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In Silico Evaluation of the Impacts 
of Quorum Sensing Inhibition 
(QSI) on Strain Competition and 
Development of QSI Resistance
Guopeng Wei1,*, Chieh Lo1,*, Connor Walsh1, N. Luisa Hiller2 & Radu Marculescu1

As understanding of bacterial regulatory systems and pathogenesis continues to increase, QSI has 
been a major focus of research. However, recent studies have shown that mechanisms of resistance 
to quorum sensing (QS) inhibitors (QSIs) exist, calling into question their clinical value. We propose a 
computational framework that considers bacteria genotypes relative to QS genes and QS-regulated 
products including private, quasi-public, and public goods according to their impacts on bacterial 
fitness. Our results show (1) QSI resistance spreads when QS positively regulates the expression of 
private or quasi-public goods. (2) Resistance to drugs targeting secreted compounds downstream 
of QS for a mix of private, public, and quasi-public goods also spreads. (3) Changing the micro-
environment during treatment with QSIs may decrease the spread of resistance. At fundamental-level, 
our simulation framework allows us to directly quantify cell-cell interactions and biofilm dynamics. 
Practically, the model provides a valuable tool for the study of QSI-based therapies, and the simulations 
reveal experimental paths that may guide QSI-based therapies in a manner that avoids or decreases the 
spread of QSI resistance.

While the era of antibiotics marks a cornerstone of modern medicine, it has, likewise, triggered the rise of virtually 
untreatable multidrug-resistant bacteria1,2. As new drug-resistant bacterial strains, such as carbapenem-resistant 
Enterobacteriaceae (CRE), continue to appear and spread, health officials are raising concern over the future 
efficacy of traditional antibiotics3. In response, substantial research efforts have shifted focus toward innovative 
targeted drug development strategies including anti-virulence therapy targeting cellular functions essential for 
pathogenesis within the human host rather than cellular vitality4.

Quorum sensing (QS) is a mechanism used by many bacteria to synchronize their collective behavior when 
reaching a sufficient high cell density5. In this paper, we consider the LasI/R QS system, which belongs to the 
LusI/R family of Gram-negative QS system. Specifically, members of the LuxI family produce acyl homoserine 
lactones (AHL) of varying acyl chain length that function as a signal. The signaling molecules bind to the recep-
tors and activate the transcription regulator (LuxR homologs) in a form of LasR −​ AHL complex. This complex 
then leads to the transcription of a plurality of genes that are directly involved in bacteria collective behaviors6.

QS inhibitors (QSIs) aim at disabling the QS molecular signaling machinery within a bacterial pathogen, 
effectively rendering cells incapable of sensing the neighboring cell and consequently modifying the regulation 
of genes7. As a consequence, QSI modifies the regulation of genes such as biofilm formation, the production of 
secondary metabolites, and the expression of disease-causing virulence factors8–11.

Despite the preliminary success of QSIs (see Supplementary Note 1), there remain fundamental issues that 
may constrain their potential clinical merit. Principally, QS inhibition, since its inception, has been argued to be 
an “evolution-proof ” therapy insofar that it precludes direct pressures on cellular fitness and thereby obviates the 
explicit selection of drug resistant genotypes4,8,12–14. Unfortunately, the validity of this claim has failed to hold 
true in light of recent accounts of QSI resistant strains found both in clinical and laboratory settings15–17. The 
major issue is that while the QS inhibition does not directly kill bacteria (bactericidal effect) or stop bacteria from 
growing (bacteriostatic effect) like conventional broad-spectrum antibiotics— it does, however, alter the behavior 
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of targeted pathogens by modifying the expression levels of QS-regulated genes. These changes are likely to influ-
ence the intra- and inter-strain interactions. As a result, QS inhibition can introduce changes into the microbiome 
by redistributing the competitive advantage during the development of a complex community.

A most striking example lies in Pseudomonas aeruginosa, a common human pathogen that can cause infec-
tions in cystic fibrosis (CF) patients. In P. aeruginosa, the QSI pressure (in vitro and in vivo) can lead to the 
selection of QS-negative strains. In patients with CF, loss of QS signaling is associated with chronic infection and 
increased growth rates18. On the other hand, QS-regulated virulence determinants such as elastase, rhamnolipids 
and alginate play a key role in establishing P. aeruginosa colonization in the CF lung19,20. Thus, the development 
of QSI-based therapies should consider how the pressure of QSIs selects for QS mutants with modifications not 
only in their cooperative and competitive behaviors, but also in their virulence potential. However, existing sim-
ulation tools (see Supplementary Table 1) are unable to efficiently simulate dense networks of interacting bacteria 
populations in a complex 3D environment and incorporate both cellular and population level dynamics among 
bacteria in the meantime.

To investigate the major health problem of the emergence and the spread of QSI resistance, we develop a new 
computational framework (see Supplementary Fig. 1) to analyze the long-term dynamics of QSI-based therapies 
on the development and stability of biofilms and emergence of QSI-resistance. Our model uniquely accounts for 
mutations in different components of the QS machinery, as well as multiple properties of QS-regulated genes. 
The selective pressures on the QS variable cells will depend on the accessibility of QS-metabolic products to the 
neighboring cells. To capture this aspect, we model four types of QS outputs: (i) non-beneficial, (ii) private, (iii) 
quasi-public, and (iv) public goods (detailed modeling specifics are available in Methods). For each scenario, we 
consider the pathogenic properties of strains and the probability of the emergence of QSI-resistance.

