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The role of transcription factor Nrf2 in skin cells metabolism
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Abstract Skin, which is a protective layer of the body, is

in constant contact with physical and chemical environ-

mental factors. Exposure of the skin to highly adverse

conditions often leads to oxidative stress. Moreover, it has

been observed that skin cells are also exposed to reactive

oxygen species generated during cell metabolism par-

ticularly in relation to the synthesis of melanin or the

metabolism in immune system cells. However, skin cells

have special features that protect them against oxidative

modifications including transcription factor Nrf2, which is

responsible for the transcription of the antioxidant protein

genes such as antioxidant enzymes, small molecular an-

tioxidant proteins or interleukins, and multidrug response

protein. In the present study, the mechanisms of Nrf2 ac-

tivation have been compared in the cells forming the var-

ious layers of the skin: keratinocytes, melanocytes, and

fibroblasts. The primary mechanism of control of Nrf2

activity is its binding by cytoplasmic inhibitor Keap1,

while cells have also other controlling mechanisms, such as

phosphorylation of Nrf2 and modifications of its activators

(e.g., Maf, IKKb) or inhibitors (e.g., Bach1, caveolae,

TGF-b). Moreover, there are a number of drugs (e.g., ke-

toconazole) used in the pharmacotherapy of skin diseases

based on the activation of Nrf2, but they may also induce

oxidative stress. Therefore, it is important to look for

compounds that cause a selective activation of Nrf2 par-

ticularly natural substances such as curcumin, sul-

foraphane, or extracts from the broccoli leaves without side

effects. These findings could be helpful in the searching for

new drugs for people with vitiligo or even melanoma.
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Introduction

Skin cells, being in constant contact with the surrounding

environment, are highly susceptible to the effects of dif-

ferent stimulants. UV irradiation, xenobiotics, and thermal

stress disturb cell metabolism and consequently lead to the

increase in reactive oxygen species (ROS) generation and

to redox imbalance. UV radiation, carrying a large dose of

energy, directly converts oxygen molecules in the reactive

forms and/or causes damages of the cellular macro-

molecules structures impairing their functions [106].

However, high or low temperatures disrupt the metabolic

pathways thereby causing an overproduction of ROS that

leads to the decrease in the activity of heat-labile proteins,

in particular [32]. Metabolism of skin cells is also altered

by xenobiotics affecting ROS generation and thereby an-

tioxidant abilities, signal transductions, and the rate of

transport through membranes [31]. All the factors, leading

to an increase in ROS generation and/or a reduction in the

antioxidant capacity, contribute to oxidative stress, which

exposes the skin cells to the formation and accumulation of

irreversibly damaged proteins, lipids, nucleic acids, and

carbohydrates. This leads to a visible reduction of skin

conditions, aging, and dying cells and may also induce

malignant transformation [121].

Transcription factor Nrf2

One of the ways to defend skin cells against oxidative stress

is the transcriptional regulation of cytoprotectional genes by
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Nrf2 (Nuclear erythroid 2-related factor), in which expres-

sion in all types of epidermal cells was observed at a very

high level [63]. The transcription factor Nrf2 belongs to the

‘‘cap‘n’collar’’ (CNC) protein family, which contains the

motif called leucine zipper (bZip, basic Leucine Zipper).

This family has three-dimensional structures that allow the

formation of dimers with other proteins containing bZip

domain. The family of transcription factors containing bZIP

domain is also characterized by a basic region, which binds

via hydrogen bonds to the large groove of the DNA [55].

