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Abstract. Anaplastic lymphoma kinase (ALK) inhibitors 
have been shown to be effective in treating patients with 
ALK‑positive non‑small cell lung cancer (NSCLC), and 
crizotinib, ceritinib and alectinib have been approved as 
clinical first‑line therapeutic agents. The availability of these 
inhibitors has also largely changed the treatment strategy for 
advanced ALK‑positive NSCLC. However, patients still inevi‑
tably develop resistance to ALK inhibitors, leading to tumor 
recurrence or metastasis. The most critical issues that need to 
be addressed in the current treatment of ALK‑positive NSCLC 
include the high cost of targeted inhibitors and the potential 

for increased toxicity and resistance to combination therapy. 
Recently, it has been suggested that the serine/threonine kinase 
11 (STK11) mutation may serve as one of the biomarkers for 
immunotherapy in NSCLC. Therefore, the main purpose of this 
review was to summarize the role of STK11 in ALK‑positive 
NSCLC. The present review also summarizes the treatment 
and drug resistance studies in ALK‑positive NSCLC and the 
current status of STK11 research in NSCLC.
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1. Introduction

Lung cancer is the leading cause of cancer‑related mortality 
worldwide, with non‑small cell lung cancer (NSCLC) being 
the most common subtype (1). The majority of patients with 
NSCLC are diagnosed at an advanced, inoperable stage (2) 
and have an overall 5‑year survival rate of just 5% (3). This 
poor prognosis may be associated with tumor heterogeneity, 
acquisition and intrinsic resistance to therapeutic agents 
in NSCLC (4). If the most appropriate treatment is identi‑
fied early and drug resistance is addressed to a satisfactory 
degree, patient survival can be significantly improved. Current 
non‑surgical treatments for NSCLC in clinical practice 
include systemic chemotherapy, radiotherapy, targeted therapy 
and immunotherapy (IO). In recent years, rapid developments 
have been made in cellular and molecular biotechnology, and 
targeted gene therapy and IO are gradually gaining traction (5). 
Molecular testing is commonly used in NSCLC, and the 
detection of epidermal growth factor receptor (EGFR), B‑Raf 
proto‑oncogene, serine/threonine kinase (BRAF) and MET 
proto‑oncogene, receptor tyrosine kinase (MET) mutations, as 
well as anaplastic lymphoma kinase (ALK), ROS proto‑onco‑
gene 1, receptor tyrosine kinase (ROS1), ret proto‑oncogene 
(RET) and neurotrophic receptor tyrosine kinase 1 (NTRK1) 
translocations have been incorporated into the diagnostic 
criteria for NSCLC, and inhibitors of these kinases are now 
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routinely used in the clinic (6). An increasing number of 
signaling pathways and driver genes are being identified, and 
therapeutic drugs for NSCLC are emerging (7,8). Targeted 
drugs can bind specifically to the oncogenic site and induce 
cancer cell‑specific death (9). Targeted drugs have a higher 
efficacy and fewer side effects than chemotherapy (10,11). 
However, each generation of targeted drugs shows different 
degrees of resistance; therefore, identifying new therapeutic 
targets following resistance is crucial. Multiple mutations 
are not uncommon in clinical practice in recent years, and 
exploring serine/threonine kinase 11 (STK11) co‑mutations in 
ALK‑positive NSCLC patients is important.

A number of recent studies have linked the presence of 
STK11 mutations to the lack of response to IO in NSCLC (12‑16). 
In addition, several clinical studies have further elucidated the 
biological role of STK11 mutations leading to primary resis‑
tance to IO (17‑19). The implementation of STK11 mutations 
as a routine biomarker in NSCLC remains controversial and is 
not performed in daily practice (20).

Therefore, the aim of the present study was to investigate 
the role of STK11 in ALK‑positive NSCLC, review the treat‑
ment of patients with ALK‑positive NSCLC, and compare the 
clinical efficacy, resistance mutations and appropriate resis‑
tance solutions of three generations of ALK inhibitors.

