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Abstract

A disease molecular signature is a set of biomolecular features that are prognostic of clinical phenotypes and indicative of
underlying pathology. It is of great importance to develop computational approaches for finding more relevant molecular
signatures. Based upon the hypothesis that various components in a molecular signature are more likely to share similar
patterns, we introduced a novel three step network based approach (TSNBA) to identify the molecular signature and key
pathological regulators. Protein-protein interaction (PPI) network and ranking algorithm were integrated in the first step to
find pathology related proteins with high accuracy. It was followed by the second step to further screen with co-expression
patterns for better pathology enrichment. Context likelihood of relatedness (CLR) algorithm was used in the third step to
infer gene regulatory networks and identify key transcription regulators. We applied this approach to study IL-1 (interleukin-
1) and TNF-alpha (tumor necrosis factor-alpha) stimulated inflammation. TSNBA identified inflammatory signature with high
accuracy and outperformed 5 competing methods namely fold change, degree, interconnectivity, neighborhood score and
network propagation based approaches. The best molecular signature, with 80% (40/50) confirmed inflammatory genes,
was used to predict inflammation related genes. As a result, 8 out of 10 predicted inflammation genes that were not
included in the benchmark Entrez Gene database were validated by literature evidence. Furthermore, 23 of the 32 predicted
inflammation regulators were validated by literature evidence. The rest 9 were also validated with TF (transcription factor)
binding site analysis. In conclusion, we developed an efficient strategy for disease molecular signature finding and key
pathological regulator identification.
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Introduction

Molecular signature is defined as a set of biomolecular features

that can be used as markers for a particular phenotype and

underlying condition-related biological mechanisms. They can be

a set of genes, proteins, metabolites, genetic variants and

microRNAs. Molecular signatures have been derived and applied

for various purposes [1,2] including disease diagnosis and risk

assessment [3–7], prediction of physiological toxicity [8,9] and

response to therapeutic drugs [10,11]. In addition, molecular

signatures are also indicative of underlying molecular pathology

and have been used for investigating disease progression [12,13]

and discovering the underlying mechanisms [14,15].

Molecular signature can be obtained via a variety of approach-

es. Dimension reduction techniques [16,17], differential expression

analysis [18], and prioritization approaches [19,20] are commonly

used for this purpose. However, signature components obtained

from principal component analysis (PCA) and partial least squares

(PLS) are often difficult for interpretation. In addition, reproduc-

ibility and accuracy are still two challenges for current methods.

‘‘Omics’’ technologies have produced a lot of high throughput

data, which provides tremendously rich information to discover

molecular signature for better understanding diseases. In addition,

diverse types of data can be integrated in network based

approaches, which advantageously incorporate complex interac-

tions and rich disease information. Methods integrating multiple

data sets, multiple data types with network-based approaches have

been shown to find accurate and robust molecular signatures [1].

Another major challenge still exists regarding the lack of

robustness for the algorithms with overly optimistic result for

certain data sets and poor performance on other data sets.

Different stimulations may lead to similar clinical phenotype by

perturbing very different underlying molecular mechanisms.

Therefore, it is important to improve current discovery process

for identifying perturbation responsive signatures. Moreover,

considering the experimental validation of a signature, it is more
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important to reduce hundreds of signature proteins/genes to a

refined and manageable number of key regulators. Therefore, it is

useful to develop an approach for accurate molecular signature

and pathological regulators discovery at the same time.

It is well recognized that interacted genes or proteins are likely

involved in the same or similar biochemical process [21,22].

Therefore, similar expression patterns are more likely to be shared

by components involved in the same molecular signature for a

specific pathological process. Based on this understanding, a new

approach was developed for finding disease molecular signature

and key regulators by integrating PPI network, gene co-expression

network and context likelihood of relatedness (CLR) algorithm as

shown in Figure 1. In the first step, TSNBA (three step network

based approach) uniquely combined gene expression data with

PPI network to find pathology related proteins through a novel

ranking algorithm incorporating perturbation responsive gene

expression data. In the second step, the top ranking genes were

further screened with co-expression network for a more enriched

signature finding. Finally, CLR algorithm was used for inferring

gene regulatory networks, followed by identification of key

regulators based upon three screening criteria. The performance

of TSNBA was tested on IL-1 (interleukin-1) and TNF-alpha

(tumor necrosis factor-alpha) stimulated inflammation. As a result,

TSNBA outperformed 5 competing methods namely fold change,

degree, interconnectivity, neighborhood score and network

propagation based approaches. The predicted pathological regu-

lators were validated with literature evidence and provided

potential new insights into the underlying molecular mechanisms

of inflammation.