Our proposed simulation framework simultaneously considers both intracellular and intercellular signal-
ing and its effects on biofilm dynamics. We note that the intercellular network approach we propose can quan-
tify various type of interactions and dynamics in populations of bacteria. For conditions where QSI-resistance 
spreads rapidly, we demonstrate that the metabolic output (i.e., different kinds of goods) of the community can 
substantially alter the spread of resistance. Specifically, our simulations suggest that the quasi-public goods (e.g., 
extracellular polymeric substances (EPS)) plays an important role in the spread of QSI resistance. Thus, we also 
model drugs targeting the quasi-public and public goods, and demonstrate that if resistance to such drugs arises, 
it will rapidly spread in a population.

Looking through such a quantitative lens at these complex phenomena can open new avenues both in 
fundamental knowledge and disease treatment. More specifically, from a theoretical point of view, the new 
network-based approach helps us model and investigate the cell-cell interaction and biofilm dynamics; this can 
help us estimate how manipulating signaling pathways influences the cell-cell interactions and coordination dur-
ing biofilm attachment, growth, and detachment. From a practical perspective, our model provides a platform to 
experiment with the evolutionary outcome of different QSI therapies (alone and in combination) and prioritize 
testable hypotheses for strategies that will limit the emergence of QSI resistance. Moreover, the “computational 
microscope”21,22 we propose offers the advantages of rapid turnaround (hours instead of days), ability to test the-
oretical strategies, and high reproducibility of simulations. Taken together, all these contributions help us better 
understand and model the spread (dynamics) of QSI resistance which is paramount to the long-term success of 
QSIs in treating human pathogens.

Results
Simulation Environment and Model Calibration.  We explain the model of the cell-cell interactions in 
Methods and define a 3D microfluidic environment as shown in Fig. 1. We note that our 3D simulator accounts 
for the spatial volume occupied by bacteria. In other words, we can capture the dynamics of interacting particles, 

Figure 1.  The simulation environment is modeled as bulk, boundary, and biomass layers. The chemical 
concentrations in the bulk layer are invariant over time. To account for the high cell/EPS density, the biomass 
layer has a diffusion coefficient value roughly half of the boundary layer. More precisely, since the viscosity in 
high cell/EPS density is lower, we assume that the diffusion coefficient is half compared to the boundary layer. 
Bacterial cells attach to the substrate and grow upwards with nutrition diffusing from the bulk layer toward the 
biomass layer. See biofilm formation in Supplementary Videos 1 and 2.
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while taking into account that a certain spatial volume can be occupied by at most one particle at any given point 
in time. (The details of various simulation environment configurations are described in Methods).

Experiments were performed with a dual labeled Pseudomonas aeruginosa PAO1 strain, generously provided 
by Michael Givskov23. The strain encodes a chromosomally integrated lasB-gfp(ASV) reporter system, as well 
as rfp under the control of a constitutive promoter23. Thus, the strain produces rfp under all conditions, and gfp 
when QS is active. The growth condition and strain are described in Methods.

We calibrated our QS and QSI models with experimental data. More precisely, we added Furanone at a con-
centration of 100 uM at time equal to 24 hr (1 day after biofilm seeded), and imaged biofilms at 25, 27 and 28.5 hr. 
Images were processed to obtain the percentage of total cells positive for QS signal (see Methods), and this data 
was used to calibrate the model parameters (see Fig. 2 and Supplementary Table 2).

Selection of the Bacterial Genotypes and Regulons.  We define three bacterial genotypes: (i) func-
tional QS systems sensitivity to QSI (QS+), (ii) deletion of the QS machinery (QS−), (iii) or modified QS systems 
that are functional but resistant to QSIs (QSI-resistant). Additionally, to account for the production of multiple 
types of goods (Fig. 3), we classify the bacterial regulons into four categories: (i) non-beneficial goods, (ii) private 
goods, (iii) quasi-public goods, and (iv) public goods. Details are described in Methods.

Simulations without QSI under Different Conditions.  The first scenario (Supplementary SE1) we cor-
roborate with simulations is the non-beneficial goods, where QS+ cells suffer a metabolic cost and display a 
growth disadvantage over QS− cells (Supplementary Fig. 2). This has been observed with pathogenic E. coli strains 
expressing virulence factors, such as Shiga toxins, that do not appear to confer a fitness advantage in human 
infection24.

Next, we test private goods (Supplementary SE2), which are only available to producing cells. We confirm the 
relative fitness of QS+ cells over QS− cells (Supplementary Fig. 3). It has been reported that, in the presence of the 
carbon source adenosine, P. aeruginosa is only able to gain access to nutritional benefits if the adenosine is first 
metabolized by the degradative enzyme nucleoside hydrolase (Nuh) that is positively regulated by LasR. Nuh is 
considered a private good as it is only available in the periplasm of the producing cell, thus conferring a metabolic 
gain solely to the individual cells25.

Figure 2.  Simulation-model calibration. Confocal images where all bacteria expressed red fluorescent protein 
(red), and only the subset undergoing QS express green fluorescent protein (gfp) were used to measure the 
influence of C-30 Furanone (an AHL analog) on the ratio of signaling cells in a biofilm (red circles represent 
measured ratios). The QS signaling decreases over time, and disappears 4 hrs post-treatment. We calibrate our 
model to these experimental results.

