlab function ‘fitlm’ and 
resulting regression coefficients were used to fit the data.

Theta-Gamma modulation index. Coupling of theta and gamma frequency was assessed in several stages. 
We first visually inspected time-frequency representations of all oscillatory events split into non-overlapping 
theta cycles aligned at the troughs. Time-frequency representations were calculated separately for each cycle and 
then averaged to preserve induced oscillatory phenomena. Gabor wavelet transform with a modulated Gaussian 
window was used to derive time-frequency decompositions42. Visual inspection suggested theta-gamma occurred 
at frequencies in the range 30–120 Hz. We then generated phase- and amplitude-time series for all sessions. Phase 
times series in the theta range were calculated with an IIR Chebyshev filter with a forward-backward filtering 
algorithm to avoid phase distortion43. Amplitude times series in the gamma range were extracted using Gabor 
wavelet transform. Theta-gamma modulation was then estimated using procedures as described44. To evaluate 
the coupling strength induced specifically through training, we calculated the MI as the difference between train-
ing and baseline modulation indices. Increase in coupling was assessed as correlation between time (individual 
session numbers) and MI.

Firing rate and spike-field locking analysis. Spike sorting was performed offline with Wave_Clus 
software45 and verified with a second method Klustakwik46. We distinguished between multi-unit (MUA) and 
single-unit activity (SUA) using the criterion that less than 1% of spikes should show inter-spike-intervals (ISI) 
below 3 ms. We classed units recorded from the same channel but on different days as distinct cells. In the fol-
lowing we use the term neuron to refer to a putative multi- or single-unit. Binary data containing spike trains 
were converted to instantaneous firing rate using a Gaussian kernel convolution (kernel width 3 s). We classed 
neuronal activity during oscillatory events from all subjects (1641 events with spikes) according to increasing, 
decreasing or stable firing frequency and measure their distance to target electrode. A threshold of 40% was used 
to define changes in firing rate over 1000 ms before and after event onset (post-pre > 40%: increase; post-pre  
< −  40%: decrease; − 40% < post-pre < 40%: stable). Spike-field locking was calculated from LFP phase-times 
series of the target electrode, extracted at the times of spiking, with distances between target zone and 
micro-electrodes ranging between 5 and 37 mm (see section Electrophysiology). Phase-locking was statistically 
evaluated with the Matlab toolbox for circular statistics47. We distinguished increasing, decreasing or sustained 
phase-locking, from Rayleigh Z-statistics for each session and their correlation with time (n =  9). Different pat-
terns were assigned as for firing rate analysis (threshold at r =  ±  0.4).

Results
Training performance is proportional to target rhythm strength before training. All subjects 
were able to reliably self-induce oscillatory activity in the target frequency and at the target cortical site. We quan-
tified the degree of this control per session (control indices) as well as overall performance (learning indices) for 
each subject. All participants reached positive control indices which were strongly correlated with the temporal 
sequence of sessions (group level with r =  0.61, p <  0.001). While learning rapidity and degree of control differed, 
correlations of control indices with the temporal dimension were significant for 5 of 6 subjects. (S1, r =  0.8***; S2, 
r =  0.54n.s; S3, r =  0.73**; S4 =  0.85***; S5, r =  0.76***; S6, r =  0.85***, n =  individual session number (see Material 
& Methods)). The utilized strategies were very individual and ranged from reciting the alphabet, thinking of a 
specific object, but also ‘breathing into the ball (visual feedback)’ or ‘talking to the ball’. Summary of all strategies 
is given in Supplementary Table 2. Most subjects reported an increasing effortlessness and a sense of control 
with training progress. For the entire subject group, mean theta activity during the final session was significantly 
higher than in the first (t-test: n =  6, p <  0.01). The increase in theta amplitude from baseline of the final session 
was on average 29% and maximally 53% (Fig. 2A). Although target sites were heterogenous among subjects, the 
broad spatial sampling shows the possibility of neural modulation through the cortex.