Materials and Methods

Data Preparation
PPI data. The PPI data was derived from HPRD [23]

(Release 9) with self-interactions removed.

TNF-alpha and IL-1 stimulated inflammation data. The

former, GSE2639 [24], contains the gene expression profiles of 4

TNF-stimulated samples and 4 normal samples. Stimulated

samples were treated with 2 ng/ml TNF for 5 hours, and normal

samples were left-untreated. The latter, GSE973 [25], contains 4

IL-1 stimulated samples and 1 normal sample. Stimulated samples

were treated with 100 U/ml human IL-1 for 0, 0.5, 1, 2.5 and

6 hours, and the normal sample was untreated. Two groups of

data sets were both obtained by using human U133A GeneChips

(Affymetrix, Santa Clara, CA) from human umbilical vein

endothelial cells (HUVEC). Raw data was stored in ArrayTrack

3.5.0 [26]. MAS 5 [27], which has been suggested to be the best

normalization procedure to reconstruct cellular network [28], was

used for normalization. Expression data was summarized to the

gene level by averaging all probes mapped to the same gene. Only

the genes included in the PPI network were selected for further

analysis.

PPI data Benchmark human inflammatory genes. The

data was collected from Entrez Gene database [29]. We queried

‘‘((‘‘inflammatory’’ OR ‘‘inflammation’’) AND ‘‘[Homo sapiens

(human)]’’)’’ and found 2210 related genes as of 5th September

2013. Only 1462 genes were involved in PPI network and those

were used for further analysis.

Human TF (transcription factor) data. Human transcrip-

tion factor data was derived from AnimalTFDB [30], and only

TFs involved in PPI network were considered for further analysis.

The First Step: Gene ranking with PPI interaction network
Generation of an interaction activity matrix. An adja-

cency matrix Adj was constructed for PPI network. The Adj(i,j) = 1

when node i and j interact with each other and Adj(i,j) = 0

otherwise. The activity of each interaction was computed by a

weighting function [31,32]:

Aij~ 1zC
X
k~i,j

exp {K fk{Tð Þð Þ
 !{1

{

1zC
X
k~i,j

exp {K {fk{Tð Þð Þ
 !{1

ð1Þ

Here, fk is the log2-fold change value of the gene k. The shape of

the multivariate logistic distribution is controlled by parameters C

and K (C = 1 and K = 5 by default), and the shifting parameter T

(0.5 by default) is added to produce zero when fi and fj are both

zeros. The weighting function includes two multivariate logistic

functions, with the first term capturing co-activation of genes and

the second term capturing co-suppression. These activities of

interactions replace ‘‘1’’ in Adj and generate an interaction activity

matrix.

Gene ranking. The influence of each node (Pi) is the sum of

the influence it receives from each interacted nodes.

Pi~
XN

t~1

Ait ð2Þ

Where N is the number of nodes in the interaction activity

matrix, and Ait is the interaction activity of node t with node i. The

final ranked list was obtained according to descending order of Pi.

The Second Step: Filtering with co-expression network
for better enrichment

Gene co-expression has been widely used for finding co-

regulated genes [33–36] and co-regulatory relationships [37–41].

Here, co-expression analysis was applied to the top ranking genes

obtained from the first step to further screen for better pathology

enrichment. Pearson correlation coefficient p was computed for

each pair of genes:

pij~
cov wi,wj

� �
swi

swj

ð3Þ

with wi as the vector containing expression values of gene i under

all conditions. Correlation coefficients below a certain threshold

will be filtered out, and eligible connections are included in the

final co-expression network and deemed as the disease molecular

signature.

The Third Step: Searching for key regulators
Ranking putative interactions by CLR. A lot of approach-

es have been developed to identify regulatory networks, such as

CLR [42], Bayesian network [43] and ARACNe [44]. As an

extension of relevance networks approach [45,46], CLR detects

regulatory interactions via important mutual information (MI). An

adaptive background correction step is further applied to eliminate

false correlations and indirect influences. The statistical likelihood

of MI value for each gene is computed within its network context,
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and the MI value for each TF-target pair is compared to the

context likelihood of both the TF and the target gene, followed by

z-score normalization.