Under physiological conditions, Nrf2 encoding genes are

under constant expression, as a result of which Nrf2

molecule is permanently biosynthesized. However, its level

in the cytoplasm is regulated by the formation of Nrf2-

Keap1-Cul3 complex [107]. Keap1 binds Nrf2 and there-

fore directly inhibits its activity, resulting in simultaneous

Nrf2 ubiquitination catalyzed by Cul3. Binding of at least

four molecules of ubiquitin to Nrf2 causes degradation of

this molecule by the proteasome 26S. However, the ox-

idative condition in the cell leads to the oxidation of cys-

teine residues in Keap1 molecule, changing the

conformation of the protein and causing dissociation of

Nrf2 from complex [47, 82]. Free Nrf2 cannot be ubiqui-

tinated and degraded. In turn, it is translocated to the nu-

cleus, where it forms a complex with a small Maf protein

and then is bound to the DNA in a characteristic sequence

50-TGACnnnGCA-30 labeled as antioxidant responsive

element (ARE) and in consequence initiates the transcrip-

tion of antioxidant genes (Fig. 1) [50]. Nrf2 cytoprotective

action concerns mainly antioxidant enzymes such as glu-

tathione S-transferase (GST), quinone reductase NAD(P)H

(NQO1), UDP-glucuronosyltransferases (UGT), epoxide

hydrolase (EPHX), c-glutamylcysteine ligase (GCL), heme

oxygenase-1 (HO-1), glutathione reductase (GR), thiore-

doxin reductase (TrxR), catalase (CAT), and superoxide

dismutase (SOD) [76, 97, 130]. Nrf2 also activates the

transcription of non-enzymatic antioxidant protein genes

containing in their structure the ARE sequence (e.g.,

thioredoxin, ferritin) [34, 94]. The role of Nrf2 in protecting

skin cells against ROS action highlights the fact that 7 % of

squamous cell skin cancer in human results from mutations

in Nrf2 gene [49]. Additionally, Nrf2 acts as a stimulant of

anti-apoptotic proteins from Bcl-2 family [84]. The control

of a wide range of antioxidants and antiapoptotic molecules

causes that Nrf2 is recognized as a significant factor in the

cellular response to oxidative stress, especially in the cells,

which form the outer layers of the skin.

In spite of antioxidative character of Nrf2, its action may

be directly modified by ROS as well as by reactive prod-

ucts of lipid peroxidation that influence this and coop-

erative proteins, particularly during oxidative stress. It was

observed that low level of ROS causes the Nrf2 expression,

while its high level has no effect on the Nrf2 level and

leads to the irreversible cell injury and induction of apop-

tosis. However, it is also known that an intermediate level

of ROS may participate in the control of the balance be-

tween survival and apoptosis through the activation of

another transcription factor—NFjB [68, 86, 113]. There-

fore, the cooperation between members of NFjB and Nrf2

pathways may exist, and the cross-talk between Nrf2 and

NFjB under pathological conditions is suggested [9]. It has

been shown that the Keap1/Cul3 complex could regulate

both the Nrf2 and the NFjB expression through the ubiq-

uitination. Moreover, Keap1 acts as an inducible factor for

ubiquitination IKKb, which is a cytoplasmic NFjB in-

hibitor. Deletion of Keap1 leads to accumulation and sta-

bilization of IKKb and upregulation of NFjB-derived

tumor angiogenic factors [58]. On the other hand, NFjB

subunits induce transcription of Nrf2 in cells at a specific

promoter jB site and thus encourage resistance to che-

motherapy-induced cytotoxicity [24, 101]. It was also re-

ported that NFjB competes with Nrf2 as co-activator

CREB-binding protein (CBP) [66]. Moreover, NFjB re-

cruits histone deacetylase 3 (HDAC3) causing local hy-

poacetylation to hamper Nrf2 signaling [66]. However,

absence of Nrf2 induces more aggressive inflammation

through activation of NFjB and downstream proinflam-

matory cytokines [89]. Furthermore, Keap1 interacts with

the NFjB-p65 subunit, thus NFjB pathway represses the

Nrf2 transcriptional activity [126]. On the other hand, both

NFjB and Nrf2 regulate the same group of genes, in-

cluding HO-1, GCLC, Gai2, and IL-8 [23].

Moreover, it is known that products of lipid oxidative

modification generated during free radicals peroxidation as

well as during enzymatic oxidation are involved in Nrf2

action. It was shown that 4-hydroxynonenal (4-HNE), one

of the most reactive lipid peroxidation products, at nontoxic

levels can activate stress response pathways such as Nrf2/

ARE by changing Keap1 conformation [38, 109]. What is

more, cell stimulation with 4-HNE at sublethal level in-

duces adaptive response and enhances cell tolerance, pri-

marily through induction of thioredoxin via transcriptional

activation of the Nrf2 signaling pathway, thereby protecting

cells against the forthcoming oxidative stress [12]. How-

ever, ROS leads to increased expression of cyclooxyge-

nases (COX) that oxidizes arachidonic acid to PGH2 that is

further metabolized by specific PG isomerases to PGE2,

PGD2, PGF2a, TXA2, and prostacyclin I2 [118]. Dehy-

dration of PGD2 leads to generation of a reactive 15d-PGJ2

that exhibits a unique spectrum of biological effects, in-

cluding inhibition of IjB-kinase-b [99] and induction of

glutathione S-transferase gene expression and apoptosis

[53]. Moreover, 15d-PGJ2 may form adducts with Keap1

simultaneously causing dissociation of Nrf2 from complex

[25]. This mechanism of Nrf2 activation was investigated in

both keratinocytes and melanocytes [44, 56].
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Epidermis

The skin consists of three layers: epidermis, dermis, and

hypodermis. The epidermis is the outermost layer of the skin

having hydrophobic properties. It is formed mainly from

keratinocytes, but it also consists dye cells—melanocytes,

Langerhans cells—the cells responsible for immune reac-

tions, and Merkel cells—cells of the nervous system.