After showing that subjects were able to partially control theta oscillations, we asked whether training effects 
(learning indices) for this frequency were related to the baseline sEEG frequency spectrum prior to training 
start. The profile of the baseline frequency spectrum varied between patients, as expected from different target 
electrode locations (Fig. 2B, upper panel). We measured the prevalence of theta band oscillations [4–8 Hz] as 
the percentage of the spectral power integrated from 0–30 Hz in the baseline sEEG prior to the very first session 
(Fig. 2B, inset lower panel. We found the proportion of theta oscillations in the basal spectrum was strongly cor-
related with learning indices (r =  0.94, p <  0.01, Fig. 2B lower panel). Thus, the dominance of a rhythm in baseline 
conditions was indicative of the overall training performance.
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Voluntary control is manifested as increased oscillation event density. We next attempted to 
identify how the increased mean power at theta frequencies was related to within- and across-session changes 
in oscillatory events. Three main features of detected theta band oscillatory events were measured: i) maximal 
amplitude, ii) occurrence frequency and iii) event duration. We found that maximal amplitude values were stable 
throughout the sessions (r =  0.18, n.s, Fig. 3A). However both the number and mean duration of theta events per 
session increased significantly with training (r =  0.29, p <  0.01; r =  0.52, p <  0.001, respectively; Fig. 3B,C). Thus, 
voluntary control of theta reflected increased signal stability with more frequent and longer theta oscillatory 
events (numbers of cycles per event) but with little change in amplitude of oscillations. This finding is in contrast 
to the possibility of amplitude increase as found for example for the alpha band19 or gamma band1.

The predominant change occurs in the target frequency and cortical site. We compare concom-
itant changes in other frequency bands by computing control indices for delta [0.5–3 Hz], alpha [8–12 Hz], beta 
[12–25 Hz] and gamma [30–80 Hz] activities recorded at the target electrode for all patients. No power change 
across sessions was resolved for delta or gamma oscillations (n.s., Supplementary Figure 2). In contrast, alpha 
and beta band power increased significantly during repeated sessions (correlations between time and perfor-
mance were r =  0.4 for alpha and r =  0.6 for beta, and t-test comparing first-last sessions (n =  6) was p =  0.035 
and p =  0.027 for alpha and beta, respectively). Even so, the major change in the frequency spectrum occurred at 
theta frequencies, which was shown by comparing mean theta envelope values of the group from final sessions for 
theta compared to alpha and beta band power (Fig. 4A, p <  0.05, p-values were adjusted for multiple comparisons 
using the false discovery rate48. Figure 4B shows the dominance of the learning effect in the theta frequency band 
during sequential training sessions.

The spatial specificity of changes induced by training was examined by calculating control indices in the 
theta range for closest adjacent electrodes located on the same probe. As shown in Fig. 4C, activity on all elec-
trodes reached initially similar levels. With training, a negative difference between the target and nearby elec-
trodes emerged and increased progressively. T-tests of relative activity at nearby electrodes for first vs. the last 
session revealed a significant divergence from the target electrode in 4 of 6 subjects (Fig. 4D). Hence, the principal 
training-induced change was in the target frequency band and cortical site.

Cortex-wide functional connectivity decreases with training and predicts learning progress.  
We next asked how training influenced large-scale spatial functional theta connectivity, by constructing a 
pair-wise measure of connectivity between the target and all other electrodes. Surprisingly, as shown in Fig. 5A, 
connectivity was decreasing as task performance improved during training. The mean number of connections 
fell from 25% to 13% across sessions (t-test first vs. last session p <  0.05, correlation between number of connec-
tions and time: r =  − 0.37***). Thus, theta oscillations at the target electrode become 29spatially autonomous 
(Fig. 5B). This decoupling was inversely related to the individual learning index as shown by the linear regression 
between control indices and the number of strong connections per session. For 4 of 6 subjects, linear regression 
models were significant and could explain between 31% and 63% of the individual variance of control indices 
(Fig. 5C). Importantly, both patients for which the prediction model did not turn out significant had also shown 
lowest initial connectivity and were the worst performing subject (S5 and S6). Thus, the reorganization of the 
large-scale network towards a functionally independent activity of the target area may play an important role 
during learning.