S~C{Cdiag ð4Þ

ATF~zscore Sð Þ ð5Þ

Atarget~ ATFð ÞT ð6Þ

ZK�K~
AtargetzATF

sqrt 2ð Þ ð7Þ

MIK�K~ZK�K- ZK�Kð Þdiag ð8Þ

Where C is the correlation coefficient matrix for top K genes of

ranking list. Cdiag is the diagonal matrix of C. MIK*M is derived

from MIK*K for M genes coding for transcription factors in top K

genes. Finally, putative regulatory interactions are then ranked by

decreasing z-score.

Identifying key transcription factors of

inflammation. Key regulators should be closely associated

with the pathology and play pivotal roles in the regulatory

Figure 1. Framework of TSNBA. PPI network and gene expression data are integrated in the interaction activity matrix to rank
genes for their relevancy to the perturbation. The top K ranking genes are further filtered with co-expression network for better pathology
enrichment. Context likelihood of relatedness (CLR) algorithm is used in the third step to infer gene regulatory networks and identify key
transcription regulators. Node in gray represents for known pathology related genes, white represents for predicted ones, and black represents for
predicted key regulators.
doi:10.1371/journal.pone.0094360.g001
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network. In the present study, three screening criteria were used

for searching key inflammatory regulators. All interactions with z-

score less than 3 are filtered out, the number of targets from Entrez

Gene inflammation signature must be greater than 3, and the

percentage of inflammatory gens in all targets should be more than

60%.

Competing approaches
Fold change based approach. Gene expression change

quantifies the response to a pathological condition for a gene.

Therefore, differentially expressed genes using a fold change cutoff

has been used very often as the signature under the condition. In

this study, absolute fold change cutoff was set to be 1.2, 1.5, 2.0,

3.0 and 4.0, eligible genes were collected in corresponding sets,

namely ‘‘FC_1.2’’, ‘‘FC_1.5’’, ‘‘FC_2’’, ‘‘FC_3’’, and ‘‘FC_4’’.

Moreover, top 50 and 300 genes with biggest absolute fold change

were collected and corresponding enrichment ratios were calcu-

lated.

Degree based approach. Degree is an important topological

parameter, e.g. hub genes are the genes with highest degrees.

Deletion of these genes has been shown leading to more severe

phenotypic outcomes than other genes [47]. Although the

importance of hub genes are still in debate, they have been used

widely as a measure of biological importance. Moreover, our first

step ranks genes via the weight calculated by equation (2), which

may inadvertently capture the degree information. Thus, it is

necessary to compare with degree based approach. According to

the PPI network, genes were ranked by decreasing degrees. In the

present study, degree cutoff was set to be 50, 100, 150, 200, 250

and 300 and corresponding enrichment ratios were calculated.

Neighborhood Scoring. Neighborhood scoring is a local

measure for prioritizing candidates based on the expression of the

gene itself and its direct neighbors in the network [48], we

implemented the adapted method as described in Dorothea

Emig’s work [49]. Genes were ranked by their scores, which were

calculated as follows:

Score ið Þ~ 1

2
|FC ið Þz 1

2
|

P
n[N ið Þ

FC nð Þ

DN ið ÞD ð9Þ

Fold change (FC) of gene i and average fold change of its neighbors

N equally contribute to the score, where N(i) includes all

neighboring genes of i. To note, score 0 is assigned to genes that

are neither differentially expressed or have any differently

expressed genes in the direct neighborhood.

Interconnectivity. Interconnectivity is also a local measure-

ment for prioritizing candidates, which is based on genes’ overall

connectivity to differentially expressed genes [50]. An adapted

method [49] is used in the present study. First, interconnectivity

scores for interactors of differentially expressed genes are

calculated based on their direct interactions and their shared

neighborhood as follows:

ICN i,jð Þ~e i,jð Þ| 2zDN ið Þ\N jð ÞDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deg ið Þ|deg jð Þ

p
 !

ð10Þ

e(i,j) describes whether an edge exists between gene i and j, 1

represents for edge exists and 0 otherwise. Both direct interaction

and shared neighborhood N are taken into account, which are

then normalized by the overall degrees of the two genes.

Then, final score of each gene is based on the interconnectivity

to all differentially expressed genes:

Score ið Þ~ 1

DEGj j|
X

d[DEG

ICN i,dð Þ ð11Þ

where DEG is the set of all differentially expressed genes and d

represents one differentially expressed gene.