Figure 3.  Simulation roadmap for our initial experiments on QS+/QS− competition without QS inhibition. 
Each experimental setup (i.e., SE1-4, M1-4) is characterized by the class of goods generated by the QS+ strains 
and/or environmental conditions. Our simulation experiments, which corroborate previously reported wet-lab 
results, are indicated by green checkmarks.
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Finally, our simulations correctly capture a case of quasi-public goods (Supplementary SE3). A prime example 
of quasi-public goods is the EPS secreted during biofilm formation. The QS-mediated production and secretion 
of EPS provides structural support to the extracellular matrix of a developing biofilm that, in turn, provides insu-
lation from external threats, as well as increased access to nutrients26–28. Although metabolically costly to its QS+ 
producers, EPS confers a large competitive advantage due to its hardly exploitable nature beyond the immediate 
vicinity of the producers. As shown in Supplementary Fig. 4, the biofilm growth trajectories show that the EPS 
cells (yellow spherical globules) surround QS+ and provide biofilm structure support. Additionally, QS+ cells 
gain a competitive advantage by jettisoning themselves and their lineages into higher nutrient rich regions while 
suffocating QS− cells below. Our simulation results capture the relative fitness of QS+ cells over QS− cells if the 
quasi-public goods are hardly exploitable for non-producer cells (QS− cells).

In the following subsection, we provide three scenarios (M2-M4) where we modify diffusion, decay, and pro-
duction rates of public goods.

The Effect of Public Good Properties on Biofilm and Network Parameters.  Active QS is often 
associated with pathogenesis, given the QS-mediated production of virulence effectors. The spread of QS− 
(cheater) cells, in the presence of public goods, decreases QS+ cells and has been proposed as an anti-virulence 
strategy25. In the baseline case, the QS− cells can take advantage of the public goods produced by QS+ cells and 
grow significantly faster after bacteria enter the exponential growth phase (i.e., after time t =​ 50 hrs), when QS 
controlled public goods are massively produced (Fig. 4A, M1). The biofilm metrics display the increase in thick-
ness and decrease in roughness that occurs when QS-controlled public goods are massively produced (Fig. 4B, 
magenta). As the QS− cells gain the growth advantage over QS+ cells, they split apart large communities into small 
communities among QS+ cells (Fig. 4C, magenta). The spread of QS− cells has been observed both in vitro29, as 
well as within hosts in animal-infection models29. More recently, the loss of such social behavior has been identi-
fied as a consistent trend in CF lungs chronically infected by P. aeruginosa30,31.

We compare the baseline with the influence of decreased diffusion coefficient (Fig. 4A, M2), increased decay 
rate (Fig. 4A, M3), and increased production rate (Fig. 4A, M4). The two latter modifications have only mild 
effects on the ratio of strains and the overall biofilm structure, and lead to a decrease in the number of commu-
nities (Fig. 4B and C, orange and cyan). In contrast, decreasing diffusion rate leads to an increase in QS+ cells 
(Fig. 4A, M2), and fewer communities of larger size in the population (Fig. 4C, purple). This suggests that envi-
ronmental changes (e.g., EPS or host immune cells) that result in a decreased diffusion of QS-public goods will 
increase QS+ cells. Early in colonization of CF lungs, such a change would be predicted to increase pathogenesis.

Simulations with QSI Effects and QSI Resistance.  We have developed an intercellular network model 
(see Methods) to understand the emergence and dynamics of QSI-resistance; thus, we explore three QS inhibi-
tion strategies, which target different components of the QS system32–34: (1) signal generation (Fig. 5A, M5); (2) 
extracellular signal accumulation (Fig. 5A, M6); (3) signal reception (Fig. 5A, M7); as well as all three treatments 
combined (Fig. 5A, M8). To simulate the long-term QSI treatment expected in clinical settings, the concentration 
of each QSI in the bulk layer (see Fig. 1) is kept constant after its introduction. Initially, 100 μM of QSI is added 
at time t =​ 0 hrs to inhibit QS and subsequent QS-mediated biofilm formation. These simulations assume QS 
directly regulates the production of private goods, quasi-public goods, and diffusible public goods. The simu-
lations are performed with each type of QSI. We model QSI-resistant cells to intracellular signal reception and 
generation, but not to extracellular signal degrading enzymes, such as lactonase. We also run experiments to 
independently target non-beneficial goods, private goods, quasi-public, and public goods (Supplementary Note 
2–4, Supplementary Figs 6–8).

When the model includes the production of both quasi-public and public goods, QSI spreads if the drug 
targets either signal generation (Fig. 5A, M5) or signal reception (Fig. 5A, M7). Importantly, this spread is not 
observed if QS leads only to production of public goods (Supplementary Fig. 8). The QSI-resistant cells begin to 
generate QS-regulated proteins to boost their growth around time t =​ 50 hrs (Fig. 5A). At this point in time, the 
communication between communities increases dramatically and stabilizes over time (Fig. 5C, magenta and 
orange). In both cases the number of communities stabilizes after t =​ 150 hrs, the QSI-resistant cells outcompete 
the other two strains, organize into high number of communities with high connectivity, and become the domi-
nant population (Fig. 5A, M5, M7 day 10 and Fig. 5C).

