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Abstract

Cytometry experiments yield high-dimensional point cloud data that is difficult to interpret

manually. Boolean gating techniques coupled with comparisons of relative abundances of

cellular subsets is the current standard for cytometry data analysis. However, this approach

is unable to capture more subtle topological features hidden in data, especially if those fea-

tures are further masked by data transforms or significant batch effects or donor-to-donor

variations in clinical data. We present that persistent homology, a mathematical structure

that summarizes the topological features, can distinguish different sources of data, such as

from groups of healthy donors or patients, effectively. Analysis of publicly available cytome-

try data describing non-naïve CD8+ T cells in COVID-19 patients and healthy controls

shows that systematic structural differences exist between single cell protein expressions in

COVID-19 patients and healthy controls. We identify proteins of interest by a decision-tree

based classifier, sample points randomly and compute persistence diagrams from these

sampled points. The resulting persistence diagrams identify regions in cytometry datasets

of varying density and identify protruded structures such as ‘elbows’. We compute Wasser-

stein distances between these persistence diagrams for random pairs of healthy controls

and COVID-19 patients and find that systematic structural differences exist between

COVID-19 patients and healthy controls in the expression data for T-bet, Eomes, and Ki-67.

Further analysis shows that expression of T-bet and Eomes are significantly downregulated

in COVID-19 patient non-naïve CD8+ T cells compared to healthy controls. This counter-

intuitive finding may indicate that canonical effector CD8+ T cells are less prevalent in

COVID-19 patients than healthy controls. This method is applicable to any cytometry data-

set for discovering novel insights through topological data analysis which may be difficult to

ascertain otherwise with a standard gating strategy or existing bioinformatic tools.
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Author summary

Identifying differences between cytometry data seen as a point cloud can be complicated

by random variations in data collection and data sources. We apply persistent homology
used in topological data analysis to describe the shape and structure of the data represent-

ing immune cells in healthy donors and COVID-19 patients. By looking at how the shape

and structure differ between healthy donors and COVID-19 patients, we are able to defin-

itively conclude how these groups differ despite random variations in the data. Further-

more, these results are novel in their ability to capture shape and structure of cytometry

data, something not described by other analyses.

1 Introduction

Cytometry data contain information about the abundance of proteins in single cells and are

widely used to determine mechanisms and biomarkers that underlie infectious diseases and

cancer. Recent advances in flow and mass cytometry techniques enable measurement of abun-

dances of over 40 proteins in a single cell [1, 2]. Thus, in the space spanned by protein abun-

dance values measured in cytometry experiments, a cytometry dataset is represented by a

point cloud composed of thousands of points where each point corresponds to a single cell.

Abundances of proteins or chemically modified forms (e.g., phosphorylated forms) of proteins

in single immune cells change due to infection of the host by pathogens (e.g., a virus) or due to

the presence of tumors which usually result in changes in the ‘shape’ of point cloud data mea-

sured in cytometry experiments [3–5]. Cytometry data analysis techniques commonly rely on

Boolean gating and calculation of relative proportions of resulting populations as a method to

compare datasets across control/healthy and experimental/diseased conditions. In recent

years, state-of-the-art analyses based on sophisticated machine learning algorithms capable of

mitigating batch effects, ad hoc gating assumptions, and donor-donor variability have been

developed [6, 7]. However, these methods are not designed to quantitatively characterize shape

features (e.g., connected clusters, cycles) in high dimensional cytometry datasets that can con-

tain valuable information regarding unique co-dependencies of specific proteins in diseased

individuals compared to healthy subjects.

Topological Data Analysis (TDA) aims to capture the underlying shape of a given dataset

by describing its topological properties. Unlike geometry, topological features (e.g., the hole in

a doughnut) are invariant under continuous deformation such as rotation, bending, twisting

but not tearing and gluing. One of the tools by which TDA describes topological features latent

in data is persistent homology [8, 9]. For example, for a point cloud data, persistent homology

captures the birth and death of topological features (e.g., ‘holes’) in a dataset after building a

scaffold called a simplicial complex out of the input points. This exercise provides details

regarding topological features that ‘persist’ over a range of scale and thus contain information

regarding the shape topology at different length scales (see S1 Fig for details). Persistent

homology has been applied to characterize shapes and shape-function relationships in a wide

variety of biological systems including skin pattern formation in zebra fish [10], protein struc-

ture, and pattern of neuronal firing in mouse hippocampus [11]. TDA has additionally previ-

ously been applied to identify immune parameters associated with transplant complications

for patients undergoing allogenic stem cell transplant using populations of immune cell types

assayed via mass cytometry [12]. However, this work did not use persistent homology or

expression levels of proteins in their analysis, leaving the shape of cytometry data uncharacter-

ized. Another work focuses on the use of TDA as a data reduction method for single-cell RNA
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sequencing data [13], but again do not attempt to characterize how topologies derived from

point clouds differ among disparate data sources such as healthy and diseased individuals.

The challenges of directly applying current persistence methodologies to cytometry data to

characterize distinguishing features between healthy and diseased states are the following: 1.

Features that separate healthy from diseased state can pertain to the change in density of points

in a region in point cloud data—therefore, the information of local density should be incorpo-

rated in persistent homology methods, in particular in the filtration step that brings in sequen-

tially the simplices connecting the points. In commonly used Rips filtration [14] the density of

points is not included. 2. There can be shape changes giving a different length scale in the

point cloud data, such as formation of an elbow, in a diseased condition. 3. There can be sys-

tematic differences between healthy and diseased states across batch effects and donor-donor

variations. Topological features should capture these global differences being oblivious to the

local variations caused by measurement noise.

We address the above challenges by developing an appropriate filtration function to com-

pute persistence and applying the method to characterize distinguishing features of non-naïve

CD8+ T cells between healthy and SARS-CoV-2 infected patients.

2 Results

2.1 Persistence framework for SARS-CoV-2 infection

Topological signatures given by persistence are stable, global, scale invariant and show resil-

ience to local perturbations [15]. It is this property of persistent homology that motivates us to

use TDA in distinguishing clinically relevant features in flow cytometry data in COVID-19

patients.

Persistent homology. Persistent homology builds on an algebraic structure called homol-

ogy groups graded by its dimension i and denoted by Hi. Intuitively, they describe the shape of

the data by ‘connectivity’ at different levels. For example, H0 describes the number of con-

nected components, H1 describes the number of holes, and, H2 describes the number of

enclosed voids apparently present in the shape that the dataset represents. Three and higher

dimensional homology groups capture analogous higher (� 3) dimensional features. A point

cloud data (henceforth abbreviated as PCD) itself does not have much of a ‘connected struc-

ture’. So, a scaffold called a simplicial complex is built on top of it. This simplicial complex, in

general, is made out of simplices of various dimensions such as vertices, edges, triangles, tetra-

hedra, and other higher dimensional analogues. Given a growing sequence of such complexes

called filtrations, a persistence algorithm tracks information regarding the homology groups

across this sequence. In our case, these complexes can be restricted only to vertices and edges.