2. Current research advances in ALK‑positive NSCLC

ALK and NSCLC. As a receptor tyrosine kinase of the insulin 
receptor (IR) subfamily, ALK has been found to play an impor‑
tant role in various types of cancer, particularly in anaplastic 
large cell lymphoma (ALCL), NSCLC and neuroblastoma (21). 
In 2007, the echinoderm microtubule‑associated protein like 
protein 4 (EML4)‑ALK fusion gene was identified in a group of 
NSCLC patients (22). This fusion is the result of an inversion 
of the short arm of chromosome 2, where the human EML4 
and ALK genes are present (23). EML4 contains a coiled 
oligomeric structural domain, which mediates the dimeriza‑
tion and structural activation of ALK. Like in ALCL, many 
different ALK fusions have been identified, but EML4‑ALK 
is the most common variant (24). ALK has been reported to 
regulate several different pathways involved in cell prolif‑
eration and survival, such as the phosphatidylinositol‑3‑kinase 
(PI3K)/AKT/mammalian targets of rapamycin (mTOR), 
RAS/RAF/MAP kinase‑extracellular signal‑regulated kinase 
(ERK) kinase (MEK)/ERK and JAK/STAT pathways (Fig. 1), 
once it is dimerized and activated by autophosphorylation 
upon binding to its ligands, pleiotrophin and midkine (25,26). 
Direct evidence for the oncogenic potential of EML4‑ALK in 
lung carcinogenesis has been found in mice. The transgenic 
overexpression of EML4‑ALK in type II alveolar cells via 
the surface activated protein‑c or Clara cell secretory protein 
promoter leads to the rapid development of tumors with 
features of lung adenocarcinoma (27,28). A total of 3‑7% of 
NSCLC (mainly adenocarcinoma subtypes) cases are char‑
acterized by ALK rearrangements, which occur in a mutually 
exclusive manner with KRAS and EGFR mutations (29,30). 
Of note, a previous study developed in vivo induction models 
by inducing EML4‑ALK rearrangement, which leads to 
lung carcinogenesis. These models have shown a sensitivity 
to ALK inhibition, thus serving as valuable tools to explore 

the mechanisms of EML4‑ALK‑induced lung cancer and 
response to ALK‑targeted therapy (31). Of note, ALK‑positive 
NSCLC patients have a healthy weight, are non‑smokers or are 
young (32).