While the 10-day outcome is very similar for both of these targets, the dynamics are different. More pre-
cisely, when targeting signal production, the signal molecules produced by the QSI-resistant cells diffuse out and 
activate QS+ cells nearby. The QS+ cells gain an advantage over the QS− cells (Fig. 5, M5 day3). This advantage 
leads to formation of small clusters of QS+ cells (observed as hill-like shape in the number of communities in 
Fig. 5C, magenta line). In the long-term, this slow quasi-public goods production at boundaries fails to endow 
a fitness advantage when competing with QSI-resistant cells, and the many communities join the resistant cell 
communities (observed as drop in the number of communities in Fig. 5C at time t =​ 150 hrs). In contrast, when 
targeting signal reception, the QS+ cells do not encounter this temporary advantage over QS− (Fig. 5A, M7). In 
both scenarios, when our model includes EPS, it predicts that targeting signal generation or reception may lead 
to the spread of QSI resistance.

When using signal degrading enzymes in M6, the QSI-resistant strains do not spread. The intracellular resist-
ance that we model does not rescue cells from the extracellular degradation. In this scenario, we observe similar 
outcomes for QSI-resistant and QS+ cells. The total number of QSI-resistant cells is lower only because it reflects 
their lower number at time t =​ 0 hrs (see Supplementary Fig. 10 and Supplementary Note 5 for model robust-
ness). When combining all three drug classes simulations resemble the one observed when signal accumulation 
is targeted. These simulations suggest targeting signal accumulation could be an effective long-term strategy for 
infection control.
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To our knowledge, this is the first time when simulations have been used to estimate the spread of resistance 
for QSIs targeting signal production and reception. We observe that resistance to drugs targeting the produc-
tion and reception of QS spreads rapidly in our models if they include quasi-public (EPS) and public goods in 
the meantime (Fig. 5, M5 and M7 respectively). In contrast, QSI resistance does not spread in our models that 
account only for public goods (Supplementary Fig. 8, S11 and S13, respectively). These differences highlight the 
important role of EPS in the spread of QSI resistance.

Simulations of drugs targeting the production of public or quasi-public goods.  Targeting 
quasi-public goods (i.e., EPS) has been explored as an antimicrobial strategy, given the importance of EPS in bio-
films35. Thus we model the spread of resistance to therapies targeting enzymes involved in production of public or 
quasi-public goods. We test two putative inhibitors, one that targets quasi-public goods such as the biofilm matrix 
(Fig. 6A, M9) and another that targets public goods (Fig. 6A, M10).

Figure 4.  The effect of public good properties on biofilm and network parameters. We have simulated a 
slower molecular diffusion rate (M2), a faster public goods decay rate (M3), and higher production rate for 
public goods (M4) and then compared our results against the baseline (M1). Panel (A) shows projections of 
biofilm growth and the relative ratio of QS+ and QS− strains over time. Panel (B) shows the physical metrics 
that measure the thickness and the roughness of the total biofilm with both strains combined. Panel (C) shows 
the network metrics that quantify the changes of the biofilm structure. Strains are color coded as red: QS+ and 
blue: QS−. Simulations with baseline, different diffusion rates, decay rate, and production rate are color coded as 
magenta, purple, orange, and cyan, respectively.
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Figure 5.  Simulations of QSI effects and spread of QSI resistances modeling both quasi-public and public 
goods. Four QSI targets are considered: Signal generation (M5), signal accumulation (M6), signal reception 
(M7), and all three combined (M8). Panel (A) shows the projections of biofilm growth up to 10 days and the 
dynamics of relative ratio of each strain over time. Panel (B) compares multiple QS and bacteria population 
measurements. Panel (C) shows the network metrics that quantify the changes of the biofilm structure. Strains 
are color coded as red: QS+, blue: QS−, green: QSI-resistant. Simulations with different strategies are color coded 
as magenta (M5), purple (M6), orange (M7), and cyan (M8).
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Under both therapies modeled, the drug resistant strains spread rapidly throughout the biofilms (Fig. 6A). The 
difference between inhibitors specifically targeting quasi-public versus public goods is the fitness of QS− strains, 
and the rate at which resistant strains expand in the population (Fig. 6A,B). Specifically, when quasi-public goods 
are inhibited both QS− and QS+ cells exhibit similar growth rates, and the spread of resistant strains is higher. 
When public goods are inhibited, the number of QS− cells is lower than that of QS+ cells. This difference is 
explained by the fitness costs incurred by QS− strains in the absence of access to quasi-public goods. However, 
in all cases the biofilm structure exhibits similar patterns, defined by a peak in the number of communities at the 
time point of QS production (t =​ 50 hrs), and a stabilization of larger resistant communities after 3 days (Fig. 6C). 
The spread of resistance and the community of resistance strains suggest that once resistance to such inhibitors 
arises, it will spread rapidly throughout the population.

Discussion
In this paper, we have explored, through comprehensive computational studies, the effects of QSI on multi-strain 
biofilms consisting of QS+, QS−, and QSI-resistant cells, and the proliferation of resistance throughout a bacterial 
population. To this end, we have considered properties of molecules in the QS regulon, including non-beneficial 
goods, private goods, quasi-public goods, and public goods. Further, we have considered three distinct classes of 
QSIs targeting signal generation, signal molecule accumulation, and signal reception (Fig. 7).

