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Nikki J. Marks, Aaron G. Maule , Angela Mousley and Louise E. Atkinson*

Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University
Belfast, Belfast, United Kingdom

The endocannabinoid signalling (ECS) system is a complex lipid signalling pathway that
modulates diverse physiological processes in both vertebrate and invertebrate systems. In
nematodes, knowledge of endocannabinoid (EC) biology is derived primarily from the free-
living model species Caenorhabditis elegans, where ECS has been linked to key aspects
of nematode biology. The conservation and complexity of nematode ECS beyond C.
elegans is largely uncharacterised, undermining the understanding of ECS biology in
nematodes including species with key importance to human, veterinary and plant health.
In this study we exploited publicly available omics datasets, in silico bioinformatics and
phylogenetic analyses to examine the presence, conservation and life stage expression
profiles of EC-effectors across phylum Nematoda. Our data demonstrate that: (i) ECS is
broadly conserved across phylum Nematoda, including in therapeutically and
agriculturally relevant species; (ii) EC-effectors appear to display clade and lifestyle-
specific conservation patterns; (iii) filarial species possess a reduced EC-effector
complement; (iv) there are key differences between nematode and vertebrate EC-
effectors; (v) life stage-, tissue- and sex-specific EC-effector expression profiles suggest
a role for ECS in therapeutically relevant parasitic nematodes. To our knowledge, this
study represents the most comprehensive characterisation of ECS pathways in phylum
Nematoda and inform our understanding of nematode ECS complexity. Fundamental
knowledge of nematode ECS systems will seed follow-on functional studies in key
nematode parasites to underpin novel drug target discovery efforts.

Keywords: endocannabinoid, endocannabinoid signalling, nematode, parasite, genome, transcriptome, drug
target, endocannabinoid receptor
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INTRODUCTION

Parasitic nematodes inflict a pervasive burden on human, animal
and plant health (1). The rapid escalation of anthelmintic resistance,
and an over reliance on a limited number of frontline anthelmintics,
threatens the global sustainability of parasite control. The need for
identification and validation of novel control strategies and
chemotherapies for nematode parasites is urgent and requires a
robust understanding of unexploited aspects of nematode biology
that may offer a source of novel drug target candidates.

Neuromuscular signalling is the primary target for frontline
anthelmintics because of its importance to nematode biology.
Despite this, many facets of nematode neurobiology, including
endocannabinoid signalling (ECS), remain uncharacterised and
unexploited for parasite control. The ECS system is a complex
lipid signalling pathway involved in the regulation of synaptic
transmission via retrograde signalling (2, 3), and has been
associated with a broad range of immunological, psychological,
developmental, neuronal and metabolic physiologies in humans
where it has significant therapeutic appeal (4). While
mammalian (5–7) and invertebrate (8–13) ECS pathways have
been studied extensively, our knowledge of the presence,
structure and function of ECS in nematodes is limited (14–
19 20).

In vertebrates, endocannabinoids (ECs) primarily activate the
canonical cannabinoid G-protein coupled receptors (GPCRs) CB1
and CB2 (21–23), in addition to several other cannabinoid-
associated receptors including, for example, transient receptor
potential channels (TRP) (24, 25). In contrast, nematodes do
not appear to possess homologs of the mammalian-like EC-
GPCRs (CB1 and CB2). Instead, the nematode-specific GPCR
NPR-19, has been functionally linked to ECS in C. elegans (Ce-
NPR-19) (17, 19, 26, 27). Ce-NPR-19 displays only 23% sequence
similarity withmammalian CB1 but possesses 50% of the key amino
acids required for EC ligand (N-arachidonoylethanolamine;
Abbreviations: 2-AG, 2-arachidonoylglycerol; ABHD-4, Abhydrolase Domain
Containing 4, N-Acyl Phospholipase B; ABHD-5, Abhydrolase Domain
Containing 5; ABHD-6, Abhydrolase Domain Containing 6; ABHD-12,
Abhydrolase Domain Containing 12, Lysophospholipase; AEA, Anandamide/N-
arachidonoylethanolamine; BUSCO, Benchmarking Universal Single-Copy
Orthologs; CB1, Cannabinoid Receptor 1; CB2, Cannabinoid Receptor 2;
CEGMA, Core Eukaryotic Genes Mapping Approach; DAGL, Diacylglycerol
lipase; EC, Endocannabinoid; EC-GPCR, Endocannabinoid G-protein coupled
receptor; ECEs, Endocannabinoid Enzymes; ECRs, Endocannabinoid Receptors;
ECS, Endocannabinoid signalling; FAAH-1, Fatty Acid Amide Hydrolase 1;
FAAH-2, Fatty Acid Amide Hydrolase 2; GDE-1,Glycerophosphodiester
phosphodiesterase 1; Glycero-p-AEA, Glycerophosphoanandamide; GPR-55, G-
protein coupled receptor 55; HMM,Hidden Markov Model; Lyso-NAPE, N-acyl-
1-acyl-lyso-PE; Lyso-PLD, Lysophospholipase D; MAGL, Monoacylglycerol-
lipase; MSA, Multiple Sequence Alignment; NAPE, N-arachidonyl phosphatidyl
ethanol-phospholipase D; NAPE-1, N-acyl phosphatidylethanolamine-specific
phospholipase-1; NAPE-2, N-acyl phosphatidylethanolamine-specific
phospholipase-2; NAPE-PLD, N-Acyl Phosphatidyl Ethanolamine specific
phospholipase D; NHR-49, Nuclear Hormone Receptor-49; NPR-9,
Neuropeptide Receptor-9; NPR-19, Neuropeptide Receptor-19; NPR-32,
Neuropeptide Receptor-32; OCR-2, Osin-9 and Capsacin receptor-related 2;
OCTR-1, Octopamine Receptor-1; PLA-2, Phospholipase A2; SER-4, Serotonin/
Octopamine receptor family-4; TRPV, Transient receptor potential
vanilloid channel.
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anandamide; AEA) binding (12, 27, 28). In addition, C. elegans
NPR-32 is also activated in response to AEA (17), indicating that
additional EC-GPCRs could also be present in nematodes.