Figure 3. Theta control is manifested as increase in signal stability. (A) Maximal amplitude values of 
detected oscillatory did not change significantly during training. (B) Number of oscillatory events detected 
per session increased significantly with training progress. (C) The duration of oscillatory events increased 
significantly as proficiency improved. All values shown in A–C were z-score normalized to facilitate comparison 
across subjects.
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Broadband gamma activities are increasingly modulated by oscillatory phase. Coupling 
between theta and gamma oscillations was suggested to increase in some learning paradigms33,48. We examined 
whether, during training, the phase of theta oscillations at the target electrode was linked to changes in power at 

Figure 4. Frequency and spatial specificity of training. (A) Changes in theta, alpha and beta frequency bands 
for all subjects, all sessions. Solid lines are group means and shaded areas indicate standard errors. Changes 
in the theta band predominate. A significant difference between theta and beta/alpha emerged during the last 
session. (B) Frequency spectra from all sessions for S1. One line indicates the difference between one session 
and its baseline for the spectrum for 1–30 Hz. Traces are shifted vertically and color coded with initial spectra 
dark, advanced sessions in red and then yellow. The dominant spectral change occurs in the trained 4–8 Hz 
band. (C) For 3 subjects, comparison of 4–8 Hz activity between training electrode (red dots) and closest 
adjacent electrodes (grey dots). Values are represented as z-scores. Reduction in the scores from adjacent 
electrodes with training progress indicates that activity is diminished relative to training electrode. Right panels 
show the anatomical positions of compared electrodes (in red). (D) Evolution of the activity of closest adjacent 
electrodes between the first and the last sessions. Activity was reduced with respect to that of the target electrode 
for 4/6 subjects.
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higher frequencies. First, the time-frequency representation of aligned theta cycles was calculated to define the 
range of higher frequencies for further analysis (Fig. 6A for two subjects). Theta-gamma coupling was broad-
band from 30 to 160 Hz, with strongest modulation occurring in the range [30–120 Hz]. Theta phase associated 
with maximal gamma power varied between subjects, but was clustered in the depolarized (positive ascending/
descending) part of the oscillatory cycle (phase in radians for S1 to S6 in order: 0.1; 0.96; − 0.39; − 1.58; − 1.65; 
0.91). We calculated the modulation index (MI) over the gamma range for all subjects and sessions relative to base-
line (Fig. 6B). A significant positive correlation between MI and the training sessions (r =  0.3, p <  0.01) revealed 
a progressive increase in theta-gamma during this learning paradigm. To exclude the possibility of spurious 
higher detection of CFC through generally increased theta amplitudes, we calculated modulation indices in bins 
of 30 sec, showing that these binned MI-values do not correlate with theta amplitude (Supplementary Figure 3).  
Even so, it cannot be entirely excluded that the gradually increased number of theta bouts may lead to a higher 
theta-gamma coupling not visible in periods of 30 seconds.

Modulation of cellular activity through theta oscillations. Finally, to explore possible training effects 
on unit activity recorded by micro-electrodes closest to the target electrode, we isolated 30 units (21 SUA, 9 MUA) 

Figure 5. Reduction of theta functional connectivity with training progress. (A) Pair-wise correlations 
matrices between the training and all other electrodes from two subjects (upper and lower graphs). At training 
beginning strongly correlated electrode pairs are numerous (upper left corner) and decrease toward the end 
of training. Green dashed lines indicate a gradient of correlation decrease across sessions. (B) Summary of 
functional connectivity as the percentage of total electrode pair number, obtained from binary connectivity 
matrices with a threshold of r =  0.5. The degree of initial connectivity ranged between 5–45%. Connectivity 
was reduced by 0–20%. Please note the inversed subject ranking between network connectivity and training 
performance (small inset of repeated Fig. 2a in upper right corner). (C) Regression analysis and data modeling 
of individual control indices based on network connectivity from (B) Regression models were significant for 
4/6 subjects, explaining between 30 and 67% of the overall performance variability. Models did not provide 
significant results for the two patients with lowest initial connectivity.
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from 5 subjects (See Supplementary Figure S4 for unit waveforms and firing rates). Analysis of global firing rates 
across sessions revealed no major changes relative to baseline (Supplementary Figure S5). However, the firing before 
and during oscillatory events was modulated differentially for different cells. Our analysis showed that firing rates 
increased for 27%, decreased for 29% or remained stable for (44%) of neurons during oscillatory events (Fig. 7A). 
We also examined the timing of spike firing with respect to the phase of ongoing theta oscillations recorded at the 
target electrode (Fig. 7B). Firing in 36% of cells was significantly locked to different phases of the local theta rhythm. 
Additionally, relations of unit firing to the phase of theta signal evolved across sessions: the level of unit-theta cou-
pling was increased for 37% and decreased for 20% of units (Fig. 7C). In sum, this exploratory analysis showed that 
training of theta activities may have some influence on spiking activity. However, the effects are heterogenous and 
the small number of units makes a statistical analysis difficult, which makes future more rigorous testing necessary.