Figure 6.  The spread of resistance to inhibitors of QS products. QS+, QS− and drug resistant strains are 
treated with an inhibitor of quasi-public goods (M9) or an inhibitor of public goods (M10). Panel (A) shows 
the projections of biofilm growth up to 9 days and the relative ratio of each strain over time. Panel (B) compares 
multiple QS and bacteria population measurements. Panel (C) shows the network metrics that quantify 
the changes of the biofilm structure. Strains are color coded as red: QS+, blue: QS−, green: drug resistant. 
Simulations with different strategies are color coded as magenta (M9) and purple (M10).
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One of the main contributions of this paper is the introduction of a network-theoretic framework to describe 
and analyze the “social” collaboration among bacteria within a population. We have applied network metrics 
such as the average clustering coefficient and the number of communities to understand the spatial distribution 
of strains with variation in QS during biofilm development. Specifically, we have used the network clustering 
coefficient to describe the size and distribution of clusters composed of cells with the same genotypes. By tracking 
the dynamic status of the network, one can observe how different drugs (see Figs 5 and 6 and Supplementary 
Figs 6–8), such as QSI with different QS component targets, work on the biofilms in real-time, thus, unveiling the 
underlying bacterial social interactions. We also note that in contrast to the physical biofilm metrics (e.g., biofilm 
average thickness and biofilm roughness), the network metrics can best discriminate the spread of QS mutants. 
Indeed, as shown in Fig. 4C, the number of communities show different behaviors of different biofilm organiza-
tion based on properties that modify diffusible goods. While these parameters are easily outputted in our model, 
it is challenging to obtain similar metrics in laboratory experiments.

From a biological standpoint, our work suggests that when the QS regulon controls quasi-public goods (such 
as EPS), and QSI targets either signal generation or reception, once emerged QSI-resistance will rapidly spread 
(Fig. 5, M5 and M7). The spread is not observed if network links are completely dissolved by targeting signal 
accumulation in the absence of QSI (Fig. 5, M6 and M8). Additionally, the spread of QSI is not observed when 
only public goods are considered (Supplementary Fig. 8). If QSI or inhibitors of QS products are employed sep-
arately, both are prone to the spread of resistance (Figs 5 and 6). But, if QSI is combined with an EPS-targeting 
drug(s), the spread of resistance may be slowed or contained. Currently, EPS targeting can be achieved by express-
ing the degradation enzymes or adding compounds that act directly on the EPS (e.g., eDNA36). This modeling 
suggests that the best long-term strategy to avoid QSI resistance while combating virulence associated with QS, 
is to combine QSIs and EPS targeting drugs. This opens the door for future experiments, testing the spread of 
QSI resistance in the presence of QSI and anti-EPS drugs, where the drug-induced absence of EPS is predicted to 
decrease the spread of QSI resistance.

Most QSI resistance mechanisms reported so far are based on multidrug efflux pumps or cellular enzymes37. 
Resistance to signal degrading enzymes, such as the lactonase that hydrolyzes the ester bond of the homoserine 
lactone ring of AHLs, has not been reported so far. Thus, the lack or resistance spread observed with lactonase 
(Fig. 5, M6) and combinations of QSI (Fig. 5, M8) may reflect clinical scenarios. However, it is conceivable that 
resistance to lactonases will emerge, or is already present in the environment, and will spread to the human 
microbiome.

The cheater behavior of QS− cells, and their delay on population growth has been reported, consistent with 
our model for QS in the context of public goods38. However, our simulation results contradict another scenario 
presented in ref. 38 where resistant strains did not spread in the presence of QSI. However, in this scenario the 
native QS levels were below the QS activation threshold. Our model represents a scenario where the QS signal is 
above the activation threshold.

Our computational approaches offer a tool to guide experimental design by generating hypotheses on drug 
combinations, timing, and conditions that either increase or reduce the spread of drug resistance. The simula-
tion results suggest a combined therapy targeting quasi-public goods and QS. Additionally, with the increasing 
development of more efficient, accurate, and inexpensive medical technologies (cutting-edge omics technologies 
such as metagenomics), it is now possible to measure evolution dynamics of biofilm in vitro. To this end, our 

Figure 7.  Simulations summary. The conditions and factors of each in silico experiment are outlined and 
labeled with respect to the successful decrease in QS regulated expression, QS+ genotype ratio, QSI resistance 
(SE5-SE11, and M5-M8), and drug resistance (M9 and M10).
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simulation models can be validated and verified. Overall, this work computationally explores the QSI resistance, 
and predicts the timing and targets for therapeutics that may decrease or inhibit the spread of QSI resistance.

Methods
Bacteria Strain and Growth Condition.  Bacterial Strain: We utilized the dual labeled Pseudomonas 
aeruginosa, with a QS reporter. The strain, PAO1(wt)::lasB-gfp(ASV)::Plac-lasR::rfp, was generously provided 
by Michael Givskok23. Furanone C-30 was acquired from Sigma-Aldrich Co., and used at a final concentration 
of 100 μM.

P. aeruginosa biofilms: Biofilms were set up on MatTek plates, at 37 °C using Columbia browth. Furanone was 
added at time of 24 hour after biofilm development. Biofilm images were collected on a Zeis510 Meta Conforcor3 
Laser Scanning Microscope at 25, 27, and 28.5 hours post-seeding.