Current targeted therapies for patients with ALK‑positive 
NSCLC. Prior to the discovery of the EML4‑ALK fusion protein, 
chemotherapy was the first‑line treatment option (33). ALK 
inhibitors have shown potent clinical activity in patients with 
NSCLC (34). Three generations of ALK inhibitors have been 
approved for clinical use (2). Ten years ago, the first‑generation 
ALK inhibitor crizotinib was approved for clinical treatment. 
Table I documents clinical studies associated with ALK inhibi‑
tors (35‑46). In a series of subsequent clinical trials, crizotinib 
demonstrated good clinical efficacy, including in 149 patients 
with NSCLC and ALK mutations (PROFILE1001), with an 
objective remission rate (ORR) of 60.8% and progression‑free 
survival (PFS) of 9.7 months in 143 patients evaluated; several 
other phases of clinical trials also achieved useful results (35) 
(Table I). However, since crizotinib cannot easily cross the 
blood‑brain barrier, it leads to brain metastases and resistance 
in patients (24). The rapid development of resistance during 
the treatment cycle is the main limiting factor associated 
with crizotinib (47). Since then, progeny ALK inhibitors have 
demonstrated significant efficacy and better central nervous 
system (CNS) activity compared with crizotinib (48‑50). 
Among the clinical studies of second‑generation ALK inhibi‑
tors, the ASCEND series was a series of studies evaluating the 
safety and efficacy of ceritinib. Based on this series, ceritinib 
was approved by the food and drug administration (FDA) for 
clinical treatment in 2014, mainly for patients who were intol‑
erant to crizotinib or whose disease progressed after taking 
crizotinib in ALK‑positive patients (33). As a result, the FDA 
approved brigatinib for patients who had failed prior ALK 
inhibitor therapy (33). In the J‑Alex study in Japan, alectinib 
was compared head‑to‑head with crizotinib. The latest data 
from this trial demonstrated a PFS of 34.1 and 10.2 months 
in the alectinib and crizotinib groups, respectively (42). In 
the global ALEX study, a new record was set with a PFS of 
34.8 months for first‑line treatment with alectinib (Table I), 
which was approved for the treatment of pure ALK‑positive 
patients based on the results of the randomized phase III 
ALEX trial. In addition, alectinib was effective in preventing 
the development of brain metastasis and significantly reduced 
the risk of CNS progression in patients by 84% (43,44). The 
ALTA‑1L study was a study comparing the efficacy and safety 
of brigatinib with those of crizotinib as first‑line treatment 
for patients with ALK‑positive metastatic NSCLC (51). The 
final results showed that when multiple targeted drugs cause 
resistance, patients can still benefit from brigatinib. Thus, 
brigatinib has a unique advantage in follow‑up therapy. The 
third‑generation ALK inhibitor lorlatinib was found to inhibit 
both the ALK and ROS1 pathways and overcome the multi‑
resistance associated with first‑ and second‑generation ALK 
inhibitors, while also crossing the blood‑brain barrier (45). 
Regarding IO, irrespective of the histological type, patients 
treated with atezolizumab showed a significantly longer overall 
survival than platinum‑based chemotherapy in patients with 
NSCLC with a high programmed cell death‑ligand 1 (PD‑L1) 
expression, with a significantly superior efficacy (52).
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Mechanisms of ALK inhibitor resistance. Although ALK 
inhibitors are clinically effective, patients still experience 
various types of drug resistance. This usually occurs in the 
form of ALK kinase structural domain mutations, ALK site 
amplification or activation of ‘bypass’ signaling pathways, ~1/3 
of which are ALK kinase structural domain mutations (53). The 
first mutations identified were the L1196M and C1156Y (54), 
and L1196M is a residue known as the ‘gatekeeper’ that 
controls the entry of small‑molecule ALK inhibitors into a 
hydrophobic pocket within the catalytic site and can spatially 
block inhibitor binding (55). Meanwhile, L1196M is the most 
common mutation in which patients develop resistance to 
crizotinib (47), while C1156Y develops resistance through other 
different mechanisms. Cysteine is similar to the catalytically 
important αC‑helix within the structural domain of ALK tyro‑
sine kinase, so its substitution for tyrosine is thought to prevent 
inhibitor binding by stabilizing the activity of ALK (47). Other 
resistant mutations that map to the same region with the same 
mechanism of resistance include 1151Tins, F1174C/L, L1198P, 
L1152R/P (47,56,57) and L1171T (12,13,58). Acquired resis‑
tance to crizotinib usually emerges after 1 year of treatment. 
ALK‑E1210K mutations have been detected in patients treated 
with crizotinib (14). Other secondary mutations that occur 
following crizotinib treatment include L1196M, G1269A, 
G1202R, S1206Y, G1269A, L1152R, D1203N, I1171T, V1180L 
and C1156Y (13,47). The second‑generation ALK inhibitors 
ceritinib, alectinib and brigatinib were found to show a stronger 
anti‑ALK activity compared with crizotidnib (16). In addition, 
they exhibited greater CNS permeability and the ability to 
target multiple secondary ALK mutations. The direct applica‑
tion of second‑generation ALK tyrosine kinase inhibitors has 
been shown to result in better therapeutic outcomes. In addition 
to ALK, ceritinib inhibits insulin‑like growth factor 1 (IGF1), 
ROS1 and the IR (17,18). In addition, ceritinib inhibits multiple 