Nrf2 in keratinocytes

The first line of human body contact with the environment

creates keratinocytes. In order to ensure skin’s resistance to

external factors, the deep layers of the epidermis must have

a high rate of normal cells proliferation, without distur-

bance in the structure and functioning. It is believed that

the high resistance of the skin to external factors and its

quick response to damages are related to the presence of

specific receptors for growth factor (KGF—Keratinocyte

Growth Factor) on the surface of keratinocytes, produced

by mesenchymal cells. KGF is a small protein that can bind

to the specific receptors on the keratinocytes cell mem-

brane, which is a simultaneous signal to proliferation and

to create a new layer of the epidermis at the injured place.

The precise mechanism of KGF action is not completely

described yet, but a direct effect of KGF on the increase of

the Nrf2 activity was proposed [8]. However, Nrf2-de-

pendent gene expression can affect the survival, differen-

tiation, and premature death of these cells [60]. It ensures

dividing the cells resistant to mutations caused by in-

creased levels of ROS. Moreover, the increase in Nrf2

activity during keratinocytes differentiation was observed

and was confirmed by the fact that in the surficial layers of

the epidermis, which are the most vulnerable to external

factors and are faster keratinized than younger cells, there

is a higher level of antioxidant enzymes whose expression

is dependent on the Nrf2 activity [60, 92].

As in other cells, in keratinocytes, ROS are generated

during aerobic metabolism as well as through metabolism

(mainly ‘‘respiratory burst’’) of the immune system cells,

which are common in the epidermis [122]. ROS, which are

generated in order to protect the skin against pathogens,

expose keratinocytes to depletion of antioxidant abilities

and oxidative modifications of cellular components, in-

cluding transcription factor Nrf2. Interactions between

keratinocytes and immune system cells affect not only

ROS generation, but also the efficient action of immune

Fig. 1 Nrf2 activation pathways in the different skin cells: keratinocyte, melanocyte, and fibroblast. P phosphorylation and R receptor
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system [30]. Keratinocytes, as well as fibroblasts, belong to

the group of cells that can produce interleukins. Inter-

leukin-8 (IL-8) is one of the proteins whose expression is

ARE dependent, and thus its level depends on the Nrf2

activity [98]. Through the release of interleukin-8 to the

intercellular space, keratinocytes and fibroblasts provide

communications in the whole body and fast response of the

immune system to contact the harmful chemicals [127].

Increased IL-8 generation by keratinocytes is also observed

in the case of mechanical skin damage. It is probably

linked with the Nrf2 activation induced by oxidative stress

in keratinocytes adjacent to the wound [14]. Nrf2 is also

responsible for the release of others inflammatory me-

diators (e.g., IL-6, IL-1b, and GM-CSF) in the case of

allergic contact of dermatitis. Studies of the keratinocytes

line HaCaT response to allergens show that through acti-

vation of MAP kinase, Nrf2 is translocated to the nucleus.

Consequently, an increase in interleukin release is ob-

served, but the mechanism of this reaction has not yet been

completely examined [74].

As ROS can interfere with the aging process and dif-

ferentiation of keratinocytes, the maintenance of high levels

of antioxidant enzymes (mainly HO-1, NQO1, and GST) is

important for these cells. Therefore, the high activity of

Nrf2 results from the activation of Nrf2, by dissociation of

Nrf2-Keap1 complex, prevents deformation during ker-

atinocyte differentiation and even malignant transformation

[5, 92]. In the case of changing in level of another Nrf2

inhibitor—Bach1, which competes with Nrf2 for binding to

the DNA, prevention of malignant transformation was not

observed [70]. It has been shown that in Keap1-knockout

mice keratinocytes, the control of transcriptional activity

can be taken care of by a small protein Maf. In the case

when there is no Nrf2 inhibitor, Keap1 in the cytoplasm,

active, and uncontrolled Nrf2 is translocated to the nucleus,

where, only after Maf-Nrf2 complex formation, it can bind

DNA and initiate transcription of the genes. Therefore, in

the Keap1-knockout mice keratinocytes, response to stress

factors and the rate of skin aging depend on the level of Maf

protein in the nucleus [79].

Disturbances in the Nrf2 activity may lead to develop-

ment of various diseases. Allergic contact dermatitis

(ACD) is induced usually by low molecular weight of

electrophilic chemicals and metal ions, and Nrf2 is one of

the key molecules that transmits a signal of disturbed redox

balance and causes a biological response in dendritic cells,

as well as in keratinocytes, which are in contact with them.