Bacterial Image Processing.  We detect the intensity of each bacterial image acquired from the confocal 
laser. Next, we compute the number of bacteria that express rfp and gfp, respectively. We then compute the rela-
tive concentration of the QS signal by using the following formula:

=QS
N
N (1)

gfp

rfp

where Nrfp and Ngfp represent the number of bacteria that express rfp and gfp, respectively.

Definition of the Bacterial Genotypes and Regulons. 

•	 Bacterial genotypes: Specifically, we make use of three naturally occurring genotypes in regards to QS 
genes39,40 (i) functional QS systems sensitivity to QSI (QS+), (ii) deletion of the QS machinery (QS−), (iii) or 
modified QS systems that are functional but resistant to QSIs (QSI resistant). QS− cells that have access to the 
benefits of QS, but do not incur the metabolic costs of production, should be at an adaptive advantage relative 
to their QS+ counterparts and can be characterized as “cheaters” within the community. We assume that the 
strains do not differ in other regions, and consequently there are no fitness advantage incurred by variability 
in other genomic regions.

•	 Bacterial regulons: Signaling via QS can lead to the production of multiple types of goods (Fig. 3). We sep-
arate these into four categories: (i) non-beneficial goods that provide no fitness advantage to producers or 
neighboring cells; (ii) private goods that provide a fitness advantage to producers but not neighboring, (iii) 
quasi-public goods that provide a fitness advantage to producers and neighboring cells but remain exclusively 
accessible to their producers, and (iv) public goods that provide a fitness advantage to producers as well as 
neighboring cells. The competitive index between QS+ and QS− depends the production costs and benefits of 
QS, and the availability of QS products to QS− cells.

Bacteria Population Model.  The intracellular biochemical pathways giving rise to quorum sensing have 
been well studied from both molecular and systems biological perspectives41–44. Yet, the endogenous mechanisms 
of such signaling systems are inextricably bound to exogenous processes, cues, and constraints suggesting that, in 
isolation, intracellular models are unrealistic45,46. Consequently, recent efforts have been put forth to contextualize 
the intracellular signaling mechanisms within the scope of intercellular interactions47–55. Nevertheless, this line 
of work has, hitherto, been limited to interactions among small groups of cells and has neither considered char-
acterizations of molecular communication at a higher level of abstraction, nor differentiated cell types capable of 
behavioral variances including cooperation, exploitation, and pathogenesis.

To this end, we present a new computational model for bacterial community dynamics capable of capturing 
highly emergent behaviors found at the population level. We draw from the paradigm of agent-based mode-
ling whereby each cell is outfitted with its own set of equations governing metabolic and communication pro-
cesses56–60. Our model domain consists of a 3-dimensional micro-fluidic environment governed by the laws of 
diffusion and volume exclusion. The model incorporates molecular signaling, nutrient limited metabolism, exo-
product formation, and virulence processes that are crucial in the development and evolution of mixed biofilm 
communities (see Supplementary Table 2 for model parameters).

In our model, we assume the QS regulatory network of Pseudomonas aeruginosa has two feedback loops (see 
Supplementary Fig. 9). The LasR −​ AHL complex up-regulates the expression of both lasR and lasI genes, gen-
erating even more signal molecules (AHL) and receptors (LasR), thereby forming a positive feedback loop. To 
model the QS system, we use a set of ordinary differential equations proposed in refs 47 and 61, and then extend 
the ODE system to incorporate the effects of QSI. Particularly, we focus on three components of the QS system 
that are potential targets for QSI therapy: (1) LasI signal synthase (i.e., signal generation) (2) Extracellular AHL 
molecules (i.e., signal accumulation) (3) LasR antagonist (i.e., signal reception)32,33.

Furthermore, we simulate bacterial growth kinetics based on the classic Monod model62 by considering mul-
tiple nutrient sources. The production of all inter or intracellular proteins are all constrained by nutrition availa-
bility in the ambient microenvironment. Nutrients and drug molecules diffuse across the space following Fick’s 
low while using different diffusion coefficient for different layers (see Fig. 1). Physical collisions are handled using 
CUDA platform which is capable of calculating the overlapping area of thousands of particle pairs (i.e., cells and 
EPS) and shoving them simultaneously.
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Quorum Sensing Model.  The regulatory network of the LasR/R quorum sensing system has two feedback 
loops. Based on the ODE-models proposed in refs 47 and 61, we have the following equations for the luxIR QS 
system:

= +
+

− − +
d A

dt
c k C

K C
k A k R A k RA[ ] [ ]

[ ]
[ ] [ ][ ] [ ]
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where [X] denotes the concentration of a particular molecular species X. In our formulation, A stands for AHL, 
R is LasR homologs, RA is the LasR −​ AHL complex and C is the dimerized complex. cA and cR account for the 
basal level transcription of A and R, respectively. The values and references of the parameters are adapted from a 
general LasIR system47.

To give some intuition, the first term cA of Eq.(2) describes the basal level transcription, the second term 

+
k C

K C
[ ]

[ ]
A

C
 captures the positive feedback loop regulated by the dimerized complex C and the third and forth terms 

describe the AHL concentration changes caused by the binding and unbinding reactions of AHL and LasR recep-
tor, respectively. The last term describes the degradation of AHL. Eqs (4) and (5) describe the binding reaction of 
AHL and LasR receptor, as well as the dimerization process of the binding product [RA], respectively.