In vertebrates the primary EC ligands 2-arachidonoylglycerol (2-
AG) and AEA are enzymatically biosynthesised on demand, and
subsequently metabolised post receptor activation (see Figure 1)
(21, 29, 30). 2-AG synthesis occurs via the hydrolysis of
diacylglycerol by diacylglycerol lipase (DAGL), while degradation
can involve several enzymes including monoacylglycerol lipase
(MAGL), lysophosphatidylserine lipase alpha/beta-hydrolase
domain containing-12 (ABHD-12) , and alpha/beta-hydrolase
domain containing 6 (ABHD-6) (see Figure 1A) (31–33). AEA is
predominantly synthesised via the hydrolysis of N-arachidonyl
phosphatidyl ethanol (NAPE) by N-arachidonyl phosphatidyl
ethanol-phospholipase D (NAPE-PLD) and degraded by fatty
acid amide hydrolase (FAAH) (see Figure 1B) (34–36). There is
also evidence to suggest the presence of multiple alternative
pathways for EC-ligand biosynthesis and degradation in
mammals involving several alternative enzymes including alpha/
beta-hydrolase domain containing-4, N-acyl phospholipase B
(ABHD-4), lysophospholipase D (Lyso-PLD) and phospholipase
A2 (PLA-2) (36–38).

In nematodes 2-AG and AEA have been identified via mass-
spectrometry in C. elegans, Pelodera strongyloides ,
Caenorhabditis briggsae and the rodent gastrointestinal
nematode Nippostrongylus brasiliensis (18, 39). In addition, in
C. elegans several of the hydrolytic enzymes linked to EC
degradation (MAGL and FAAH) have been identified in silico
(40, 41) and functionally characterised (42). Caenorhabditis
elegans ECS has also been associated with a raft of important
biological roles (15–17, 19, 27, 42–44).

Information on the presence and function of ECS in parasitic
nematodes is limited to a single study that identified ECS
enzymes and the puta t ive EC-GPCR NPR-19 v ia
bioinformatics in N. brasiliensis, Ancylostoma duodenale,
Ancylostoma celanicum, Necator americanus, Steinernema
carpocapsae, Ascaris lumbricoides, Strongyloides ratti,
Strongyloides stercoralis, Wuchereria bancrofti and Toxocara
canis (18). This work also demonstrated that EC’s may modulate
the host immune response during parasite infection and that N.
brasiliensis produces ECs throughout its lifecycle, most notably
in the infective larval stage (18). This strongly supports the
hypothesis that parasitic nematodes possess a functional ECS
pathway. However, as these observations represent a small subset
(6.7%) of available nematode genomes there remains an
opportunity to exploit the recent expansion in nematode omics
data to characterise the breadth and complexity of the ECS
system across phylum Nematoda.