It was shown that Nrf2 is activated by chemical sensitizers

in contact dermatitis and also plays a significant role in the

inflammatory immune responses [1, 48], which suggests

that Nrf2 could be implicated in the chemical sensitization

processes [18]. Therefore, important role of Nrf2 in con-

trolling ACD in response to sensitizers is suggested [19].

Moreover, it is demonstrated that Nrf2 activation in ker-

atinocytes is one of the objectives of coal tar application in

case of atopic dermatitis (AD) [115]. Topical application of

coal tar is one of the oldest therapies for AD. It was also

found that coal tar activates the aryl hydrocarbon receptor

(AhR), which can bind to the Nrf2 gene locus and increase

its expression [116]. As a result, higher Nrf2 level leads to

induction of NQO1 transcription [40, 116].

Extracellular Nrf2 activators in keratinocytes

Oxidative stress in keratinocytes may be generated by

xenobiotics, e.g., arsenic, which is an inducer of carcino-

genesis in HaCaT cell line. Increased ROS generation

(mainly hydrogen peroxide) lead to the increase in Nrf2

expression, at transcription and translation level, as well as

the accumulation of active Nrf2 in the nucleus of those

cells [91]. Xenobiotics strongly sensitizing skin such as

formaldehyde, eugenol, or dinitrochlorobenzene elicit the

skin’s defences through Nrf2 activation. As a result of

covalent links between these compounds and the cysteine

residues in Keap1, Nrf2 dissociates from Nrf2-Keap1-Cul3

complex and consequently begins the ARE-dependent gene

expression [10, 78]. Many chemopreventive phyto-

chemicals are known to activate Nrf2 either by oxidative or

covalent modification of its cytosolic repressor—Keap1 or

by phosphorylation of Nrf2 [15].

Nrf2 also protects skin cells from UV radiation. Over-

expression of the Nrf2 gene in mice skin keratinocytes

exposed to UVB radiation causes higher resistance to

apoptosis [54]. Incubation of the keratinocytes line HaCaT

with flavonoids, such as quercetin or kaempferol, sig-

nificantly protects cells against UV radiation with the in-

crease of Nrf2 level in the cytoplasm and cells viability

[45, 51]. Therefore, there is a constant search for a highly

selective activator of Nrf2 in keratinocytes that not induce

side effects. A promising compound of natural origin is

sulforaphane (SFN) isolated mainly from cruciferous plants

such as broccoli or brussels sprouts [103]. Mechanism of

SFN action involves a reduction in the GSH level, which in

turn alters the Keap1 conformation and its inhibitory

properties, and consequently the active Nrf2 is released

into the cytoplasm [80, 120] and enhances the expression

of antioxidant enzymes (NQO1, HO-1, cGCS) in ker-

atinocyte line HaCaT [121]. The extract containing the

SFN reduces the risk of carcinogenesis induced by UV

radiation in mice line SKH-1 [16]. Moreover, the above-

mentioned extract given to animals with benign tumor of

the skin reduced the tumor weight [104]. However, studies

conducted on volunteers subjected to UV light and treated

with SFN showed a decrease in the development of skin

erythema up to 90 % [111].
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Nrf2 activity may also be indirectly affected by the plant

sterols (e.g., (Z)-guglesterone). Their action is associated

with the activation of IjB, whereby its physiological ac-

tivator IKKb may remain in an inactive form and bind to

Keap1, thereby blocking Nrf2 ubiquitination and increas-

ing the level of active Nrf2 in cells [2]. Other compounds

that could activate Nrf2 are carbonitriles whose metabo-

lism increased NO level and can lead to nitrosylation of

Keap1 cysteine’s. This modification alters the conforma-

tion of Keap1 and leads to a release of Nrf2 into the cy-

toplasm [65]. Another natural compound that enhances

Nrf2 mRNA level and phosphorylation by ERK kinases

that leads to increase in the transcriptional Nrf2 activity is

D3T (3H-1,2-dithiole-3-thione) [57, 72]. It is also sug-

gested that dietary supplements containing ellagic acid are

based on the activation of Nrf2. It was shown that ellagic

acid results in a higher cells survival after UVA radiation.

Furthermore, these cells exhibited a higher resistance to

ROS generation and cellular components oxidative

modifications, which may be associated with increased

expression of antioxidant enzymes (HO-1 and SOD) [36].

The mechanism of certain drugs action on epidermal

keratinocytes (NHEK) is also associated with Nrf2 acti-

vation [116]. Ketoconazole, an antifungal agent from the

group of azoles, activates the cytoplasmic receptor AhR

and forms with them active transcription complex, which is

translocated to the nucleus where it binds DNA and initi-

ates gene expression [11, 69]. It is directly related to the

increase in the transcriptional Nrf2 activity, and therefore a

reduction of the inflammatory response but the exact

mechanism of the intersection of these two pathways is not

fully understood yet [52].