ALK mutations resistant to crizotinib, including L1196M, 
G1269A and S1206Y (47). However, C1156Y/T, I1151Tins and 
L1152P/R mutations have been associated with the emergence 
of ceritinib resistance (19). Alectinib has a better efficacy 
against G1269A, L1196M, F1174L and C1156Y mutations (20); 
however, alectinib treatment has been shown to cause the 
emergence of resistance mutations (I1171T/N/S, V1180L 
and G1202R) (14,58), and the activated bypass signaling 
pathway to be mediated by hepatocyte growth factor (HGF) 
and MET (59). Epithelial‑mesenchymal transition (EMT) is a 
potential mechanism of alectinib resistance, characterized by 
the loss of E‑cadherin and increased expression of waveform 
proteins (60). Brigatinib is a novel inhibitor of ALK, ROS1 
and EGFR. Brigatinib inhibits crizotinib‑resistant mutations, 
including ALK L1196M and EGFR T790M (51). Lorlatinib can 
be used to treat all known ALK inhibitor‑induced resistance 
mutations and is the treatment of choice for patients with 
alectinib resistance (61). The L1198F mutation was recently 
reported to exhibit resistance to lorlatinib mainly by interfering 
with drug binding through spatial site block. It has also been 
reported that L1198F mutation enhances the binding of crizo‑
tinib, reduces the effect of C1156Y and enhances susceptibility 
to crizotinib resistance (62). However, as for how to overcome 
L1198F mutation, the clinical efficacy and resistance mecha‑
nisms of lorlatinib need to be elucidated.

Known mechanisms of resistance include point mutations, 
fusion gene amplification and bypass signaling through the 
activation of other oncogenes (Fig. 2) (63), and AMPK, which 
is closely associated with STK11 mutation and is one of the 
important pathways in the mechanism of ALK inhibitor resis‑
tance (30).

3. Current research progress on STK11

Function of STK11. STK11 is considered an important 
tumor‑suppressor gene with a wide range of metabolic 
functions (64). It encodes the serine/threonine kinase 
liver kinase B1 (LKB1), which activates a family of 12 

Table I. Clinical studies associated with ALK inhibitors.

Clinical study Drug mPFS (month) ORR (%)

PROFILE 1001 (35) Crizotinib 9.7 60.8
PROFILE 1005 (36) Crizotinib 8.4 54.0
PROFILE 1007 (37) Crizotinib 7.7 65.0
PROFILE 1014 (38) Crizotinib 10.9 74.0
ASCEND‑1 (39) Ceritinib 18.4 72.0
ASCEND‑2 (40) Ceritinib 5.7 38.6
ASCEND‑4 (41) Ceritinib 16.6 72.5
J‑ALEX (42) Alectinib 34.1 92.0
ALEX (43,44) Alectinib 34.8 82.9
ALTA‑1L (45) Brigatinib 24.0 71.0
B7461001 (46) Lorlatinib 9.6 46.0

ALK, anaplastic lymphoma kinase; mPFS, median progression‑free 
survival; ORR, objective response rate.