With the restriction that both vertices of an edge appear before the edge, we get a nested

sequence of graphs

G0 � G1 � G2 � . . .Gn

as the filtration. Fig 1 shows such a filtration.

Persistence diagram. Appearance (‘birth’) and disappearance (‘death’) of topological fea-

tures, that is, cycles whose classes constitute the homology groups, can be captured by persis-

tence algorithms [8, 16]. These ‘birth’ and ‘death’ events are represented as points in the so-

called persistence diagram. If a topological feature is born at filtration step b and dies at step d,

we represent this by persistence pair (b, d) with persistence d − b. The pair (b, d) becomes a

point in the persistence diagram with the ‘birth’ as x-axis and ‘death’ as y-axis. This 2D plot

summarizes topological features latent in the data. In the example-filtration of Fig 1, a new

component gets ‘born’ when a vertex vi appears in the filtration for the first time. When an
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edge is introduced, one of the two things can happen–either two components are joined, or a

cycle is created. In the first case, a ‘death’ happens for 0-th homology group H0, and in the sec-

ond case, a ‘birth’ happens for the 1-st homology group H1. For example, when e0 comes in the

filtration (G6), it merges two components created by v0 and v1. By convention, we choose to

kill the component that got created later in the filtration and thus we let the component cre-

ated by v1 die. We obtain a persistence pairing (1, 6) since edge e0 at filtration step 6 kills the

component created by v1 at step 1. Similarly, we obtain pairs (2, 7), (4, 8), (5, 9), and (3, 11).

These points, tracking the ‘birth’ and ‘death’ of components, produce the persistence diagram

for the 0-th homology group H0 and hence we refer to it as the H0-persistence diagram. Note

that the edge e4 creates a cycle (yellow) that never dies. In such cases, i.e. when a topological

feature never dies, we pair it with1. For the edge e4, we obtain a persistence pair (10,1). But,

this feature concerns the 1-st homology group H1 and thus it becomes a point in the persis-

tence diagram for H1 which we refer to as H1-persistence diagram. One way to leverage the

above framework for studying a function is to assign function values to vertices and edges and

construct a filtration by ordering them according to these assigned values. For such cases the

persistence pairs take the form (b, d) where b is the value at which a feature is born and d is the

value at which it dies. The function values that induce the filtration (Fig 2) are chosen to cap-

ture two features of the input PCD–(i) the density variations, and (ii) the anisotropy of the fea-

tures, that is, how elongated it is in a certain direction, henceforth termed as length scale ‘of the

feature’ or collectively ‘of the data’. In particular, length scales refer to the prominence of pro-

trusions such as ‘elbows’ in COVID-19 data.

Fig 1. An example of filtration for a graph. The nested sequence of graphs G0� G1� . . .G11 forms a filtration of the final graph G11. Each vertex vi creates

a new component in the nested sequence, and edges e0, e1, e2, e5 merge two components whereas e4 creates a cycle (yellow).

https://doi.org/10.1371/journal.pcbi.1009931.g001
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Below we briefly describe how we adapt the above persistence framework for analyzing

point cloud data (PCD) representing CD8+ T cells in SARS-CoV-2 infection. Details regarding

the approach are provided in Section 4 and S2 Appendix and S1 Fig.

Computing persistent homology for cytometry datasets. Our datasets consist of cytom-

etry data for non-naïve CD8+ T cells. Given protein expressions (real values) for d proteins in

such a single cell, we can represent it as a d-dimensional point inRd. Considering a population

of single cells, we get a point cloud (PCD) in Rd. Now, we study the shape of this PCD using

the persistence framework that we describe above. We compute persistence diagrams for the

PCDs generated with protein expressions from different individuals and compare them. It

turns out that, for computational purposes, we need a limit on the dimension d for PCD which

means we need to choose carefully the proteins that differentiate effectively the subjects of our

interest, namely the healthy individuals, COVID-19 patients, and recovered patients. We typi-

cally choose 3 (sometimes 2) protein expressions to generate the PCD and call it a PCD in the

P1, P2, P3 space if it is generated by proteins P1, P2, and P3 respectively.

Flow cytometry data for non-naïve CD8+ T cells in Mathew et al. [3] show generation of

CD8+ T cells with larger abundances of the proteins CD38 and HLA-DR (CD38+HLA-DR

+ cells) for some COVID-19 patients, forming an ‘elbow’ in the two dimensional PCD with

CD38 and HLA-DR protein expressions (see S2 Fig). Moreover, there is an increase in the

local density of the points (or single CD8+ T cells) in the ‘elbow’ region. This suggests that, to

study the PCD generated by the protein expressions by persistence framework, we need to

choose a filtration that is able to capture such geometric shapes and variations in the local

density.

We briefly describe our choice of filtration by considering the example of a point cloud P �
R2

shown in Fig 2. Mathematical and computational details regarding the filtration are

Fig 2. Illustration of persistence for a 2D point cloud data (PCD). (A), (H) shows a 2D PCD example and its computed

persistence diagram. (B)-(G) shows important changes in topological feature as λ increases from −1 to1. (B) At λ = −1.06 an

isolated point, v0 appears first. Note that each isolated vertex creates a new component. (C) At λ = −0.52 points in the denser

region appears in the filtration, introducing more components. The indices of the vertices denote the order in which they appear

in the filtration. (D) At λ = −0.50, all vertices appear in the filtration. Note that, the way we have chosen the filtration function f,
vertices appear before the edges since fv(v) is always negative. (E) At λ = 0.65, the first edge e1 appears merging two components.

By persistence algorithm [8], we pair the edge e1 with v9, since v9 appears later in the filtration. Corresponding to this, we get a

persistence pair (fv(v9), fe(e1)) = (−0.50, 0.65). (F) At λ = 0.84, the green edge e2 appears and creates a cycle. Since there is no

2-simplex(triangle) present, the cycle is never destroyed. In the persistence diagram we have this pair as (fe(e3),1) = (0.84,1).

(G) At λ = 2.07, the long edge e3 appears joining v0 and v1, yielding a persistence pair (−1.06, 2.07).

https://doi.org/10.1371/journal.pcbi.1009931.g002
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provided in the Section 4. We build a filtration according to assigned values to the vertices and

edges of a graph connecting the input points. For a vertex p which is a point in the input PCD

P, we denote this value fv(p) (given by Eq 1 in Section 4). Similarly, we denote the assigned

value to an edge e as fe(e) (given by Eq 2 in Section 4); see Fig 2. The values satisfy the condi-

tions that fv(p) < 0 and fe(e)� 0; implications of this specific choice will become clear in the

next paragraph. It is noteworthy to mention that fv(p) is the negative of distance-to-measure

originally defined in [17] and later used in [18] for the PCD case and captures the density dis-

tribution of points, whereas fe(e) captures the inter-point distances between the points in the

given point cloud.