Nrf2 in melanocytes

Except the keratinocytes, the epidermal layer includes also

melanocytes. They are distributed mainly near the basal

membrane of the epidermis. Melanocytes are small cells

with a low content in the central and have numerous long

cytoplasmic appendixes, which penetrates the layers of

keratinocytes. There are two types of beans stored inside

these appendixes: melanosomes—capable to synthesizing

melanin and melanin grains. Melanin is responsible for the

dark pigmentation of human skin, thereby protecting the

deeper layers of the skin from UV radiation that is also a

stimulator of the melanin synthesis [85]. During melano-

genesis, tyrosinase, the major tyrosine metabolism enzyme,

may show diphenolaze (H2O2 generation) or catalase

(H2O2 decomposition) activity. Therefore, the synthesis of

melanin may be associated with higher ROS generation

[112]. Nrf2 activity protects melanocytes against the

harmful ROS effects. It has been shown that

overexpression of Nrf2 caused by transfection of plasmids

containing the Nrf2 gene (pCMV6-XL5) or Keap1 mRNA

silencing using siRNA prevents oxidative stress induced by

xenobiotics in melanocytes cell line PIG1 or NHK [41, 73].

Furthermore, ex vivo studies have shown that enhanced

level/activity of Nrf2 and protein whose synthesis is de-

pendent on this factor reduces the effects of oxidative stress

formed after exposure to UVB radiation. Nrf2 activation

mechanism in melanocytes is associated with a higher level

of melanotropine (a-MSH)—the hormone produced in the

pituitary gland, whose binding to a specific receptor on the

surface of melanocytes (MC-1R), leads to the formation of

complexes initiating ARE-dependent genes transcription

[54]. Other studies show that the increased level of active

Nrf2 is directly related to the IRES sequence (internal ri-

bosome entry sequence) contained in the Nrf2 transcript,

which is responsible for transcription-dependent redox

state [95]. This transcript receives a signal from the cyto-

plasm about the unbalanced redox status and begins syn-

thesis of the new Nrf2 molecules [104].

There is a strong evidence suggesting influence of the

degree of phosphorylation on the Nrf2 activity. As a result

of oxidative stress, Nrf2 is dissociated from Keap1-Nrf2

complex and then as a free molecule can be phosphory-

lated. On the other hand, it is known that expression of

many kinases (mainly MAPK family, PI3K) is increased

during oxidative stress; therefore, the level of phosphory-

lated Nrf2 is also rapidly increased [108]. Moreover, Nrf2

is phosphorylated by kinase ERK1/2 activated on Ras/Raf/

MEK/ERK signaling pathway [59]. On the other hand,

ERK activation in nucleus can lead to phosphorylation of

Bach1—protein, which under physiological conditions

binds DNA in a sequence of ARE, blocking the Nrf2 ac-

tivity. Phosphorylated Bach1 loses the ability to bind to

DNA and allows Nrf2 to start the transcription and an-

tioxidant protein synthesis, whereby cells become highly

resistant to the oxidative stress induced by UV radiation

[129]. Additionally, the level of phosphorylated Nrf2 is

increased by phenolic compounds that activate the PERK

kinase [114].

The number of melanocytes in the skin of people of

different races is similar, and the differences in color are

only due to the intensity of the melanin production. It is

estimated that the epidermal ratio of melanocytes to ker-

atinocytes is around 1–40 (depending on the part of the

body). After exposure to UV radiation, the amount and the

activity of the melanocytes are regulated by keratinocytes

through the synthesis and release of signaling compounds

(e.g., FGF, SCF, HGF) into the intercellular space [35].

These molecules are paracrine growth factors, and after

binding one of them to specific receptors (FGFR1/2, c-kit,

c-Met), the activation of signaling cascade pathway is re-

sponsible for cell proliferation, differentiation, and
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motility, as well as the initiation of intensity of melanin

synthesis [17].

Melanocytes, during the whole period of life, retain the

ability to proliferate, as a result of adaptation to changing

environmental conditions associated with the intensity of

solar radiation throughout the year [27]. Furthermore, the

melanocytes are highly sensitive to apoptosis caused by

chemical signals caused by bacterial toxins, microtubule

structure damaging substances, or protein synthesis in-

hibitors [37]; therefore, their reduction must be comple-

mented by continuously proliferating cells. However,

generated during proliferation and continuously accumu-

lated errors in the genome lead to uncontrolled prolif-

eration of cells and start the process of carcinogenesis,

which leads to the development of malignant melanoma

[39]. In addition, the constant oxidative stress associated

with exposure to radiation, changes in temperature, and the

effect of xenobiotics cause the accumulation of oxidative

damages in these cells. Therefore, high level of Nrf2 syn-

thesis is constantly maintained in melanocytes [41]. Studies

show that disturbances in the synthesis or activation of

Nrf2 reduce the resistance of cells to stress, both physical

and chemical, leading to cell death or to carcinogenesis

[42]. Regardless of the influence of above factors, Nrf2

activity is also dependent on the Maf—nuclear protein

level and chemical structure that may be affected by viral

infections of the skin. This causes an increase in the in-

tensity of Nrf2-Maf transcription complex formation and

their strength of DNA binding, which can lead to uncon-

trolled antiapoptotic protein overexpression and conse-

quently even to the process of carcinogenesis [62].