Figure 2. Enrichment analysis of inflammation signature by
TSNBA. (A): Enrichment ratio of top K genes for different data sets.
IL1_0.5h, IL1_1h, IL1_2.5h, and IL1_6h represent for the perturbation
with 0.5, 1.0, 2.5, and 6.0 hours IL-1 stimulation, respectively. TNF1-4
represent for the perturbation with 5 hours TNF stimulation. (B)
Comparison of ranking algorithm with TSNBA, rank_50 represents for
top 50 ranking genes.
doi:10.1371/journal.pone.0094360.g002

Table 1. Inflammation enrichment by TSNBA.

Data set Size of signature Enrichment ratio Threshold P-value

IL1_0.5h 52 0.65 0.91 0.006131

IL1_1h 56 0.73 0.93 0.000115

IL1_2.5h 50 0.80 0.92 2.59E-05

IL1_6h 50 0.74 0.93 0.001221

TNF1 55 0.49 0.94 0.220595

TNF2 52 0.77 0.935 5.80E-05

TNF3 51 0.71 0.935 0.014408

TNF4 54 0.69 0.94 0.000223

doi:10.1371/journal.pone.0094360.t001
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Network Propagation. Different from interconnectivity and

neighborhood score, network propagation is a global method,

which takes the complete network topology into account for

prioritizing candidates [49,51]. First, differentially expressed genes

in the network are assigned to a score of 1, while the remaining 0.

These scores represent the prior information on genes for disease

and are regarded as the starting propagating flow. Then, the flow

is further smoothed over the network in each iteration until a

steady state is reached. Finally, each gene receives its final score

according to the final flow and is ranked in the whole gene list. In

each iteration, the flow for the genes is updated as follows:

Ft~a|A|Ft{1z 1{að Þ|F0 ð12Þ

Ft is a vector containing the flow for each gene at time point t. a is

diffusion parameter. A is the adjacency matrix of the network,

where each entry is normalized by the degrees of the source gene

and target gene. The normalization compensates for the fact that

high degree genes have a higher chance of picking up flow by

chance and are thus ranking higher in the prioritization. F0

represents the starting propagating flow. The steady state is

reached when the L1 norm of the difference between Ft and Ft-1 is

below 1026.

Enrichment ratio and statistical test for inflammation
Enrichment ratio and statistical test. Enrichment ratio in

the present work was defined as the percentage of inflammatory

genes in top K genes of ranking list overlapping with the

benchmark Entrez Gene inflammation set. K started from 50

with an increment of 50 at each step. For each ratio, a

hypergeometric test was used to evaluate the enrichment of

inflammatory genes in each selected list, and p-value was obtained.

Enrichment ratio and statistical test for signature genes

by TSNBA. Top K genes were chosen from the ranked list for

screening signature proteins for better pathology enrichment.

Different thresholds of correlation coefficient were tested, ranging

from 0.6 to 0.945 with an increment of 0.005. For each threshold,

genes involved in the co-regulatory relationships were selected to

calculate enrichment ratio, and hypergeometric test was used for

enrichment analysis.

Results

TSNBA identified better inflammation enriched signature
The final PPI network used in this study consisted of 7633 genes

(nodes) and 30995 interactions. 1469 human TFs derived from

AnimalTFDB database and 1462 inflammatory genes extracted

from Entrez Gene database were included in the network. The

background ratio for inflammatory gene was 19.2% (1462/7633).

Endothelial cells play critical roles during the inflammatory

response [25], and TNF-alpha [52] and IL-1 [53] are well known

important mediators of the process. Therefore, gene expression

data collected from TNF-alpha and IL-1 stimulated HUVEC were

used in the present study. For IL-1 stimulated inflammation,

HUVEC were treated with IL-1 for 0, 0.5, 1, 2.5 and 6 hours, 4

sets of data were constructed to calculate fold change of genes,

namely ‘‘IL1_0.5h’’, ‘‘IL1_1h’’, ‘‘IL1_2.5h’’ and ‘‘IL1_6h’’. In

TNF-alpha stimulated inflammation, HUVEC were left untreated

or stimulated for 5 h with TNF-alpha, and both were repeated for

4 times, thus constructing another 4 sets of data, namely ‘‘TNF1’’,

‘‘TNF2’’, ‘‘TNF3’’ and ‘‘TNF4’’. A total of 8 sets of genes were

used for following analysis.