The persistence algorithm processes each vertex and edge in the order of their appearance

in the filtration. We execute it using a threshold value λ from −1 to1 and generate the per-

sistence diagram accordingly. Intuitively, as λ is increased from −1 to1, vertices p for which

fv(p)� λ and edges for which fe(e)� λ appear in the filtration for a particular value of λ (see

Fig 2). Since fv(p) < 0 and fe(e)� 0, all the vertices first appear as λ is increased from −1 to 0,

and then edges start appearing as λ becomes positive. The birth-death events for H0 and H1
constituting the persistence diagram (Fig 2H) contain information about the density and

length scales present in the point-cloud. For example, the points showing birth and death

events for the H0-persistence diagram are more densely organized for the single cell protein

expression data from the healthy donor than the SARS-CoV-2 infected patient in the HLA-DR

—CD38 plane shown in S3 Fig. The denser organization of the birth-death events in the persis-

tence diagram indicates a more homogeneous distribution of CD38 and HLA-DR proteins in

the CD8+ T cells in healthy donors compared to that in infected patients. Most of the CD8+ T

cells in healthy controls have low amounts of CD38 and HLA-DR abundances and few contain

larger values of these proteins, indicating a greater degree of homogeneity. The birth-death

events for H1 in the persistence diagram (S3 Fig) in general contain information about the

length scales of cyclic structures in the point cloud. It also can capture protrusions like ‘elbows’

that we have in COVID-19 data. Our filtration allows only birth (and not death) of 1-cycles

and therefore, a λ value corresponding to the birth of a 1-cycle captures the length scale of the

newly born cycle and hence an ‘elbow’. Our analysis of the PCDs in S3(D) and S3(H) Fig

indeed shows that λ values for the birth of cycles for the COVID-19 patient is much larger

compared to that for the healthy individual indicating the presence of larger length scales in

the PCD which is consistent with the presence of an ‘elbow’ shape in the PCD for the patient.

2.2 Application of persistence to healthy and patient data

Our aim is to find out systematic differences in topological features extracted from cytometry

data for healthy individuals and COVID-19 patients. Ideally one would like to compute persis-

tence diagrams for all 25 proteins that were measured in single CD8+ T cells, however, this

task encounters two major problems. First, as we mentioned before taking the full 25 dimen-

sional PCD introduces the curse of dimensionality [19] making it computationally infeasible to

produce the persistence diagrams. The second one is more subtle. In order to measure how the

density of data differs from a healthy to infected person in a quantitative way, we need to

ensure that the number of points in each PCD, to be analyzed by persistent homology, is the

same. Cytometry data usually contain different numbers of single cells in datasets obtained

from different donors or replicates. To address the curse of dimensionality we use a classifier

(XGBoost [29]) that distinguishes single CD8+ T cells in healthy donors from those in

COVID-19 patients and we choose the top r (taken to be 3) features (proteins) that are deemed

important by the classifier while classifying the data points (cells). This reduces the dimension

of the data from 25 to a much smaller value denoted r.
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To address the second issue, we perform uniform random sampling on every r-dimensional

dataset and take equal number of samples from it. We then use the filtration defined in Eqs 1

and 2 to construct persistence diagrams for each dataset. To quantify the structural differences

in the datasets as captured by the corresponding persistence diagrams, we compute the Was-

serstein distance [20] between persistence diagrams from randomly selected pairs of either two

healthy donors (H×H) or a healthy donor and an infected patient (H×P) and compute distri-

butions of the Wasserstein distances for a large number of (H×H) and (H×P) pairs. The com-

parison of these distributions via Kolmogorov-Smirnov (KS) tests provides information

regarding the systematic differences in shape features in the CD8+ T cell cytometry data across

healthy individuals and COVID-19 patients. The computational pipeline is summarized in

(Fig 3). Below we describe results from the application of our computational pipeline to the

CD8+ T cell cytometry data in Mathew et al. [3]

A few protein expressions in CD8+ T cells separate healthy donors from COVID-19

patients. We use XGBoost [29], a decision tree based classifier, to rank order proteins for

their ability to distinguish CD8+ T cell point cloud data between healthy individuals and

COVID-19 patients. The average accuracy of the classifier is about 92%. The classifier returns a

feature score for each protein that characterizes its importance relative to other proteins in dis-

tinguishing cells from healthy individuals and COVID-19 patients. Intuitively, feature score is

an indicator of the importance of a particular feature while classifying the data. By ranking the

proteins by their feature scores, we can reduce our further analysis to only a subset of the most

important proteins. Our analysis (Fig 4) shows that the top three most important proteins to

the XGBoost classifier are proteins T-bet, Eomes, and Ki-67. T-bet induces gene expressions

leading to an increase in cytotoxic functions of CD8+ T cells. CD8+ T cells with increased cyto-

toxic functions are known as ‘effector’ CD8+ T cells and these cells show higher T-bet abun-

dances. Conversely, Eomes induces gene expressions that contribute towards increased life

span and re-activation potential of CD8+ T cells to specific antigens [21]. These long-lived T

cells are known as ‘memory’ T cells which show increased expressions of Eomes. Memory T

cells provide key protection against re-exposure to the same infection. Ki-67 is a marker for

actively proliferating cells [22]. Mathew et al. [3] identified Ki-67 as one marker that is upregu-

lated (increased) in some COVID-19 patients. These three proteins are most likely to distin-

guish CD8+ T cells in healthy donors from those in patients. Further details regarding the

application of the classifier are provided in the Materials and Methods section (Section 4).

Persistence diagrams distinguish structural features in CD8+ T cell data occurring in

healthy individuals and COVID-19 patients across batch effects and donor-donor varia-

tions. We select the proteins T-bet, Eomes, and Ki-67 as relevant markers and compute the

Fig 3. Flowchart of computation pipeline. The pipeline includes three main stages, namely, (i) relevant feature selection, (ii) persistence computation, and (iii)

comparison of persistence diagrams.

https://doi.org/10.1371/journal.pcbi.1009931.g003
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persistence diagrams of the PCD given by them for each individual belonging to groups of

healthy donors, COVID-19 patients, and recovered patients. The persistence diagrams vary

from individual to individual in each group and between groups which could arise due to

batch effects in samples and/or donor-to-donor variations. To determine if there are system-

atic differences in persistence diagrams for individuals across the three groups (healthy,

patient, and recovered), we compute Wasserstein distance between persistence diagrams for 3

categories of pairings: 1) two healthy donors (H×H), 2) one healthy donor and one patient

(H×P), and 3) one healthy donor and one recovered individual (H×R). We compute distances

for 100 randomly chosen pairs of individuals for each category of pairings. Wasserstein dis-

tances of the persistence diagrams for 0-th and 1-st homology groups H0 and H1 respectively

are higher when comparing H×P pairs than when comparing H×H pairs (Fig 5). A 2-sided KS

test showed that the Wasserstein distances for H×P and H×H belong to different probability

distribution functions (p� 0.01); see Fig 5 and also the description of this test in Section 4.