Figure 6. Theta-gamma coupling and multiscale interaction. (A) Average time-frequency representation 
of all theta cycles for 2 subjects. Theta-gamma modulation is present in the range of 30–120 Hz, occurring 
at different phases for different subjects. (B) Modulation index of theta-gamma phase-amplitude coupling is 
increasing significantly with training progress. Theta-events were concatenated within sessions to provide data 
length of at least 30 seconds.
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Discussion
This is the first study, to our knowledge, to address voluntary control of theta oscillations by means of intracranial 
recordings in humans. These data show that human subjects can learn to endogenously induce intracortical oscil-
lations at various cortical sites upon the presentation of visual real-time feedback, extending similar scalp-EEG 
findings49. Nevertheless, in contrast to conventional surface EEG, intracranial recordings have a high spatial res-
olution within a centimeter radius37, suggesting that voluntary up-regulation of theta activities is possible in quite 

Figure 7. Firing rate changes and spike-field locking. (A) Classified detected events with increased (i, 27%), 
decreased (ii, 29%) or stable (iii, 46%) instantaneous firing rates at the moment when oscillatory event was 
detected (white vertical line). Right panel: Proportions of the three firing behaviors from 1641 events. (B) Upper 
panel: Comparison of filtered data (4–8 Hz, black) with spike detections of one cell (red) shows firing is grouped 
during descending phases an throughs of theta oscillation. Lower panel: example of spike locking to the LFP 
phase [4–8 Hz] for 3 cells. Red arrows represents the mean direction of the circular distribution. (C) Evolution 
of phase-locking during training. Different units showed trends of increase (i, 37%), decrease (ii, 20%) or no 
change (43%) of phase locking. Inset on the right summarizes the proportion of observed evolution patterns.
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restricted cortical domains (< 1 cm). Additionally, while one previous scalp-EEG theta-training study showed a 
non-specific effect with co-increased beta and alpha rhythms49, successful intracranial modulation was specific in 
space and frequency and thus, training based on intracranial recordings appear to be of higher specificity.

Overall control ability was reflected in higher oscillatory event density across training sessions and propor-
tional to the individual target frequency strength before training start. As control improved during learning, 
induced oscillatory activity at the target electrode became functionally decoupled from distant sites, which 
predicted the individual session-to-session performance variability. Locally, the training had a strong effect on 
broadband gamma oscillations that became increasingly phase-locked with theta activities in succeeding sessions 
and on neurons, that were modulated in firing rates and spike-field locking.

Physiological signatures of voluntary control of oscillations. We found that individual training per-
formance was proportional to the prevalence of the target rhythm before training. This supports previous pro-
posals that acquisition of voluntary neural control is constrained by physiological neural properties50,51. It appears 
that if existing circuitry is pre-routed to generate a given rhythm, the voluntary control of this rhythm can be 
achieved more easily since it relies on existing inherent structures. This finding suggests that research and clinical 
training designs should ideally be customized according the individual spontaneous activity to achieve optimal 
training outcome and benefits. On the other hand, patients with small baseline values of the target rhythm have 
also shown an increase of oscillations to some extent. This provides some optimism that in the case of pathologi-
cal absence of oscillations neurofeedback training may still produce moderate improvement.