The ranked gene list was first obtained for each data set. The

enrichment ratio and p-value were calculated by comparing top K
ranking genes to the benchmark Entrez inflammation gene set. As

shown in Figure 2A, the enrichment ratio (p-value,0.0001)

decreased with the increase of K, indicating higher probability of

finding inflammation gene in the higher ranked genes. The highest

enriched ratio was 0.72 in top 50 ranking genes from IL1_6h data

set.

As shown in Figure 2A, there were some fluctuations when the

number of selected genes ranged from 50 to 250. Taking ‘‘TNF1’’

data set for an example, enrichment ratio of top 100 ranking genes

was higher than that of top 50, and enrichment ratio of top 300

was higher than that of top 250. These fluctuations were largely

due to the small size of selected genes. Moreover, top 300 ranking

genes got better pathology enrichment (which will be detailed in

discussion). Given these results, K, the number of top ranking

genes, was set to be 300. These genes were further used to

construct co-expression networks. When the correlation threshold

ranged from 0.6 to 0.84, little change in enrichment ratio was

observed (see details in Figure S1 in File S1). However, when

threshold was larger than 0.84, enrichment ratio increased. We

then adjusted threshold to constrain the number of genes in co-

expression network to about 50, detailed information was shown in

Table 2. Literature evaluation of predicted inflammation genes.

Potential inflammatory gene Whether inflammation related gene Pubmed

BCL3 ! 19270711

CALCOCO2 ! 23820297

CD22 ! 22806142

DLG3 Not known

ERBB3 ! 22157714

MAGI1 ! 22806142

POU1F1 Not known

SMURF2 ! 22843012

SSTR2 ! 15806094

TANK ! 16698233

‘‘!’’ represents for ‘‘Yes’’.
doi:10.1371/journal.pone.0094360.t002

TSNBA for Inflammatory Signature and Key Regulator Finding
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Table 1. Except for ‘‘TNF1’’ data set, TSNBA significantly

enriched inflammatory signature further from the top 300 ranking

genes. Furthermore, we compared enrichment ratio of TSNBA

with that of top 50 ranking genes from step 1. TSNBA

outperformed ranking algorithm on 7 out of 8 (87.5%) cases for

identifying inflammation enriched signature (as shown in

Figure 2B).

TSNBA predicted new inflammation related signature
genes

The number of genes in co-expression network was set to be

about 50, but no less than 50. Under such a restricted condition,

the highest enrichment ratio was found in ‘‘IL1_2.5h’’ data set

with the threshold of 0.92 (Figure 2B). In the constructed co-

expression network, 80% (40/50, p-value,0.0001) genes were

confirmed by Entrez Gene database to be human inflammatory

genes. Hence, the rest 10 unconfirmed genes were predicted to be

inflammatory genes. According to evidence collected from

literature, 8 out of the 10 genes were reported to be associated

with inflammation (see Table 2 with more details in Table S1 in

File S1). Therefore, TSNBA was able to accurately predict

pathology related genes by integrating gene expression and PPI

network.

TSNBA predicted key inflammatory regulators
Starting from the top 300 ranking genes, CLR was used to infer

regulatory relationships. Potential regulators were predicted for

each set and a final union set was obtained. A total of 32

transcription factors were predicted as potential regulators of

inflammation. Among them, 21 regulators were included in

inflammatory signature from Entrez Gene database and all of

them were validated by literature to be important regulators of

inflammation, e.g. nuclear factor kappa B (NFkB) a known master

regulator of inflammation. In the rest 11 predicted regulators,

Table 3. Literature evaluation of predicted inflammatory regulator.

Potential Key Regulator Whether inflammatory regulator
Whether in benchmark Entrez Gene
inflammation set PubMed

ATF3 ! ! 18794337

BCL6 ! ! 22465074

CEBPB ! ! 22074460

EGR1 ! ! 11100120

ESR2 ! ! 20045727

FOS ! ! 19995753

HES1 ! ! 20832754

JUNB ! ! 19933155

JUND ! ! 19933155

NFKB1 ! ! 18927578

NFKB2 ! ! 18927578

NR2C2 ! ! 16675448

POU2F1 ! ! 21059098

RELA ! ! 12509469

SMAD2 ! ! 20667820

SMAD7 ! ! 19352540

STAT5A ! ! 15749913

TP53 ! ! 21779518

TP73 ! ! 10716451

VDR ! ! 17224129

VTN ! ! 17982099

RXRA ! 20498053

SRF ! 23705899; 23893683

DLX5 Not Known

GTF2I Not Known

HEY1 Not Known

MSX1 Not Known

NFE2 Not Known

NR5A1 Not Known

PITX1 Not Known

PRRX1 Not Known

RARA Not Known

‘‘!’’ represents for ‘‘Yes’’.
doi:10.1371/journal.pone.0094360.t003
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serum response factor (SRF) was reported to regulate type I

interferon-signaling in macrophage, thus is suggested as important

regulator for regulating innate immunity [54]. Moreover, SRF was

proposed to be required in acrolein activation of NFkB [55].