Figure 1. Signaling pathway of EML4‑ALK activation. EML4, echinoderm 
microtubule‑associated protein like protein 4; ALK, anaplastic lymphoma 
kinase; ERK, extracellular signal‑regulated kinase; PI3K, phosphatidylino‑
sitol‑3‑kinase; mTOR, mammalian targets of rapamycin; JAK, Janus kinase; 
STAT, signal transducer and activator of transcription; P, phosphorylated. 
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downstream kinases, including AMPK, and plays a role in 
essential biological functions, including cellular energy 
regulation (65). It is also involved in several physiological 
processes, including the regulation of cellular metabolism, 
cell polarity and DNA damage response (65,66). Tumor cells 
with inactivated or lost STK11 are unable to activate adenosine 
monophosphate‑activated protein kinases, and are therefore 
particularly vulnerable to energy stress states (67). STK11 
inactivation was initially identified in human tumors associ‑
ated with Peutz‑Jeghers genetic syndrome (68). STK11 also 
negatively regulates mTOR signaling through its substrate 
AMPK, and STK11 loss leads to the aberrant activation of 
mTOR in a variety of tissues. mTOR inhibitor everolimus 
has been shown to be effective (69,70). STK11/LKB1 loss 
of function has been found in several cancer types, mainly 
through somatic alterations in the STK11 gene, such as 
nonsense mutations, loss of heterozygosity, insertions, 
intragenic deletions or chromosomal deletions (71‑79), while 
in Asian populations, STK11 is mainly inactivated through 
focal deletions (80,81). Although STK11 is inactivated 
by a large spectrum of truncating mutations and behaves 
like a tumor‑suppressor gene in different tumor models 
through mTOR repression (77,82,83), recent studies have 
shown that STK11 may also acquire oncogenic properties. 
Subsequently, somatic STK11 mutations have been reported 
in other cancer types (69), including NSCLC (71,84,85). It 
has now been demonstrated that the loss of LKB1 affects 
tumor progression through energy metabolism, cytokine 
inhibition, tumor immunosuppression and altered cell 
viability (86‑90). Several types of tumors exhibit aberrant 
mutations in the STK11 gene. For example, STK11 deletion 
in cervical cancer and melanoma is associated with extensive 
and high‑grade metastasis, and a heterozygous deletion of 
the STK11 locus in primary breast cancer is associated with 
metastasis (91,92). STK11‑mutant lung cancer constitutes 
a genetic subgroup of aggressive NSCLC with an in vitro 
inhibition of mitogen‑activated protein kinase and mTOR 
signaling‑increased sensitivity (93). STK11 abnormalities 
have also been associated with cancer‑related immune 

dysfunction. For example, STK11‑mutant lung cancer 
suppresses immune surveillance responses (94) and STK11 
deficiency decreases PD‑L1 expression (95).

STK11 and NSCLC. STK11 is one of the most commonly 
mutated genes in lung adenocarcinoma, and the LKB1 protein 
encoded by the STK11 gene is the second most common tumor 
suppressor in NSCLC, with mutations or genomic loss occur‑
ring in 17‑23% of NSCLC cases (84,96,97). In lung cancer, the 
short STK11 isoform, lacking 124 N‑terminal amino acids, is 
defined as an oncogene (98). Indeed, it has been shown that 
cytoplasmic STK11 interacts with estrogen receptor (ER)
α/SRC/PI3K to stimulate the AKT pathway and is associated 
with a shorter survival (99). These findings suggested that 
STK11 may play a tumor‑suppressor or oncogene function. This 
dual mechanism may explain the lack of a clear association 
between STK11 alterations and prognosis in lung cancer (100). 
In vitro studies have shown that STK11 inactivation increases 
the motility and invasiveness of lung cancer, and facilitates 
epithelial‑to‑mesenchymal transition (EMT) in lung cancer, 
thus enhancing metastatic potential (101,102). In addition, it 
was shown that STK11/LKB1 inactivation promotes cancer cell 
growth and survival through the upregulation of hypoxia‑induc‑
ible factor 1 (HIF‑1). The inactivation of STK11/LKB1 in lung 
cancer cells leads to the upregulation of mTOR signaling, 
providing a growth advantage associated with mitochondrial 
dysfunction, due to autophagic injury (103,104). The aberrant 
activation of the PI3K/AKT/mTOR pathway has been identified 
in 90% of lung adenocarcinomas and 40% of squamous cell 
carcinomas (105). The PI3K/AKT/mTOR signaling pathway is 
mainly activated by receptor tyrosine kinases [e.g. epidermal 
growth factor receptor (EGFR), insulin‑like growth factor 
receptor 1 (IGFR1), vascular endothelial growth factor receptor 
(VEGFR) and platelet‑derived growth factor receptor (PGFR)] 
and is involved in a variety of biological functions, such as 
proliferation, differentiation, survival, adhesion, motility, 
invasion and cellular metabolism (106,107). In addition to the 
activation of the PI3K/AKT/mTOR pathway by growth factors 
and insulin, different nutritional and environmental signals, 