This indicates that systematic geometric differences in the flow cytometry PCD with T-bet,

Eomes, and Ki-67 between individuals with and without COVID-19 are not attributable to

batch effects or donor-to-donor variations alone. Increasing the number of randomly chosen

pairs to 200 did not change this conclusion as Fig 5 and S4 Fig illustrate. The difference

between H×H and H×R distributions of distances in the T-bet, Eomes, and Ki-67 space are

less prominent (S5 Fig). We further test if such systematic differences are present for proteins

that are at the bottom of the list in Fig 4 and find that the distributions of Wasserstein distances

for corresponding persistence diagrams overlap between the H×H and H×P pairs (S6 Fig).

This suggests that systematic differences in the geometry of the PCD occur only for specific

sets of proteins. Details regarding computation of persistence diagrams and Wasserstein dis-

tances are given in Section 4.

Next, we select a comparison pair that generates a large Wasserstein distance between H1-

persistence diagrams to further investigate what structural differences exist between the

Fig 4. Rank ordering of proteins using a decision tree based classifier. Shows rank ordering of proteins by

descending values of feature importance generated by the classifier XBoost.

https://doi.org/10.1371/journal.pcbi.1009931.g004
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datasets. We choose one pair of a healthy control and patient that generated a Wasserstein dis-

tance of 4.0 × 106 units in their H0-persistence diagrams and 1.1 × 104 units in H1-persistence

diagrams. These two individual PCDs and their resulting persistence diagrams are shown in

Fig 6.

A readily apparent difference between the resulting persistence diagrams is given by the

lower birth times in H1 of the COVID-19 patient compared to the healthy control (Fig 6E and

6F). This result indicates that the length scale of the data is smaller in the COVID-19 patient,

which can be visually confirmed in the scatter plots of the data (Fig 6A and 6B). Specifically,

the single cell abundances of T-bet and Eomes in CD8+ T cells are clustered significantly tigh-

ter around the origin for the COVID-19 patients than for the healthy controls. Similar manual

inspection of other H×P pairs that generate large Wasserstein distances between their persis-

tence diagrams confirms that this trend is not limited to this pair alone.

Additionally, the points in the H0-persistence diagram are spread out more widely for the

healthy control than the COVID-19 patient (Fig 6C and 6D). A wider distribution of births

and deaths in the 0-th homology H0 implies that there are regions of disparate densities. This

suggests that the densities in the protein expressions of T-bet and Eomes are more homoge-

neous in the PCD in the COVID-19 patient than in the healthy control.

The structural change in the PCD for CD8+ T cells in the T-bet/Eomes plane that occurs

during COVID-19 infection implies that T-bet and Eomes expression should be downregu-

lated (decreased) in non-naïve CD8+ T cells. This result is consistent with analysis of clusters

of CD8+ T cells by Mathew et al. [3] via a software package FlowSOM [27] that shows that

clusters high in T-bet and/or Eomes are downregulated in COVID-19 patients.

The relevance of the above proteins in distinguishing healthy controls from patients is fur-

ther demonstrated by the statistically significant differences (p-values� 10−8) in the mean T-

bet, Eomes, and Ki-67 abundances in the CD8+ T cells between the groups (S10 Fig). However,

the distributions of the mean abundances for the above proteins also showed regions of over-

lap between healthy and patient populations (S10 Fig) indicating existence of H × P pairs with

much smaller differences in the mean values between them than the population averaged

mean values of these proteins. Our method specifically identifies differences in topological

Fig 5. Distributions of Wasserstein distances between persistence diagrams. (A) Shows distributions of Wasserstein distance between H0-

persistence diagrams for H×H (blue line) and H×P (orange line) pairs (p = 8.77 × 10−15,QFD = 0.173). (B) Shows distributions of Wasserstein

distance between H1-persistence diagrams for H×H (blue line) and H×P (orange line) for the same pairs in (A) (p = 3.04 × 10−14, QFD = 0.219).

Persistence diagrams are calculated from point clouds in the T-bet, Eomes, and Ki-67 axes. p-values are calculated from a 2-sided KS test.

https://doi.org/10.1371/journal.pcbi.1009931.g005
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Fig 6. Differences in shape features in the 3D point cloud for CD8+ T cells in a H×P pair. CD8+ T cell point cloud for proteins Eomes, Ki-67, and T-

bet for (A) a healthy control and (B) a COVID-19 patient. (C) Shows H0-persistence diagram for the healthy control in (A). (D) Shows the H0-persistence

diagram for the COVID-19 patient in (B). (E) H1-persistence diagram for the healthy control in (A). (F) H1-persistence diagram for the COVID-19

patient in (B).

https://doi.org/10.1371/journal.pcbi.1009931.g006
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features in the shape of the PCD between a H × P pair which can be present despite small dif-

ferences in the mean values of specific proteins (e.g., T-bet). We further investigated this point

by analyzing correlations between the Wasserstein distance between the persistence diagrams

of H × P pairs with the difference in the mean protein abundances (S11(A) and S11(B) Fig)

which showed moderate correlations (� 0.5). However, there are several instances in which

the Wasserstein distance captures differences in the shape of the PCD via persistent homology

even when the difference in mean protein abundance (e.g., mean T-bet abundance) is small

(S11(C)–S11(F) Fig). This is due to changes in the shape of the point-cloud that are not easily

captured by summary statistics such as the mean. Therefore, our analysis shows that healthy

and COVID-19 pairs can be better separated by our persistent homology analysis than by sum-

mary statistics measures in such cases. The downregulation of T-bet and Eomes in response to

viral infections is not well documented, as CD8+ T cells commonly differentiate into pheno-

types with high T-bet, high Eomes, or both in response to infections [21, 23].

We next explore the application of our approach to other datasets. We apply our method to

the single cell cytometry dataset in Mathew et al. [3] for B cells obtained from healthy donors

and COVID-19 patients. The B cells are major orchestrators of the humoral component of

adaptive immunity against infections. We compute persistence diagrams for the proteins

CXCR5, PD-1, and TCF-1, identified by XGBoost as the three most important proteins for

classifying healthy donors and patients. A chemokine receptor, CXCR5, is responsible for B

cell trafficking and is found to be downregulated in B cells in COVID-19 patients [3]. Both

PD-1, a checkpoint inhibitory receptor [24], and TCF-1, a transcription factor important for T

cell differentiation and effector functions [25] are increased in B cells in infected individuals

(S12 Fig). Immunosuppressive effects of high PD-1 expression in B cells have been reported

earlier [24]. We find that Wasserstein distances of the persistence diagrams for both homology

groups (H0 and H1) are significantly different (Fig 7) between the healthy donors and the

patient population for B cells. This demonstrates that our approach is able to distinguish

healthy individuals from patient populations using PCDs of other immune cells. Furthermore,

we find that the margin of separation, quantified by the QF-distance (QFD), in these Wasser-

stein distances is smaller with B cells than the CD8+ T cells. This implies that the structure of

PCDs for CD8+ T cells differ more between healthy controls and patients than that for the B

cells. These findings may point to previously uncharacterized impact of PD-1 and TCF-1 on B

cell function or phenotype in SARS-CoV-2 infection.