Quorum Sensing Inhibition Model.  Recently, a large number of chemical compounds have been screened 
and many of them show QS inhibition effects targeting various components of the QS system. In this paper, we 
focus on three components of the QS system that are potential targets for QSI therapy: (1) LasI Signal Synthase 
(i.e., signal generation) (2) Extracellular AHL molecules (i.e., signal generation) (3) LasR antagonist (i.e., signal 
reception)32,33.

(1)	 Inhibition of LasI signal synthase. AHL synthase catalyses the formation of an amide bond between the 
homoserine lactone ring from S-adenosylmethionine (SAM) and the acyl chain from the acyl acyl-carri-
er-protein (acyl-ACP). After catalysed, the product of AHL and by-products of holo-ACP and 59-methylth-
ioadenosine (MTA) are generated and released63. Many chemical compounds have been shown to be effective 
reducing LasI activity14. Recently, a new compound trans-cinnamaldehyde, which has no chemical structure 
similarity to AHLs or AHL analogues, is shown to inhibit AHL synthases by molecular docking studies34. To 
have a general form in our model, we modify eq. (2) to add the lasI inhibition; also, a new equation for the 
drug degradation is also added:
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where [QSILasI] stands for the concentration of QSI molecules that inhibits luxI expression, k6 is its degra-
dation rate.

(2)	 Extracellular AHL: AHL molecules can diffuse in and out of the bacterial cell freely. Therefore, once they ap-
pear in the extracellular environment, they are potential targets for destruction or inactivation.The AHL-de-
grading enzyme, AHL-lactonase (such as AiiA or AiiM), has been reported to deactivate the bacterial viru-
lence through hydrolysis of the lactone ring of AHL64. Accordingly, eq. (6) needs to be modified to describe 
the AHL-degradation by AHL-degrading enzyme; similarly, we also need to add a new equation describing 
the drug degradation:
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where [QSId] stands for the concentration of QSI which degrades AHL. In these equations, kcat represents the 
maximum rate achieved by the system, at maximum (saturating) substrate concentrations. The Michaelis con-
stant KM is the substrate concentration at which the reaction rate is half of kcat, and k7 is the drug degradation rate.
(3)	 AHL signal reception: The most promising mechanism for inhibiting LasR activation is achieved through the 

use of AHL analogues that act as antagonists for the native AHL (i.e., 3O-C12-HSL for LasIR system). These 
molecules are likely to be similar in structure to the natural AHL and compete for LasR-receptors binding 
(some can bind covalently). Accordingly, eq. (3) needs to be modified to:
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where [QSIanlg] stands for QSI which inhibits the LasR activation, [RQSIanlg] is the binding product of LasR and 
[QSIanlg]. Also, we need to add two more equations to describe the dynamics of [QSIanlg]:
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where k10 is the degradation rate of QSIanlg. We assume that the AHL analogues have the twice the affinity as the 
native AHL to the LasR receptor, therefore, the binding reaction rates satisfy k8 =​ 2k1.

Cell Growth.  Monod introduced the concept of single nutrient controlled kinetics to describe microbial 
growth62. The kinetic relates the specific growth rate (μX) of a bacterium cell mass (X) to the substrate concentra-
tion (S). The kinetic parameters, maximum specific growth rate (kX) and substrate affinity (KS), are assumed to 
be constant and dependent on strain, medium, and growth conditions (e.g. temperature, pH). Also, we consider 
a second nutrient source, and add a new term Q. On the other hand, when cells are metabolically active, but not 
growing or dividing, they may still take up substrate. To address this, a maintenance rate (m) is generally used to 
describe the reduction, and Monod’s model can be improved as follows:

µ = ⋅
+

+ +
k S Q

S Q K (13)
X X

g

µ= − ⋅
dX
dt

m X( ) (14)X

EPS Production.  We model the production of EPS as a function of the intracellular dimerized LasR −​ AHL 
complex C and incurring a cost on the carbon substrate (S) in Eq. (20):
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where kEPS is the maximum EPS production rate, and +
+ +

S Q
S Q K g

 represents nutrition limitation. Using this model, 

we expect a maximum rate of EPS production once cells reach a quorum through communication (i.e. the level of 
AHL in the extracellular environment passes a given threshold).

Digestive Enzyme (DGE) Production.  We present a simplified and generic model of a diffusible public 
good motivated the production and utilization of the iron-chelating siderophore, pyoverdine. The production of 
DGE is also regulated by the intracellular dimerized LasR −​ AHL complex (C) a maximum production rate (kDGE),

=
+

⋅
+

+ +
d DGE

dt
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C K
S Q
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[ ] [ ]

[ ] (16)
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DGE
C g

and the amount of complex Q (e.g., chelated iron) available in the extracellular environment is

β= ⋅Q DGE S[ ][ ] (17)ex is

where β is the chelation rate, DGEin and DGEex are the intracellular and extracellular DGE concentration, 
respectively.

Metabolic Burden and Nutrition Consumption.  Also, we need to take into account the cost of generat-
ing QS-related molecules, EPS, and digestive enzymes. Specially, to balance the limiting nutrition, we introduce 
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utilization coefficients UX, UDGE, UEPS, UA, UR to model the metabolic burden and consumption of substrate nutri-
tion to produce general cell mass, digestive enzymes, EPS, AHL molecules, and QS receptors, respectively:
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Therefore, higher cell densities can lead to a decreased growth rate as well as production rate of various cellular 
products in a nutrition-limited environment.