Extracellular Nrf2 activators in melanocytes

Nrf2 is also involved in response of the skin to many

diseases, e.g., in the case of Hailey–Hailey disease (bullous

disease, HHD); subcutaneous injection of afamelanotide

causes the increase of active Nrf2 level in melanocytes and

keratinocytes that result in a reduction in the level of ROS

and local inflammation [7]. Activation of Nrf2 may also be

associated with genetic anomalies. It has been shown that

the incidence of vitiligo in humans depends on an Nrf2

gene set. In people with vitiligo, significantly lower levels

of Nrf2 m-RNA compared to healthy subjects were re-

ported [3]. Depending on the activity of newly generated

Nrf2, resistance of melanocytes to oxidative stress and the

risk of vitiligo are changed [26, 42]. Furthermore, in me-

lanocytes from patients treated with curcumin, a strong

increase in phase II enzymes synthesis is observed, but

simultaneously it results in increase in the apoptosis in the

keratinocytes [81].

Dermis

Dermis mainly consists of fibroblasts, which are located

between the connective tissue (collagen and elastin fibers),

nerves, and blood vessels. These cells are responsible for

the synthesis and secretion of collagen, elastin, hyaluronic

acid, or glycosaminoglycans into the intercellular space,

thus providing strength and elasticity of the skin. Being in

the middle layer of the skin, fibroblasts are not directly (as

keratinocytes) exposed to the environmental factors. These

cells during the whole life have a possibility to proliferate,

especially in case of damage of the dermis, but unfortu-

nately with age their activity slows down. This is accom-

panied by a reduction in metabolic capacity and decrease in

the rate of replication, which causes the weakening and the

disappearance of the skin-supporting elements. According

to the free radical theory of aging, these changes are at-

tributed to ROS action.

Nrf2 in fibroblasts

Under physiological conditions, Nrf2 controls the proper

functioning of the fibroblasts. Studies on mouse embryonic

fibroblasts (MEFs) show that knockdown of Nrf2 genes

expression leads to a reduction in glutathione levels up to

80 % relative to wild-type cells [33]. In consequence,

knockdown of Nrf2 genes expression in mice fibroblasts

significantly reduces their resistance to oxidative stress and

survival [43], and fibroblasts derived from Nrf2 knockout

mice also exhibit a much lower resistance to oxidative

stress as compared to cells derived from control animals

[130].

Because of epidermal layer, UVB radiation does not

reach the dermis, but fibroblasts still can be exposed to

UVA. Experiments on fibroblasts show that in these cells

the Nrf2 activation occurs in varying degrees after expo-

sure to different UVA wavelengths that induce a strong

immune response, simultaneously leading to the tran-

scription of many phase II antioxidant enzymes [75].

However, UVB radiation does not cause such a reaction,

thereby leading to DNA damage and apoptosis, and the link

between Keap1-Nrf2 pathway and apoptosis in fibroblasts

was shown [46]. Tests on the mouse fibroblasts line L929

showed that H2O2-induced oxidative stress leads to the

activation of Nrf2 and induction of antioxidant gene ex-

pression, as well as to increase in the level of anti-apoptotic

proteins from Bcl-2 family [46]. It was shown that fi-

broblasts with Bcl-2 gene silencing and fibroblasts incu-

bated with an inhibitor of Bcl-2 protein (HA14-1) have

reduced level of active Nrf2 [67]. However, the inhibitor of

Keap1-Cul3 complex formation affects the process of
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apoptosis by binding to Bcl-2 and its ubiquitination that

reduces the antiapoptotical potential of cells [83].

Fibroblasts are characterized by two different mechan-

isms for the inactivation of the transcription factor Nrf2.

Except for the cytoplasmic inhibitor, Keap1, fibroblasts

also have a second mechanism of binding and inactivation

of Nrf2 using a caveolae that are a vesicular structures

formed by a dent fibroblast cell membranes [117]. They are

also observed in adipocytes and endothelial cells, and their

main function is to participate in membrane trafficking and

endocytosis [100]. Therefore, it is believed that they can

also take part in the degradation of factor Nrf2, but the

exact mechanism of Nrf2-caveolae interaction has not yet

been elucidated [64]. Dual mechanism of Nrf2 binding

existing in fibroblasts probably allows cells to increase the

pool of this factor in the cytoplasm under physiological

conditions and thus to faster and stronger immune response

to oxidative stress conditions.