Further, we found that successful modulation was manifested as a reinforcement of signal stability with (i.e. 
the increased density and duration of theta events) instead of supra-physiological boosts of oscillatory ampli-
tude. Although other studies have found amplitude effects for other bands (e.g. refs 1 and 19), it appears not to 
be the case for the intracerebral theta rhythm. It follows that in general neural self-regulation can be based both 
on the increase of oscillatory magnitude (as hypothesized by ref. 52) and/or density. Such an enhanced signal 
stability, or signal to noise ratio, is reported during other related procedural processes such as attentional states53 
or motor and abstract skill learning54–56. Indeed, previous work has shown that neurofeedback training can be 
used to increase cortical excitability and thus induce neuroplasticity in humans57 and reconfigure functional 
networks58. An alternative interpretation is that the physiological presence of theta oscillations is favorable for 
a general learning process as shown for the relationship between the presence of 2–8 Hz hippocampal rhythm 
and the conditioning rate59. However, this view would not explain effects detected outside the hippocampus. 
Since neuronal synchrony has been identified as a critical variable for the occurrence of Hebbian changes in 
synaptic efficacy60,61, repeatedly self-induced oscillatory activity in succeeding sessions should recruit neurons 
to population synchrony, so reinforcing the existing circuitry as they are constantly co-activated. In this context, 
long-term potentiation (LTP) was reported to be sensitive to the phase of the theta rhythm suggesting that this 
oscillation can act as a window permitting synaptic plasticity relevant for memory formation in humans and 
in animals10,35,62–66. Thus, it is likely that reinforced theta oscillations elicit a plastic process, which can stabi-
lize the rhythm generating circuitry, further increasing theta elicitation probability in subsequent trials. Because 
there exist numerous studies testing for various behavioral benefits of neurofeedback techniques, and only few 
studies investigating their mechanisms, in the present investigation our guiding questions were of fundamental 
nature aiming to describe the physiological processes during neural self-regulation and not to examine behavioral 
effects. However, in the context of reported self-induced and systematic synchronization in the theta band and its 
potential consequence on plasticity, it would be compelling to include in future a cognitive paradigm to directly 
assess the consequence on memory function.

Decreased long-range functional connectivity related to the learning progress. Our results show 
that functional connectivity between the target structure and surrounding frontal, temporal and parietal cortical 
sites is progressively reduced during learning. Additionally, this decoupling process explains individual variability 
in performance on a session-to-session basis, indicating its relevance in the learning process. Previous studies 
have suggested that disengagement of larger cortical networks may mark a transition from a deliberate towards a 
nearly automatized execution of a BCI task67. Indeed, the gradual reduction of connectivity was accompanied by 
subjects’ report of reduced effort and the increased sense of control suggesting that the initial recruitment of large 
cortical areas during top-down driven approach have transitioned into an adaptation process with more effortless 
execution. Importantly, two subjects with least initial network connectivity were among the poorer performer, 
which may be an indication that the initial cognitive effort reflected in the wide recruitment of networks is neces-
sary to achieve good performance at later stages of the training. Evidence suggests that such training-related plas-
ticity may be a shared feature with other forms of perceptual or motor procedural learning26,67–69. For instance, 
it has been shown that professional pianists show reduced recruitment of many extended areas like prefrontal or 
cingulate cortices in comparison to naive controls70. Thus, the functional decoupling of target area from a larger 
cortical networks may reflect a plastic process of network reorganization, which appears to be necessary during 
abstract skill acquisition58,71,72. However, this result stands in contrast to previously reported enhancement of 
connectivity within the salience network through neurofeedback training protocol of parietal alpha amplitude 
reduction73 and needs clarification in future investigation. Additionally, the possible effects of fatigue or routine 
should be controlled for, ideally using an active control group. A detailed examination of anatomical connectiv-
ity (for example measured with DTI) or a probabilistic functional tractography74 would be helpful to identify 
whether the changes in connectivity follow the functional networks.

From the theoretical perspective, during learning, changes at one site functionally segregate local circuits 
from activities of wider groups of neurons in terms of relative statistical independence from the whole system, 
which can lead to autonomous operation. The observed functional decoupling may thus reflect an increase in 
mathematical complexity of brain operations characterized by an integration/segregation balance in large-scale 
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functional networks75, possibly indicating a larger capacity of information processing in the system. Although the 
exact role of these decreases in long-range functional coupling remains to be clarified, we propose that it could be 
a useful physiological marker of successful voluntary neural control or other ongoing learning processes.