Distributions of mean PD-1 expression on B cells in COVID-19 patients is not largely dif-

ferent than that of healthy controls (S12(B) Fig). Therefore, we further analyzed how the differ-

ence between mean PD-1 values and the differences in PCDs quantified by the Wasserstein

distances are related (S13(A)–S13(D) Fig). We found that unlike T-bet for CD8+ T cells, mean

PD-1 expression differences in B cells are not tightly correlated with Wasserstein distances in

healthy control-patient pairs (S13(A)–S13(B) Fig). We visualized the PCD in the space of

TCF-1, PD-1, and CXCR5 (S13(E) and S13(F) Fig) to gain further insights regarding the differ-

ences in the shapes of the PCD in healthy control-patient pairs with similar mean PD-1 expres-

sions. The differences in the shape of the PCDs for these pairs can be largely attributed to the

higher expressions of TCF-1 in healthy controls (S13(E) and S13(F) Fig).

Comparison with existing methods. To determine how our selection of filtration com-

pares with an existing method, we compare how our results might change if we use Rips filtra-

tion. In Rips filtration, simplices appear when all of their edges appear in the filtration. The

edges appear in non-decreasing order of their lengths. We use the entire dataset as the PCD

and generate persistence diagrams subsequently, using Rips filtration [8, 14, 26] rather than

the filtration we use in our approach. Note that in the standard Rips filtration, all vertices

appear at the same instant whereas in our case the vertices are ordered by Eq 1. We then
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compute Wasserstein distances as done previously. We find that Rips filtration is also able to

distinguish persistence diagrams of healthy controls and patients, but the margin of separation

is much lower, as evidenced by a higher p-value and lower QFD than our choice of filtration

offers (S14 Fig). This indicates that our method, which is designed to identify protrusions such

as “elbows” in the data, characterizes greater differences in CD8+ T cell protein expression

structures than existing methods such as Rips filtration.

We then compare our TDA approach with an existing algorithm FlowSOM [27], widely

used for visualizing, clustering, and analyzing PCDs from cytometry experiments. FlowSOM

uses a self-organizing map algorithm for generating single cell subsets with unique marker

protein expressions. FlowSOM is capable of clustering similar cells together and offers a robust

way to determine which cellular subsets are differentially expressed between data sources [28].

We run a FlowSOM analysis and clustering on the CD8+ T cell data and determine that 6 of

the 15 clusters are differentially expressed between healthy controls and COVID-19 patients

(S15 Fig).

We select one FlowSOM cluster which is differentially expressed (Cluster #3) and one that

is not differentially expressed (Cluster #1) between healthy donors and patients for down-

stream analysis. Visual inspection of these clusters in the 3-dimensional space of T-bet, Eomes,

and Ki-67 shows that PCD structure may be different between healthy controls and patients in

Cluster #1 (S15(C) Fig). This is because proteins can co-vary in different ways in healthy con-

trols and patients, affecting topological features hidden in the PCD. We then perform our per-

sistent homology analysis to determine if the structure of PCDs for proteins Eomes, Ki-67, and

T-bet in subsets of single cells associated with these FlowSOM clusters differ between healthy

controls and patients. We find distributions of Wasserstein distances between the persistence

diagrams obtained for the above FlowSOM clusters are significantly different (Fig 8 and S16

Fig).

Performing FlowSOM on B cells reveals 12 of the 15 clusters are differentially expressed

between healthy controls and COVID-19 patients (S17(A) and S17(B) Fig). The three clusters

(Cluster #1, #2, and #14) that are not differentially expressed are all high in PD-1. Visualization

Fig 7. Distributions of Wasserstein distances between persistence diagrams for B cells. (A) Distributions of Wasserstein distance between H0-

persistence diagrams for H×H (blue line) and H×P (orange line) pairs (p = 6.28 × 10−5, QFD = 0.0300). (B) Distributions of Wasserstein distance

between H1-persistence diagrams for H×H (blue line) and H×P (orange line) for the same pairs in (A) (p = 1.07 × 10−12, QFD = 0.0946). Persistence

diagrams are calculated from point clouds in the CXCR5, PD-1, and TCF-1 axes. p-values are calculated from a 2-sided KS test.

https://doi.org/10.1371/journal.pcbi.1009931.g007
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of the PCDs for Cluster #2 and Cluster #4 shows that regions high in TCF-1 S17(C) and S17

(D) Fig) distinguish the PCDs for the pairs. Thus, our method is able to identify topological

features hidden in the PCD that separate healthy controls from COVID-19 patients in Flow-

SOM clusters, including clusters which are not differentially expressed between these groups.

3 Discussions and conclusions

We develop a persistent homology based approach to determine topological features hidden in

point cloud data representing single cell protein abundances measured in cytometry data. In

particular, we characterize the number of connected components or H0, and the number of

holes or H1 in our persistence calculations, and show that our approach is able to determine

systematic shape differences in the cytometry data for CD8+ T cells obtained from healthy

individuals and COVID-19 patients. Therefore, the approach is able to successfully determine

systematic shape differences that exist in the presence of batch effect noise and donor-donor

variations in the cytometry data. Furthermore, our approach does not use data transforma-

tions (e.g., arc-sinh transformation) or any ad-hoc subtype gating to determine these system-

atic differences, thus we expect persistent homology based approaches will be especially useful

in identifying high-dimensional structural trends hidden in cytometry data.

We determine structural changes in T-bet and Eomes abundances in single CD8+ T cells in

COVID-19 patients that can be summarized as downregulation. This result is non-intuitive as

previous findings show that T-bet and Eomes protein abundances are highest in effector

CD8+ T cells, which are induced in response to acute infections, suggesting T-bet and Eomes

expressions should be upregulated [21, 23]. The clinical implications of this result are unclear.

Mathew et al. [3] describe a immunophenotype in which Eomes+, T-bet+, CD8+ T cells are

more abundant in COVID-19 patients who respond poorly to Remdesevir and NSAIDs, have

high levels of IL-6, and have fewer eosinophils. Our analysis identifies that this immunopheno-

type (i.e., Eomes+, T-bet+, CD8+ T cells) is systematically less prevalent in COVID-19 patients

than in healthy controls. The ability of our approach to identify shape features in single

immune cell PCD without any ‘supervision’ (e.g., specific gating) of the cytometry data shows

Fig 8. Distributions of Wasserstein distances between persistence diagrams from a FlowSOM cluster (Cluster #1) that is not differentially

expressed between healthy controls and COVID-19 patients. (A) Distributions of Wasserstein distance between H0-persistence diagrams for

H×H (blue line) and H×P (orange line) pairs (p = 2.21 × 10−59, QFD = 1.638) computed for the PCD for Eomes, Ki-67, and T-bet for CD8+ T

cells. (B) Distributions of Wasserstein distance between H1-persistence diagrams for H×H (blue line) and H×P (orange line) for the same pairs in

(A) (p = 2.21 × 10−59, QFD = 1.903).

https://doi.org/10.1371/journal.pcbi.1009931.g008
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that it can potentially determine more complicated immunologically relevant shape features.