Fibroblasts are cells able to differentiate. Cell culture

studies suggest that inhibition of Nrf2 activity by treating

cells with TGF-b leads to an increase in the level of ROS

that can cause fibrosis and fibroblast differentiation to

miofibrocytes [121]. However, the level of endogenous

TGF-b as well as fibrosis process can be inhibited by Nrf2

activators such as SFN or trichostan that enhance Nrf2

binding to DNA [128]. The Nrf2 level/activity may also be

affected by hormonal signaling molecules including ERRa
(estrogen-related receptor a), but the mechanism of their

interaction has not been found yet [96]. One of the better-

known Nrf2 activation mechanisms used in the treatment

of skin diseases is the action of curcumin. Therefore, cur-

cumin, a turmeric root extract, has been demonstrated to

induce antifibrotic cell activity. Curcumin disturbs the

TGF-b signaling in systemic scleroderma (SSc), by coun-

teracted phosphorylation of Smad2 and induced upregula-

tion of TGF-b-induced factor (TGIF)—a negative regulator

of TGF-b signaling. Moreover, curcumin-mediated Nrf2

activation leads to a decrease in the level of ROS that can

cause suppression of fibrotic process in scleroderma [110,

122, 123].

Nrf2 activators in fibroblasts

The activity of fibroblast Nrf2 is also reduced by thiol

antioxidants such as thioredoxin that free thiol group may

prevent Keap1 oxidation, which favors the maintenance of

Nrf2 in Keap1 complex. However, during oxidative stress,

the level of antioxidants including thioredoxin is reduced,

and its effect on Nrf2 is abolished [90]. Other natural

compounds that affect the activity of Nrf2 are eotaxins.

Eotaxin-1/CCL11 is a natural chemokine, which appears in

the intracellular matrix as a response to occurrence of

stress. This chemokine increases the activity of Nrf2 in

cultured fibroblasts [22], while in skin cells, patients with

atopic skin eotaxin-1/CCL11 level are reduced which is

contributed to the reduced activity of Nrf2 and decreased

antioxidant skin cells capacity [88].

The Nrf2 activity is also involved in Mrp family ex-

pression (multidrug resistance-associated proteins) [71].

Mrp proteins are ATP-dependent membrane transporters,

and their main function is to remove, from the cell, glu-

tathione conjugates with harmful substances—mainly

metabolites of drugs [61]. The highest Mrp level is noted in

the hepatocytes, but in the skin fibroblasts, the level of

these proteins is also high [87]. Studies on fibroblasts

isolated from Nrf2 knockout mice (-/-) show that MRP1

transcript level in these cells was significantly lower

compared to the control cells. Moreover, in fibroblasts Nrf2

(?/?) treated with diethyl maleate, increase in the Mrp1

level was observed, while in the case of fibroblasts Nrf2

(-/-), there was no such reaction [29]. Those results

indicate that Nrf2 in fibroblasts has influence on both

constitutive and inducible Mrp family expression.

The fibroblasts Nrf2 activity is also modified by many

others natural compounds including polyphenols, such as

curcumin, EGCG (epigallocatechin-3-gallate) or apomor-

phine, and flavone derivatives as well as components of

pepper betle, brassica plants, and walnut sprouts extracts

[28]. Polyphenols affect Nrf2 activity by effecting sig-

naling pathways associated with p38, B-Raf, and NF-jB

[4, 77]. However, flavone derivatives enhance Nrf2 level/

activity by increase in fibroblast line NIH3T3 Nrf2

mRNA level and in active Nrf2 via activation of ERK1/2

[21, 102]. Natural Nrf2 activators are also found in the

brassica plants. One of these compounds which increases

the activity of Nrf2 and not causes toxic effects on

NIH3T3 cells is 3,3-diindolylometan which is derived

from indol-3-carbinol fermentation [20]. Walnut sprouts

extracts also contain natural Nrf2 activators that cause an

increase in cells resistance to oxidative stress and increase

survival up to 50 % in the case of fibroblast cells exposed

to UVB [13].