Macrophage (retinoid X receptor alpha) RXRA could upregulate

the expression of chemokines, such as CCL6 and CCL9, and

control innate inflammatory responses [56]. Therefore, RXRA

and SRF may play important role in the regulation of

inflammation. In summary, a total of 71.9% (23/32) regulators

predicted by TSNBA were validated by literature as inflammatory

regulators (see Table 3 and details in Table S2 in File S1).

In addition to the validation from the literature evidence,

bioinformatics approaches were also taken to explore the

relationship between predicted TFs and inflammation. Potential

TF binding sites within promoter regions of the 32 TFs were

assessed via TRANSFAC component of GATHER [57]. The

result showed strong evidence that nuclear factor kappa B (NFkB)

binding motifs were contained in the proximal promoter regions of

all genes (see details in Table S4 in File S1). Given the critical role

of NFkB in regulating inflammation, it is very likely that these

regulators are all involved in the process of inflammation. On the

other hand, TFactS database [58] was used to find target genes for

the rest TFs that were not validated by literature. As a result, 5 of

the 6 TFs included in TFactS were reported to target inflamma-

tory genes included in benchmark Entrez Gene database (see

details in Table S5 in File S1). Furthermore, these TFs were all

shown to interact with confirmed inflammatory proteins via PPIs

collected from STRING database (Release 9.1) (see details in

Table S6 in File S1) [59].

In summary, both literature and bioinformatics analysis

suggested that our predicted TFs were closely related to

inflammation, thus indicating the applicability of TSNBA for

finding key inflammatory regulators.

Methods comparison

Figure 3. Statistical significance test for methods comparison. Fold change based approach (red), network propagation (green),
interconnectivity (purple), and neighborhood scoring (cyan) are compared with first step of TSNBA (A) and full TSNBA (B).
doi:10.1371/journal.pone.0094360.g003

Figure 4. Performance of fold change based approach.
Enrichment ratios are calculated under 5 absolute fold change cutoffs,
namely 1.2, 1.5, 2.0, 3.0 and 4.0. Different colors represent for different
data sets.
doi:10.1371/journal.pone.0094360.g004

Figure 5. Performance of network degree based approach.
Enrichment ratios are calculated for top K genes. The size of genes, K, is
set to be 50, 100, 150, 200, 250 and 300.
doi:10.1371/journal.pone.0094360.g005

TSNBA for Inflammatory Signature and Key Regulator Finding
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Statistical significance test was performed on the methods

comparison part. According to the working flow of our approach,

paired t-test was performed to evaluate statistical significance for

results of the first and second step, and enrichment ratios of

different sets via different methods were used for comparison.

In the first step, top 300 ranking genes were extracted and

enrichment ratio was calculated for each data set. As shown in

Figure 3A, the first step of TSNBA outperformed another 4

methods (see details in Table S8 in File S1).

In order to perform statistical significance test for the second

step of TSNBA, molecular signatures needed to be identified by

given methods. When molecular signature was identified by fold

change based approach, enrichment ratios were calculated for

different data sets under different fold change cutoff. As shown in

Figure 4, enrichment ratios increased with increasing cutoff, which

indicated that genes with large fold change were more likely to be

included in the pathological process. Given this, top 50 ranking

genes with highest absolute fold change was set to be molecular

signature. As for degree based approach, enrichment ratios for

different degree cutoffs were studied. The highest enrichment ratio

was obtained under top 50 genes (as shown in Figure 5).