Furthermore, our approach inferred finer geometric structures from PCDs in B cells for pro-

teins CRCX5, PD-1, and TCF-1 which helped distinguish COVID-19 patients from healthy

individuals. These proteins are associated with cell migration, immunosuppression, and effec-

tor functions in lymphocytes and can potentially provide further insights into B cell response

in COVID-19.

We compare our approach with an existing algorithm FlowSOM which is widely used for

analyzing and visualizing multidimensional cytometry data. Our comparison reveals PCDs for

subtypes of CD8+ T cells in FlowSOM clusters that do not differentiate healthy controls and

COVID-19 patients contain topological features separating the above groups. Therefore,

detecting topological features hidden in the PCDs can provide important biological insights

regarding response of the lymphocytes in COVID-19.

Our approach integrates cellular comparisons with dataset comparisons. First, the classifier

pools all data and determines which proteins are significant in discriminating whether cells

come from healthy controls or COVID-19 patients. In this way, the classifier identifies a way

to compare cellular phenotypes across experimental groups. Next, the computation of Wasser-

stein distances for persistence diagrams compares individuals against each other, integrating

cellular phenotypes with donor information (e.g., healthy and COVID-19 patients). Thus, this

approach allows us to automatically identify individuals that are associated with distinguishing

structural features in the point cloud data.

Currently, the limitations are mostly due to the curse of dimensionality that increases the

computational complexity. Since we are computing pairwise distances between datapoints to

obtain the persistence diagram (S2 Appendix), computation time increases as the dimension

of data increases. Computational cluster resources that we use currently complete all computa-

tions in about 20 minutes. This is comparable to other data science applications using large

datasets, but this approach can be a barrier to those without access or experience with compu-

tational clusters. Additionally, it is unclear how additional dimensions impact the statistical

properties of the data and interpretability of the results. To expand into many (i.e. 25) dimen-

sions, computational interpretation and validation tools are necessary.

4 Materials and methods

Relevant feature selection by the XGBoost classifier

Let D = {c1, c2, . . ., cm} be the collection of m cytometry datasets. Each dataset, ci, can be viewed

as a Mn�p matrix where n is the number of datapoints (cells) and p is the number of proteins

with which each ci is generated. We denote the collection of cytometry datasets of healthy indi-

viduals as CH � D and similarly the set of individuals infected with SARS-CoV-2 as CP � D.

We proceed to label the data in the following manner: If ci 2 CH then we assign the label + 1 to

each of the n datapoints, similarly we assign −1 if ci 2 CP . Essentially, we now have a binary

classification problem where our labeled dataset is D0 =
S
D = c1 [ c2 [ . . .[cj, with labels

defined as above. We solve this binary classification problem with XGBoost [29], a gradient

boosted decision tree based classifier, and as a byproduct we get feature scores that correspond

directly to each feature’s importance in the classification. The higher the score for a protein,

the more important it is for the classifier’s decision. After our classifier orders the proteins by

their scores, we take first r proteins to construct the point-cloud on which persistence dia-

grams are computed. We set r = 3 for all our analysis reported here. We used data from 56

healthy individuals and 108 COVID-19 patients for our feature selection.

The XGBoost classifier was implemented using the open-source python XGBoost package

[29]. The model was then trained and validated with K-fold cross-validation, with K = 10. The
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average accuracy of the classifier was 92.14 ± 0.04%. The protein scores are shown in Fig 4.

Random subsampling of the datapoints

Each PCD can be thought as a set of indexed points. These indices were first shuffled randomly

and then 20, 000 indices and hence respective points were sampled uniformly from this shuffled

set. The samples drawn from each PCD were further analyzed using persistent homology. We

discarded datasets that had less than 20, 000 data points. Among 55 healthy individuals only 1

had less than 20, 000 data points. For the patient data, the number of such datasets was 34.

Details of persistent homology computation

As mentioned before (Section 2.1), computation of persistence diagrams needs a filtration. We

set the filtration induced by the function f = {fv, fe} where fv(p) computes an ‘average’ Euclidean

distance between the vertex p and its k neighbors according to Eq (1) and fe(e) computes the

length of the edge e according to Eq (2).

fvðpÞ ¼ �
1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xk

i

kp � qik
2

v
u
u
t ; p 2 P; and qi 2 k� Nearest Neighbors of p: : ð1Þ

The term kp − qik in the above equation is the Euclidean distance between the vertices p and

qi. The function value fe(e) for an edge e = (p, q) is given by the Euclidean distance between p
and q. For the experiments, the number of nearest neighbors is fixed to k = 40.

feðeÞ ¼ kp � qk ; 8p; q 2 P and p 6¼ q ð2Þ

We begin by sampling every cytometry PCD ci and take n(= 20, 000) samples. We do this to

make ci uniform w.r.t. number of data points (single CD8+ T cells). We compute a complete

weighted graph G(V, E) with vertices in the sampled data. This complete graph G is a key-step

that enables us to compute the persistence diagram,Dgm(ci) of the dataset ci, w.r.t. the filtration

function f. We show the algorithm (Algorithm B in S2 Appendix) that executes this step in

detail in the supplementary material. Notice that the graph G is weighted in the sense that each

vertex v 2 V and edge e 2 E carries a weight of fv(v) and fe(e) respectively. Observe that f :

V [ E! R constitutes a valid filtration of G.

We compute persistence diagrams for each ci 2 D according to Algorithm C in S2 Appen-

dix. The next step involves comparing the persistence diagrams. We do this by computing the

Wasserstein distance between persistence diagrams and plotting their distributions. We take

two persistence diagrams of randomly selected healthy individuals and compute the Wasser-

stein distance between them with the help of Gudhi [20, 30] and scikit-learn Python library

[31]. Similarly, we compute Wasserstein distance between persistence diagrams of a healthy

and an infected individual (both are randomly drawn from the collection). We plot the result-

ing distances. We do this for 108 pairs to obtain two distributions. Note that, results described

in Section 2.1 still holds for 200 pairs (S4 Fig). Intuitively, a large Wasserstein distance between

two persistence diagrams implies the datasets on which they were constructed are structurally

very different while a small distance implies they are structurally similar.

Statistical testing of difference in Wasserstein distance distributions

2-sided Kolmogorov–Smirnov (KS) tests were performed on Wasserstein distances for pairs of

individuals to determine if they arise from the same or different probability distribution func-

tions [32]. MATLAB’s subroutine kstest2 was used to determine p-values, where the null

hypothesis is that the Wasserstein distances from H×H comparisons and the experimental
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condition (either H×P or H×R) arise from the same non-parametric distribution, and the

alternative hypothesis is that they come from different distributions. A p-value of� 0.05

(or� 0.05) indicates the support for the alternate hypothesis (i.e., data occur from different

distributions) is statistically significant (or not significant).