Uncontrolled activation of Nrf2 in skin cells

Most of the results suggest rather beneficial effects of Nrf2

activation under physiological conditions. However, Nrf2

activity is inhibited by Keap1, and deletion of this second

protein gene in mice caused death of these animals within

the first 3 weeks after birth due to hyperkeratosis in the

esophagus and stomach, resulting in nutrient obstruction

and stomach ulceration. These mice also revealed severe

scaling and hyperthickening of the cornified layer of the

epidermis [79, 119]. It was also shown that chronic Nrf2
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activation causes sebaceous gland enlargement and sebor-

rhea in mice keratinocytes due to upregulation of the

growth factor epigen, which was identified as a novel Nrf2

target [105]. It was accompanied by thickening and hy-

perkeratosis of hair follicle infundibula. These abnor-

malities caused dilatation of infundibula, hair loss, and cyst

development upon aging. Upregulation of epigen, secretory

leukocyte peptidase inhibitor (Slpi), and small proline-rich

protein 2d (Sprr2d) in hair follicles was identified as the

likely cause of infundibular acanthosis, hyperkeratosis, and

cyst formation. These alterations were highly reminiscent

to the phenotype of metabolizing acquired dioxin-induced

skin hamartomas (MADISH) patients. Indeed, Slpi, Sprr2d,

and epigen were strongly expressed in cysts of MADISH

patients and upregulated by dioxin in human keratinocytes

in an Nrf2-dependent manner. These results identify novel

Nrf2 activity in the pilosebaceous unit and a role of Nrf2 in

MADISH pathogenesis [105]. Other findings suggest that

the constitutive activation of Nrf2 in the epidermis and its

binding to the promoters of differentiation-specific genes in

keratinocytes may lead to abnormal enhancement of ker-

atinocytes [6].

Summary

The protection of proper skin functions needs cooperation

of different mechanisms. One of them protects cellular

components against oxidative damages by antioxidant

proteins biosynthesis which is dependent on transcription

factor Nrf2 activity (Fig. 1). The increase in the activity of

Nrf2 enhances cell resistance to oxidative stress caused by

UV and chemicals and in consequence could prevent ma-

lignant transformation. Nrf2, especially in keratinocytes

and melanocytes, protects these cells against mutation

during process of keratinization and melanogenesis. How-

ever, fibroblast Nrf2 plays an important role in protection

of these cells against differentiation and fibrosis. Moreover,

Nrf2 participation in wound healing and inflammation in-

hibition is also essential for maintaining the integrity of the

skin.
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43. Jódar L, Mercken EM, Ariza J, Younts C, González-Reyes JA,

Alcaı́n FJ, Burón I, de Cabo R, Villalba JM (2011) Genetic

deletion of Nrf2 promotes immortalization and decreases life

span of murine embryonic fibroblasts. J Gerontol A Biol Sci

Med Sci) 66:247–256

44. Jozkowicz A, Was H, Taha H, Kotlinowski J, Mleczko K,

Cisowski J, Weigel G, Dulak J (2008) 15d-PGJ2 upregulates

synthesis of IL-8 in endothelial cells through induction of ox-

idative stress. Antioxid Redox Sign 10:2035–2046

45. Kang BY, Kim S, Lee KH, Lee YS, Hong I, Lee MO, Min D,

Chang I, Hwang JS, Park JS, Kim DH, Kim BG (2008) Tran-

scriptional profiling in human HaCaT keratinocytes in response

to kaempferol and identification of potential transcription factors

for regulating differential gene expression. Exp Mol Med

40:208–219

46. Kannan S, Jaiswal AK (2006) Low and high dose UVB

regulation of transcription factor NF-E2-related factor 2. Cancer

Res 66:8421–8429

47. Kansanen E, Jyrkkänen HK, Levonen AL (2012) Activation of

stress signaling pathways by electrophilic oxidized and nitrated

lipids. Free Radic Biol Med 52:973–982

48. Kim J, Cha YN, Surh YJ (2009) A protective role of nuclear

factor-erythroid 2- related factor-2 (Nrf2) in inflammatory dis-

orders. Mutat Res 690:12–23

49. Kim YR, Oh JE, Kim MS, Kang MR, Park SW, Han JY, Eom

HS, Yoo NJ, Lee SH (2010) Oncogenic Nrf2 mutations in

Arch Dermatol Res (2015) 307:385–396 393

123



squamous cell carcinomas of oesophagus and skin. J Pathol

220:446–451

50. Kimura M, Yamamoto T, Zhang J, Itoh K, Kyo M, Kamiya T,

Aburatani H, Katsuoka F, Kurokawa H, Tanaka T, Motohashi H,

Yamamoto M (2007) Molecular basis distinguishing the DNA

binding profile of Nrf2-Maf heterodimer from that of Maf ho-

modimer. J Biol Chem 282:33681–33690

51. Kimura S, Warabi E, Yanagawa T, Ma D, Itoh K, Ishii Y,

Kawachi Y, Ishii T (2009) Essential role of Nrf2 in keratinocyte

protection from UVA by quercetin. Biochem Biophys Res

Commun 387:109–114
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