Figure 2. Mechanisms of resistance to ALK inhibitors. ALK, anaplastic lymphoma kinase; EML4, echinoderm microtubule‑associated protein like protein 4; 
AMPK, AMP‑activated protein kinase; MEK, MAP kinase‑ERK kinase; ERK, extracellular signal‑regulated kinase.
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such as high levels of adenosine triphosphate (ATP), oxygen 
and elevated serum amino acid levels can also increase the 
activity of mTOR complex 1 (mTORC1). By contrast, intracel‑
lular and environmental stress signals, such as low ATP levels, 
hypoxia and DNA damage, inhibit mTORC1 activity mainly 
through AMPK activation (106). mTOR pathway activation has 
been found to be associated with poor clinical outcomes, inva‑
siveness and metastasis (108‑111). It is important to highlight 
that LKB1, encoded by STK11, is also associated with AMPK, 
and that LKB1/AMPK may counteract oxidative stress by 
inhibiting the synthesis of nicotinamide adenine dinucleotide 
phosphate (NADPH)‑consuming fatty acids and increasing the 
oxidation of NADPH‑producing fatty acids (112). At the same 
time, activated AMPK phosphorylates and activates the tran‑
scription factor nuclear related factor 2 (NRF2) (113). NRF2 
then activates the transcription of antioxidant genes involved 
in NADPH production. High NADPH levels, together with 
autophagy, protect LKB1‑savvy cancers from oxidative stress 
and reactive oxygen species (ROS)‑induced chemotherapy 
(cisplatin, paclitaxel and adriamycin) (114). Thus, the activa‑
tion of NRF2 is associated with more aggressive lung cancers 
and reduced patient survival (115). Of note, the activation of 
the LKB1/autophagy pathway enables circulating tumor cells 
to resist loss‑of‑nest apoptosis (116). Thus, cells lacking LKB1 
undergo apoptosis in response to metabolic stress because 
they are unable to respond to energy deficiency and restore 
homeostasis in vivo (117). The regulation of STK11 expres‑
sion and its role in cancer cell proliferation remains highly 
complex (118). For example, recent research has shown that 
asparagine and aspartic acid can regulate AMPK‑mediated 
p53 activation by physically binding to LKB1 and regulating 
LKB1 activity. P53 has been reported to control cell survival by 
generating an auto‑amplifying loop through asparagine‑aspar‑
tate‑mediated LKB1‑AMPK signaling to regulate asparagine 
metabolism (118). In lung cancer, STK11/LKB1 alterations 
are the only marker significantly associated with PD‑L1 
negativity in patients with high/medium tumor mutation 
burden (TMB) (119). Both elevated TMB and increased PDL1 
expression are associated with IO response (120,121). Kelch 
like ECH associated protein 1 (KEAP1) mutations or double 
allelic deletions are enriched in patients with LKB1‑mutant 
NSCLC tumors. NRF2 is a transcriptional factor and KEAP1 

is a negative regulator of NRF2 that binds to the antioxidant 
response element on DNA and initiates the transcription of 
several genes involved in the regulation of redox homeostasis 
and cellular detoxification (122). Clinical studies have shown 
that in KRAS‑driven NSCLC, STK11 mutations leading to loss 
of function are associated with resistance to anti‑programmed 
death 1 (PD‑1) monoclonal antibody therapy, but the molecular 
mechanisms of pathogenesis are not yet clear (123). Despite 
some uncertainties, STK11 functional status is emerging 
as a reliable biomarker for predicting a lack of response to 
anti‑PD‑1 therapy in NSCLC patients. It has been reported 
in the literature that STK11 is significantly and significantly 
associated with decreased survival in meningiomas (124). 
Although the evidence on the biological role of STK11 is not 
sufficient, its prognostic significance in advanced NSCLC 
needs to be confirmed; clarifying the role of STK11 will facili‑
tate the analysis of STK11 mutational status, which may also 
provide more options for targeted therapy and IO (125). The 
role and significance of STK11 in NSCLC needs to be further 
explored.