Computing quadratic form (QF) distance

To measure the dissimilarity between a pair of Wasserstein distance distributions, quadratic

form (QF) distance was computed as proposed by Bernas et al. in [33] (originally introduced

in [34]). The QF distance was calculated using the formula

D2ðh; fÞ ¼ ðh � fÞTAi
jðh � fÞ ¼

Xn

i¼1

Xn

j¼1

aijðhi � fiÞðhj � fjÞ ð3Þ

where f and h are two vectors that list counts corresponding to two histogram bin counts. The

quantities f and h can be normalised so that ∑i fi = ∑i hi = 1 when indexed by i. In our case,

Ai
j ¼ ½aij� and defined as aij ¼ 1 �

ffiffiffiffiffiffiffiffi
ði� jÞ2

dmax

q

with dmax being maximum distance between bins.

FlowSOM analysis

FlowSOM was performed on the entire non-naïve CD8+ T cell dataset, and separately, the

non-naïve B cell dataset. Data was scaled with the transform asinh(x/150) before analysis. See

Code Availability for FlowSOM source code. Comparisons of relative cluster abundances

between healthy controls and COVID-19 patients were performed with a Wilcoxon rank sum

test. Subsequent persistent homology computation was performed on the selected clusters by

sampling 20, 000 cells from either the aggregated healthy control data or aggregated COVID-

19 patient data. This sampling was repeated to form “synthetic” individual healthy control or

COVID-19 patient data. We cannot sample data from each individual, as was done in the

prior computations, because many individuals display too few cells in the selected clusters to

reliably sample 20, 000 cells. In the CD8+ T cell analysis, clusters #1 and #3 were chosen for

persistent homology calculations because they contain the most cells, and thus are most likely

to have cells in each sample and be unaffected by random sampling.

Supporting information

S1 Appendix. Some omitted details.

(PDF)

S2 Appendix. Algorithms.

(PDF)

S1 Fig. Intuition of persistence. (A) A set of points P sampled from a curve. (B) An Euclidean

ball of radius � is grown around each point in P. (C) As � increases the smaller hole gets filled

up. (D) The larger hole still ‘persists’ even though the smaller hole gets filled. Figures are

adopted from [26, Fig 4.2].

(TIF)

S2 Fig. Scatter plots demonstrating change in structure of cytometry data. Transformed

scatter plot for HLA-DR/CD38 axes for CD8+ T cell PCD in a singular (A) healthy donor and

(B) COVID-19 patient. This plot demonstrates the ‘elbow’ found by the authors in [3]. The x-

axis is asinh(HLA-DR/200) and the y-axis is asinh(CD38/500).

(TIF)
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S3 Fig. Persistence calculations and comparisons for HLA-DR/CD38 axes for CD8+ T cell

PCDs shown in Mathew et. al. [3]. (A) Point cloud for individual healthy control in

HLA-DR/CD38 expression levels. (B) Complete persistence diagram for the healthy control

shown in (A). Boxes indicate zoomed regions for figures (C) and (D); (C) Zoomed in region

from (B) of H0 persistence diagram. Box shows area of low density compared to patient persis-

tence diagram; (D) Zoomed in region from (B) of H1 persistence diagram; (E)-(H) Same as

(A)-(D), but for an individual COVID-19 patient. The box in (G) is more densely populated

than the identical box in (C).

(TIF)

S4 Fig. Distributions of Wasserstein distances between persistence diagrams calculated

from 200 pairs of individuals. Distributions of Wasserstein distances between (A) H0-persis-

tence diagrams (p = 6.75 × 10−20, QFD = 0.190) and (B) H1-persistence diagrams

(p = 4.74 × 10−24, QFD = 0.220) for CD8+ T cells. Distances between pairs of healthy controls

(H × H) and pairs of a healthy control and a COVID-19 patient (H × P) are overlaid. Persis-

tence diagrams are calculated from point clouds in the T-bet, Eomes, and Ki-67 axes. This fig-

ure plots distributions of 200 randomly selected pairs, while Fig 5 plots distributions of 100

randomly selected pairs.

(TIF)

S5 Fig. Distributions of Wasserstein distances between persistence diagrams for healthy

controls and recovered individuals calculated using 3 most important proteins for

XGBoost classification of CD8+ T cells from healthy or infected individuals. Distributions

of Wasserstein distances between (A) H0-persistence diagrams (p = 0.131, QFD = 0.005) and

(B) H1-persistence diagrams (p = 0.344, QFD = 0.001) for CD8+ T cells. Distances between

pairs of healthy controls (H × H) and pairs of a healthy control and a individual that recovered

from COVID-19 (H × R) are overlaid. Persistence diagrams are calculated from point clouds

in the T-bet, Eomes and Ki-67 axes. p-values are calculated from a 2-sided KS test.

(TIF)

S6 Fig. Distributions of Wasserstein distances between persistence diagrams calculated

using least important proteins for XGBoost classification of CD8+ T cells. Distributions of

Wasserstein distances between (A) H0-persistence diagrams (p = 2.75 × 10−8, QFD = 0.051)

and (B) H1-persistence diagrams (p = 0.111, QFD = 0.022) for CD8+ T cells. Distances

between pairs of healthy controls (H × H) and pairs of a healthy control and a COVID-19

patient (H × P) are overlaid. Persistence diagrams are calculated from point clouds in the IgD,

CD4 and CD20 axes. p-values are calculated from a 2-sided KS test.

(TIF)

S7 Fig. Distributions of Wasserstein distances between persistence diagrams calculated

using two most important proteins for XGBoost classification of CD8+ T cells from

healthy or infected individuals. Distributions of Wasserstein distances between (A) H0-per-

sistence diagrams (p = 6.31 × 10−19, QFD = 0.261) and (B) H1-persistence diagrams

(p = 6.31 × 10−19, QFD = 0.276) for CD8+ T cells. Distances between pairs of healthy controls

(H × H) and pairs of a healthy control and a COVID-19 patient (H × P) are overlaid. Persis-

tence diagrams are calculated from point clouds in the T-bet and Eomes axes. p-values are cal-

culated from a 2-sided KS test.

(TIF)

S8 Fig. Distributions of Wasserstein distances between persistence diagrams calculated

using four most important proteins for XGBoost classification of CD8+ T cells from
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healthy or infected individuals. Distributions of Wasserstein distances between (A) H0-per-

sistence diagrams (p = 3.35 × 10−13, QFD = 0.267) and (B) H1-persistence diagrams

(p = 3.04 × 10−14, QFD = 0.265) for CD8+ T cells. Distances between pairs of healthy controls

(H × H) and pairs of a healthy control and a COVID-19 patient (H × P) are overlaid. Persis-

tence diagrams are calculated from point clouds in the T-bet, Eomes, Tox and TCF-1 axes. p-

values are calculated from a 2-sided KS test.