Therefore, these 50 genes were identified as the molecular

signature. Given results from degree based and fold change based

approach, absolute fold change was set to be 4 to identify

differentially expressed genes. For the convenience of comparison,

the size of signature was set to be 50 for 3 candidate gene

prioritization methods. Moreover, diffusion parameter a was

investigated (see Table S7 in File S1), and finally set to be 0.1 for

best performance. As shown in Figure 3B and Figure 6, TSNBA

outperformed fold change based approach, interconnectivity,

neighborhood scoring and network propagation in all data sets

(see details in Table S9 in File S1). Besides, our approach also

outperformed degree based approach in 7 data sets (except for

‘‘TNF1’’ data set).

Discussion

Proteins play a central role in activities of living cells and they

are interconnected in PPI network. Systematic PPI network

exploration could lead to a better understanding of protein

function and biological processes [60]. Combining PPI network

with gene expression profiles provides two advantages. First,

microarray gene expression enables genome wide screening of all

genes at once and thus guarantees a comprehensive coverage.

Second, gene expression data captures perturbation responsive

information and perturbation related PPIs are more likely to be

activated. Our ranking algorithm takes both aspects into

consideration and could find more relevant gene/protein sets. It

has long been known that genes involved in the same process often

share similar expression patterns. It is thus the motivation of the

second step to further reveal the underlying biological process by

constructing co-expression network. Co-expression network was

used as an integrative filter to find functionally related signature

genes. In addition, CLR provided more detailed regulatory

information beyond co-expression and identified key regulators

of the pathological process. In summary, TSNBA utilized PPI

network, co-expression network and regulatory network to

progressively find pathology relevant signature genes and regula-

tors.

TSNBA is able to find perturbation responsive molecular

signatures. Due to the differences of experimental settings and

biological samples, signatures may be different even for the same

perturbation. Taking TNF-alpha case for an example, we

identified 4 different molecular signatures. Wikipathway enrich-

ment analysis was carried out for each signature by WebGestalt

[61,62]. ‘‘hsapiens_entrezgene_protein-coding’’ was set as the

reference set and hypergeometric p-value was calculated. As a

Figure 6. Methods comparison. TSNBA (blue), fold change based approach (red), interconnectivity (purple), neighborhood scoring
(cyan) and network propagation (green) are tested on different data sets. To note, the enrichment ratio for degree based approach only
depend on the selected network.
doi:10.1371/journal.pone.0094360.g006

Table 4. Comparison of TSNBA and Degree based approach
for top 300 ranking genes.

Data set Pathway Name
Rank (Selected data
set vs Degree)

IL1_0.5h IL-1 signaling pathway 27 vs 43

IL1_1h IL-1 signaling pathway 9 vs 43

IL1_2.5h IL-1 signaling pathway 34 vs 43

IL1_6h IL-1 signaling pathway 18 vs 43

TNF1 TNF alpha Signaling Pathway 1 vs 18

TNF2 TNF alpha Signaling Pathway 1 vs 18

TNF3 TNF alpha Signaling Pathway 6 vs 18

TNF4 TNF alpha Signaling Pathway 14 vs 18

doi:10.1371/journal.pone.0094360.t004
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result, TNF-alpha signaling pathway was significantly enriched for

each signature with adjusted p-value less than 0.01 (see details in

Table S3 in File S1). Similarly, IL-1 signaling pathway was also

significantly enriched for signatures derived from IL-1 stimulated

data sets with adjusted p-value less than 0.05 (see details in Table

S3 in File S1). These results provided a good support for the ability

of TSNBA in finding perturbation responsive signatures. More-

over, many genes were shared by signatures of the same

stimulation. Nine genes (NFKBIA, CALCOO2, PLAU,

TNFAIP3, SQSTM1, EGFR, BCL3, BIRC3, BMP2) were shared

by 4 TNF-alpha signatures and 13 genes (NFKBIA, JUNB,

FASLG, NFKB2, PLAU, CCL5, ATF3, BCL6, CTNNB1,

PRTN3, BCL2A1, BMP2, ERBB3) by 4 IL-1 signatures.

As shown in Figure 5, it should be noted that enrichment ratio

generally decreased with the size of top ranking genes, which

suggested that degree information was associated with enrichment.