Current STK11 mutation therapies for NSCLC. Cancer typi‑
cally evades immune surveillance by aberrantly expressing 
immune checkpoints (e.g. PD‑1) that isolate tumor cells 
from the host immune system. Immune blockade using 
monoclonal antibodies against the immune checkpoint PD‑1 
and its primary ligand PD‑L1 can greatly improve survival 
in advanced NSCLC, with the greatest impact in patients 
with stage III and first‑line stage IV lung cancer (126‑128). 
However, in patients with other types, the response rate was 
just 20% (129). In a retrospective cohort study, data from the 
Clinico‑Genomic Database were used to identify patients 
with metastatic NSCLC who received first‑line IO (alone or 
in combination) or chemotherapy in routine clinical practice. 
The results suggested that in NSCLC, patients with STK11 
mutation (STK11m) exhibit poorer overall survival (OS) and 
PFS compared with patients with STK11 wild‑type (STK11wt) 
receiving IO or chemotherapy. Survival outcomes analyzed 
by treatment line and type showed that OS and PFS were 
worse in the IO treatment group for STK11m vs. STK11wt 
(Table II) (130). The results of the study were not optimistic, 
which further suggested that STK11 mutations reduce the 

Table II. Chemotherapy and immunotherapy for STK11 mutation status in NSCL.

 OS (month) PFS (month)
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Variable STK11m STK11wt STK11m STK11wt

Chemotherapy (130) 
  First‑line  11.7 18.9 4.5 6.1
  Second‑line  13.1 15.2 4.2 4.5
Immunotherapy (131)
  First‑line 14.2 20.1 4.1 5.4
  Second‑line  6.6 13.6 2.2 3.1

NSCLC, non‑small cell lung cancer; OS, overall survival; PFS, progression‑free survival; STK11, serine/threonine kinase 11; STK11m, STK11 
mutation; STK11wt, STK11 wild‑type. 
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survival rate of patients with NSCLC. Most importantly, it is 
unclear whether STK11 can be used as a predictive biomarker 
to guide treatment selection, and prospective evaluation is still 
lacking. Therefore, immunotherapy should not be adminis‑
tered to patients with STK11‑mutated tumors at the present 
time (131). At the same time, it has also been reported that 
LKB1 encoded by the STK11 gene may be associated with 
radioresistance in patients, and several previous studies have 
shown the role of LKB1 expression in regulating the response 
to radiotherapy, based on preclinical experiments (132‑134). 
However, to the best of our knowledge, there are no clinical 
trials on STK11 mutations, so a comprehensive evaluation 
of patients with STK11 mutations in NSCLC could not be 
performed.

4. Conclusions and perspectives

Both STK11 and ALK can regulate tumor proliferation and 
growth through the mTOR pathway, and STK11 can be 
oncogenic in NSCLC through the AMPK pathway, which 
is included in the mechanism of drug resistance in patients 
with ALK‑positive NSCLC. mTOR signaling is known to be 
a master regulator of homeostasis and to integrate various 
environmental signals to regulate cell growth, prolifera‑
tion and metabolism. The deregulation of mTOR signaling, 
particularly its overactivation, is frequent in human cancer. 
Recent advances in molecular profiling have identified 
certain genes involved in encoding the mTOR pathway, 
including STK11, PIK3CA, PTEN and RPTOR independent 
companion of MTOR complex 2 (RICTOR), whose amplifi‑
cation or mutation induces mTOR pathway activation. AMPK 
is a central metabolic sensor that coordinates cell growth and 
energy balance. In terms of oncogenesis, LKB1 (mentioned 
previously) can directly phosphorylate and activate AMPK; 
therefore, in cells with LKB1 mutations, the AMPK protein 
is oxidized and inactivated, leading to cell death. In terms 
of drug resistance, if the AMPK pathway is abnormally 
regulated, patients with ALK‑positive NSCLC then become 
resistant to the drug.

In conclusion, STK11 plays an important role in the 
treatment and drug resistance of patients with ALK‑positive 
NSCLC. Although there is no definitive evidence on how 
STK11 affects the prognosis of ALK‑positive patients with 
NSCLC, the results of this review showed that STK11 muta‑
tions may reduce the survival of ALK‑positive NSCLC patients.
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