Downstream effects on local network dynamics. While previous studies have directly targeted 
the training of the gamma rhythm1,24,76 and multi-unit discharges7, here we show that higher oscillations 
can be also indirectly influenced through the training of slower rhythms and the accompanying increase in 
cross-frequency coupling (CFC). Task-dependent modulation of CFC in humans has been reported previ-
ously33, in particular associated with memory processes77,78. Here, we extend these observations by showing a 
progressive increase in theta-gamma coupling during training in voluntary control of theta oscillations with a 
preference for the depolarized phase of the oscillatory cycle. Even though a possible confound of CFC-increase 
due to more frequent theta occurrence cannot be entirely excluded, a gain in CFC would have functional 
implications in either case. If CFC occurs for longer times during training, it is likely to induce a clustering 
of activity at a particular phase and hence, an improved temporal coordination of neuronal population activ-
ity79. For instance, synchronized inputs of different presynaptic neurons will be more efficient in driving post-
synaptic responses, while redundant signals between postsynaptic neurons will be decreased53. Importantly, 
through such selectivity of downstream targets, the signaling will be more efficient without increasing the size 
of recruited assemblies, which is consistent with our observation of increased cross-frequency coupling with-
out increase in gamma amplitudes. At the same time, we detected no overall increase of firing rates, indicating 
that global contributions of neurons have not changed. Rather, neuronal discharges were boosted, dampened 
or sustained, probably depending on the contextual network activity80. The small number of units does not 
allow to draw any definite conclusions, but this pilot unit-analysis is encouraging for future testing of the idea 
that self-induced theta oscillations seem to have a temporally differential excitatory or inhibitory effects on 
single cells.

Additionally, previous work has shown that cross-frequency coupling imposes phase-locked spike generation 
at temporally precise time points in the theta-gamma cycles81, probably arising from the temporally modulated 
patterns of synaptic currents. This is in line with our observation of a significant phase preference of firing for 
a proportion of neurons, however we did not find a consistent increase of this coupling. The lack of a system-
atic changes both in firing rate changes or in spike-field locking could be due to the heterogenous implantation 
schemes and the varying distances between target and micro-electrodes, which should be examined more closely 
on a more uniform data set. Nevertheless, we believe that these observations provide a basis for more rigorous 
examination of potential downstream influences of theta oscillations on more local scales and can serve as a basis 
for future studies. If confirmed, such regulation of cellular activity can presumably facilitate spike-time-dependent 
plasticity mechanisms by altering synaptic weights and optimize pre- and postsynaptic communication and net-
work coordination82,83. While one previous study has shown that neuronal discharge can be directly controlled 
through mental activity7, here we propose that neuronal self-regulation can occur also indirectly through the 
regulation of oscillatory rhythms, which may be easier to implement and exploit experimentally. In total, we 
suggest that in both ways, closed-loop training can be exploited as a means of self-induced plasticity regulation 
for specific network reconfiguration.

Limitations of the study. There are several limitations of the present study. Most importantly, the ana-
tomical heterogeneity and the small number of electrode locations (and thus training target) across subjects 
make it difficult to fully investigate the anatomical specificity of the response. A larger group of subject would 
allow studying voluntary control of oscillations across the whole cortex. A second concern is that our data were 
obtained from patients suffering from medically intractable epilepsy and some abnormal activities (such as inter-
ictal spikes or high-amplitude slow waves) constitute a source of signal artifacts. In our case, we minimized this 
contamination by selecting for recording sites that are virtually free from epileptiform activity. Still, there could be 
some significant alterations caused by the pathology or due to the medication. A third shortcoming arising from 
the scarcity of implanted subjects is the lack of a control group. Ideally a control group would perform training 
with a sham-feedback condition, which would allow to address questions of non-specific effects of repetition (e.g. 
fatigue or routine) and confirm whether the observed physiological changes of PAC and spike-field locking occur 
even in the absence of neurofeedback training. Lastly, a larger number of training sessions would be desirable to 
investigate the progression of learning curves over longer periods.

Conclusions
Altogether, this work describes fundamental electrophysiological mechanisms of voluntary modulation of 
intracortical oscillations on multiple levels of brain activity. Our findings show that induced oscillations elicit 
changes in the large-scale network reorganization, and tune the temporal precision in local network dynamics, 
that both mark the successful learning process. We propose that targeting plasticity processes through neural 
self-regulation can allow to shape (ab-) normal brain activity with particular relevance for memory function and 
abstract skill acquisition.
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