Mass Volume, Radius, and Physical Interactions.  Similar to60, in our simulation platform, a bacterial 
cell structure is compartmentalized with inner “biomass” core consisting of all intracellular material, and an outer 
layer consists of the capsular EPS. For each compartment, a density ρi, the mass mj, and volume Vj is updated at 
each simulation step according to the following equation:
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Then, the radii of the inner biomass and entire cell are calculated using the volumes Vj and Vjtotal respectively. 
When the volume of a cell grow to be twice of the regular size (division threshold), it divides into two daughter 
cells. Similarly, when the capsular mass is above a “separate threshold”, the capsular mass fall off and form a new 
particle, such as the EPS.

Besides chemotaxis, cell growth, division, and shrinking are all the sources of movements. We use a physical 
collision kernel powered by CUDA technology to resolve any pair-wise agent overlap.

Cell-Cell Interaction Network and QS Signaling Molecules.  Our network model considers the intra-
cellular molecular information of the QS system, as well as the extracellular physical diffusion limit.

To replicate cell-cell interactions, in our model, a directed link from bacterium A to bacterium B is established 
under two conditions (see Fig. 8):

(I)	 Bacterium B must be within a diffusion-limited signal influence range Dif of bacterium A.
(II)	Bacteria A and B must be QS active at the same time.

The first condition accounts for the spatially constrained nature of molecular diffusion. The signaling mole-
cules produced and secreted by bacteria have a strong impact only within a range, Dif, depending on production 
rate, diffusivity, and decay rate. The second condition ensures that the QS system of both bacteria is active; this is 
realized by comparing against a concentration threshold of the intracellular QS regulator. To account for different 
levels of signal production of spreader bacteria, Dif is defined as:
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where α is a scaling factor for the overall influential distance, β is the saturation factor for the intracellular QS 
activity regulator complex C, and D

D0
 is the ratio of the effective diffusion (D) coefficient in the complex extracel-

lular environment normalized to the free diffusion case (D0). It is important to emphasize that the influence 
range, Dif, differs across cells as a function of intracellular QS activity regulator complex, C. Fig. 8 illustrates an 
instance of a collaboration network formed across a small number of cells.
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Physical Metrics to Quantity Biofilm Structure. 

•	 Biofilm average thickness: The average biofilm thickness is measured based on the distance between the 
substrate and the outermost cell over the space.

•	 Biofilm roughness: Biofilm surface roughness is defined by the following equation:

∑=
−

=
R L L

L (23)i

N
ti t

t1

where Lf is the average thickness, Lfi is the ith value of the thickness matrix in the ith grid.

Metrics to Quantify Interaction Dynamics and Parameters.  Once the cell-cell interactions are math-
ematically characterized, we can derive two network metrics to describe the interaction dynamics:

•	 Clustering coefficient measures the degree to which network nodes are clustered together. In this paper, we 
consider a global clustering coefficient which is based on triadic network nodes65. Since our network links 
are constrained by the influential distance, a high clustering coefficient means that the network nodes are not 
only highly active but also in close proximity to one another, without being separated by non-active cells or 
other particles in the extracellular space.

•	 Communities are defined as groups of nodes with high clustering coefficient (i.e., densely interconnected) 
that are only sparsely connected with the rest of the network. Therefore, a cell group may have only a few 
links across another group, but if the two cell groups have a large impact on one another (e.g, gene expression 
synchronization.), then they are considered to belong to the same community.

We also define three quantitative parameters:

•	 QS-regulated expression: As indicated in our QS activity based network definition, the percentage of net-
worked nodes (i.e. QS-activated cells) over the total number of cells (i.e., the sum of QS+ cells, QS− cells, and 
QSI-resistant cells) can be used as a measure of the overall activity of QS-regulated product expression in a 
biofilm. Given that QS systems commonly up-regulate virulence factors, its expression is generally considered 
to be positively correlated with the percentage of networked nodes.

•	 QS+ genotype ratio: The ratio of the sum of the number of QS+ cells and QSI-resistant cells over the total 
number of cells. This measure is critical because it indicates how strong the QS activity in the bacteria popu-
lations would be once the QSI treatment is reduced or stopped, regardless of how much it is inhibited when 
QSI is used.

•	 Resistance: The ratio of the number of QSI-resistant cells over the total number of cells (i.e., the sum of QS+ 
cells, QS− cells, and QSI-resistant cells). Note that QSI resistance is defined as the continuance of QS activity 
following QSI treatment.

Simulation Environment Configuration.  All the scenarios we model bacterial growth in a 3D micro-
fluidic environment (250 μm ×​ 205 μm ×​ 400 μm) is initialized and inoculated with 25 wild-type QS+ and 25 
QS− mutant cells, all of which are non-overlapping and randomly attached to the substrate, see Fig. 1. A constant 
nutrition concentration, S =​ 1 mM, available to both types of cells is maintained in the bulk layer and free to dif-
fuse to the biomass layer. The duration of the growth period is 5 days.

Figure 8.  Bacteria QS-based collaboration network. A directed link is formed from cell A to cell B if cell 
B lies within the influence range, Dif, of cell A and both cells have activated QS systems. The influence range, 
Dif, of a cell depends largely on the intracellular concentration of the QS activity regulator complex, C. This is 
demonstrated by the bacterial color scale which represents intracellular [C]. The arrow from A to B indicates 
that A can influence B; the blue circles represent the radius of QS influence.
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