(TIF)

S9 Fig. Distributions of Wasserstein distances between persistence diagrams calculated

using most important proteins for XGBoost classification of recovered CD8+ T cells. Dis-

tributions of Wasserstein distances between (A) H0-persistence diagrams (p = 0.908,

QFD = 0.002) and (B) H1-persistence diagrams (p = 0.994, QFD = 0.001) for CD8+ T cell. Dis-

tances between pairs of healthy controls (H × H) and pairs of a healthy control and a individual

that recovered from COVID-19 (H × R) are overlaid. Persistence diagrams are calculated from

point clouds in the CD45RA, Eomes and TCF-1 axes. These 3 proteins are the best distinguish-

ing features for the XGBoost classifier to distinguish cells from healthy controls from those

from recovered individuals. p-values are calculated from a 2-sided KS test.

(TIF)

S10 Fig. Probability distribution function (pdf) of mean abundances of proteins identified

by XGBoost to be important to patient classification in CD8+ T cells. PDFs for (A) T-bet,

(B) Eomes, and (C) Ki-67 for CD8+ T cell PCDs in each healthy control and COVID-19

patient shown using violin plots. The thickness of the “violin” denotes the value of the pdf.

Data distributions are calculated from the mean protein abundances across all non-naïve CD8

+ T cells for each individual. Red dots represent the mean of the data, and red lines represent

the standard deviation.

(TIF)

S11 Fig. Demonstration of persistent homology’s ability to capture more information than

change in magnitude of single protein measurements in CD8+ T cells. (A-B) Scatter plot

showing the relationship between Wasserstein distance between H0 and H1 persistence dia-

grams and the difference in mean T-bet abundance for CD8+ T cells for random pairs of

healthy controls and COVID-19 patients. Red circles highlight a pair of individuals that gener-

ated a large Wasserstein distance despite a small difference in mean T-bet expressions, which

are further analyzed in (C-F). (C-D) Histograms showing the T-bet expression of non-naïve

CD8+ T cells for the healthy control (blue) and COVID-19 patient (red) from the points cir-

cled above in (A-B). (E-F) Scatter plots showing the T-bet, Eomes, and Ki-67 abundances for

the healthy control (blue) and COVID-19 patient (red) from the points circled in (A-B).

(TIF)

S12 Fig. Probability distribution function (pdf) of mean abundances of proteins identified

by XGBoost to be important to patient classification in B cells. PDFs for (A) CXCR5, (B)

PD-1, and (C) TCF-1 in B cells of each healthy control and COVID-19 patient shown using

violin plots. The thickness of the “violin” denotes the value of the pdf. Data distributions are

calculated from the mean protein abundances across all B cells for each individual. Red dots

represent the mean of the data, and red lines represent the standard deviation.

(TIF)

S13 Fig. Demonstration of persistent homology’s ability to capture more information than

change in magnitude of single protein measurements in B cells. (A-B) Scatter plot showing

the relationship between Wasserstein distance between H0 and H1 persistence diagrams and
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the difference in mean PD-1 abundance for B cells for random pairs of healthy controls and

COVID-19 patients. Red circles highlight a pair of individuals that generated a large Wasser-

stein distance despite a small difference in mean PD-1 expressions, which are further analyzed

in (C-F). (C-D) Histograms showing the PD-1 expression of non-naïve B cells for the healthy

control (blue) and COVID-19 patient (red) from the points circled above in (A-B). (E-F) Scat-

ter plots showing the CXCR5, PD-1, and TCF-1 abundances for the healthy control (blue) and

COVID-19 patient (red) from the points circled in (A-B). Protein expression axes in (C)-(F)

are scaled to asinh(x/150), where x is the expression of the given protein.

(TIF)

S14 Fig. Distributions of Wasserstein distances between persistence diagrams calculated

using Rips filtration. (A) Shows distributions of Wasserstein distance between H0-persistence

diagrams for H×H (blue line) and H×P (orange line) pairs (p = 1.20 × 10−4, QFD = 0.0575) for

CD8+ T cells. (B) Shows distributions of Wasserstein distance between H1-persistence dia-

grams for H×H (blue line) and H×P (orange line) for the same pairs in (A) (p = 3.73 × 10−3,

QFD = 0.0343).

(TIF)

S15 Fig. Results of FlowSOM analysis for CD8+ T cells. (A) t-SNE projection of protein

expression data for CD8+ T cell PCD in Mathew et al. Each point represents a cell with 25 pro-

tein expressions. Colors represent 15 clusters identified by FlowSOM. Cluster #1 and Cluster

#3 are selected for further topological analysis. (B) Heatmap showing scaled MFI for T-bet,

Eomes, and Ki-67 for each cluster. Each entry in the first three columns is the MFI scaled by

the average MFI of the column. The fourth column shows p-values determining differential

expression of the cluster between healthy controls and COVID-19 patients. Note that Cluster

#1 has p> 0.05 and Cluster #3 has p< 0.05. (C-D) Scatter plots showing the T-bet, Eomes,

and Ki-67 abundances for all healthy controls (blue) and COVID-19 patients (red) from the

cells in Cluster #1 (C) and Cluster #3 (D). Black circles in (C) indicate regions of single cell

protein expressions which contribute to the differences in the PCD structure for the FlowSOM

clusters. Axes are scaled to asinh(x/150), where x is the expression of the given protein.

(TIF)

S16 Fig. Distributions of Wasserstein distances between persistence diagrams from a Flow-

SOM cluster (Cluster #3) that is differentially expressed between healthy controls and

COVID-19 patients. (A) Shows distributions of Wasserstein distance between H0-persistence

diagrams for H×H (blue line) and H×P (orange line) pairs (p = 2.20 × 10−59, QFD = 1.604).

(B) Shows distributions of Wasserstein distance between H1-persistence diagrams for H×H

(blue line) and H×P (orange line) for the same pairs in (A) (p = 2.21 × 10−59, QFD = 1.573).

(TIF)

S17 Fig. Results of FlowSOM analysis for B cells. (A) t-SNE projection of protein expression

data for B cell PCD in Mathew et al. Each point represents a cell with 25 protein expressions.

Colors represent 15 clusters identified by FlowSOM. Cluster #2 and Cluster #4 are selected for

further topological analysis. (B) Heatmap showing scaled MFI for CXCR5, PD-1, and TCF-1

for each cluster. Each entry in the first three columns is the MFI scaled by the average MFI of

the column. The fourth column shows p-values determining differential expression of the clus-

ter between healthy controls and COVID-19 patients. Note that Cluster #2 has p> 0.05 and

Cluster #4 has p< 0.05. (C-D) Scatter plots showing the CXCR5, PD-1, and TCF-1 abun-

dances for all healthy controls (blue) and COVID-19 patients (red) from the cells in Cluster #2

(C) and Cluster #4 (D). Axes are scaled to asinh(x/150), where x is the expression of the given
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protein.

(TIF)
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