However, ranking algorithm, which guaranteed the improvement

in enrichment for our approach, inadvertently captured degree

information (see the method). Is improvement in enrichment

largely attributed to degree information and do these ranking lists

worth further study? Therefore, in order to further evaluate our

algorithm’s ability in finding perturbation responsive signature,

wiki pathway enrichment analysis was performed for top 300

ranking genes by degree based approach and our approach,

respectively. As shown in Table 4, our algorithm outperformed

degree based approach in all data sets by ranking perturbation

responsive pathway higher. Moreover, in ‘‘TNF1’’ and ‘‘TNF2’’

data sets, our approach even ranked the ‘‘TNF alpha Signaling

Pathway’’ the number one, which was a strong indication of the

reliability of our approach. Besides, top 300 highest degree genes

were compared with molecular signatures identified by TSNBA,

less than 33% of genes were overlapped, suggesting that network

degree was not the major contributor of the high enrichment of

TSNBA.

An inspection of the results presented in Figure 2B and Figure 6

showed that degree and fold change methods showed the results

on TNF2, TNF3 and TNF4 to be similar with TNF1 being

particularly less. TSNBA also showed the lowest enrichment result

on TNF1 data set. Our approach took the fold change into

consideration in the first step, and fold change was an important

factor to rank genes. Besides, as shown in Figure 4, fold change

based approach also performed worst in TNF1 data set, which

indicated that the worst performance in ‘‘TNF1’’ data set was

likely due to the data itself.

In addition, we took union set of signatures of different

conditions by fold change based approach, interconnectivity,

neighborhood scoring, network propagation, and TSNBA. The

size of these sets was 242, 247, 233, 265 and 192 (see details in

Table S10 in File S1). This indicated that more genes were

overlapped in signatures determined by TSNBA, and our method

was more likely to find reproducible signatures. TNFRSF9 and

TRAF1 were shared by all sets, and 19 genes (PLAU, ALOX12,

ATF3, POU1F1, FOS, CSF1, CCL8, JUNB, TNFRSF11B,

ICAM1, SELE, VCAM1, IL8, NFKBIA, RND1, TNFAIP3,

BCL2A1, CSF2, and BIRC3) were shared by 4 sets except for the

sets determined by interconnectivity, while 4 genes (OCM2,

CLEC2D, MATN3, and IFIT3) were shared by other 4 sets but

not the set of our approach. A recent report had pointed out the

regulatory role of MATN3 in inducing the IL-1Ra and raised the

possibility of recombinant human MATN3 protein in anti-

inflammatory therapy [63]. Therefore, there were still some

important inflammation related genes that may be missed by our

approach, and common signature of several methods was worth of

follow up investigation.

Gene expression profile has been used widely to represent

indirectly the protein activity. It has its limitations in quantifying

actual protein abundance and incapable of reflecting many

‘switches’ in PPI behavior, such as ligand binding and posttrans-

lational modification [64]. Therefore, other data types, such as

protein and microRNA expression profiles should be integrated to

further reveal these missing actions. At the same time, the network

should be updated. Ever-increasing amount of PPIs shall

continuously be incorporated into the network. In addition, many

other interaction types, such as DNA-protein interaction,

transcription factor-target interaction and microRNA-target

interaction, shall also be included. It could be envisioned that a

comprehensive network with biologically relevant profiles will lead

us to more accurate disease molecular signature finding.

Conclusion

In this study, TSNBA was proposed to identify the molecular

signature and key pathological regulators. In the case study of IL-1

and TNF-alpha stimulated inflammation, TSNBA identified

inflammatory signature with high enrichment of pathology related

genes and outperformed 5 methods in prioritizing candidates,

including fold change based approach, degree based approach,

interconnectivity, neighborhood score and network propagation.

In conclusion, we developed an efficient strategy for disease

molecular signature finding and key pathological regulator

identification.

Supporting Information

File S1 Including the following: (1) Enrichment ratios under

different thresholds in the second step (Figure S1); (2) literature

evaluation for 10 predicted inflammatory genes (Table S1); (3)

literature evaluation for 32 predicted regulators of inflammation

(Table S2); (4) wikipathway enrichment analysis of molecular

signatures via TSNBA (Table S3); (5) TF binding sites analysis of

32 predicted regulators of inflammation (Table S4); (6) transcrip-

tion factor-inflammatory gene relationships from TFactS for 5

transcription factors, namely DLX5, MSX1, NR5A1, PRRX1,

and RXRA (Table S5); (7) protein-protein interactions collected

from STRING database for 9 transcription factors that are

confirmed by literature to be inflammatory regulators (Table S6);

(8) investigation for diffusion parameter a of network propagation

(Table S7); (9) methods comparison for the first step of TSNBA

(Table S8); (10) methods comparison for TSNBA (Table S9); (11)

union sets of signatures from different methods.

(XLSX)
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