Here, we employed a bioinformatics driven in silico pipeline
and phylogenetic analyses to identify the presence, and
interrogate the conservation and expression profiles of ECS
pathway effectors (EC-effectors) in all publicly available
nematodes genomes and life stage and tissue-specific
transcriptomes. Our data demonstrate that: (i) ECS is broadly
conserved across phylum Nematoda, including in therapeutically
and agriculturally relevant species; (ii) EC-effectors appear to
display clade and lifestyle-specific conservation patterns; (iii)
July 2022 | Volume 13 | Article 892758
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filarial species possess a reduced EC-effector complement; (iv)
sequence analyses reveal key differences between nematode and
vertebrate EC-effectors; (v) life stage-, tissue- and sex-specific
EC-effector expression profiles suggest a role for ECS in
therapeutically relevant parasitic nematodes. To our knowledge
this study represents the most comprehensive, pan-phylum,
analysis of the nematode ECS system, including in species with
global therapeutic and agricultural significance. These data will
facilitate basic research focused on of the role of EC’s in key
aspects of nematode biology e.g. motility, sensory function,
feeding, development, and will seed functional genomics
studies in tractable parasitic nematodes to inform future novel
anthelmintic target discovery pipelines.
MATERIALS AND METHODS

Retrieval of Query Sequences
Query sequences for 70 genes encoding a total of 14 C. elegans, C.
briggsae, Caenorhabditis brenneri, Caenorhabditis japonica and
Caenorhabditis remanei EC pathway effectors [seven EC
receptors (ECRs) including receptors that have been closely
linked to ECS, and seven endocannabinoid enzymes (ECEs)]
were obtained from WormBase ParaSite v14 (WBP; https://
Frontiers in Endocrinology | www.frontiersin.org 3
parasite.wormbase.org) (48) (see File SI 1) (18, 27, 43, 45, 46).
Note that in the nematode literature, NAPE-PLD orthologs are
commonly referred to as NAPE (42, 43, 47) [WormBase Gene
IDs; nape-1 WBGene00021371, nape-2 WBGene00021370 (48)],
consequently we have continued to refer to nematode NAPE-
PLD as NAPE in this study for consistency.

Hidden Markov Model and BLAST Analysis
A Hidden Markov Model (HMM)-based approach has
previously been reported for the identification of flatworm
GPCRs (49). Predicted protein datasets were downloaded from
WBP v14 for all nematodes with publicly available genome data
(134 genomes; see File SI 2). Predicted protein datasets were
concatenated for use as a predicted protein database for
HMMERv3.3 HMM-searches. Profile HMMs for nematodes
were constructed using predicted protein alignments of all
candidate EC-effector protein homologs in C. elegans, C.
briggsae, C. brenneri, C. japonica and C. remanei (see File SI 1).
Multiple Sequence Alignments (MSAs) were generated using
EMBL-EBI Clustal-Omega [https://www.ebi.ac.uk/Tools/msa/
clustalo; (50)]. The hmmsearch function was employed to
identify putative EC proteins within the nematode predicted
protein datasets (see File SI 2) using default settings. Due to the
volume of genomic data generated, the highest confidence hits
FIGURE 1 | Canonical 2-arachidonoylglycerol and anandamide biosynthesis and degradation pathways. (A) Canonical 2-arachidonoylglycerol (2-AG) biosynthesis
and degradation pathway based on vertebrates showing the hydrolysis of diacylglycerol by diacylglycerol lipase (DAGL) and degradation of 2-AG by
monoacylglycerol lipase (MAGL). (B) Canonical anandamide (AEA) biosynthesis and degradation pathway based on vertebrates showing the hydrolysis of N-
arachidonyl phosphatidyl ethanol (NAPE) by N-arachidonyl phosphatidyl ethanol-phospholipase D (NAPE-PLD) and degradation of AEA by fatty acid amide hydrolase (FAAH).
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were selected for each protein based on an inclusion threshold of
E-value ≤0.01 and/or a score of ≥150.

Putative EC protein sequences identified via hmmsearch were
then used as queries in reciprocal BLASTp searches of WBP
(https://parasite.wormbase.org/Multi/Tools/Blast; default
s e t t i n g s ) a n d NCB I n o n - r e d u n d a n t ( h t t p s : / /
blast.ncbi.nlm.nih.gov; default settings) databases. Queries that
failed to return a putative ECR or ECE hit within the top 4
BLAST results were excluded from further downstream analyses.
All BLASTp searches returning negative hits (hits outside of the
outlined inclusion criteria and those that returned no hits) were
confirmed negative via tBLASTn searches; this approach also
mitigated the impact of poor genome quality (false negatives) on
our analyses where relevant.

Post-BLAST Sequence Analysis
Key EC ligand binding residues and functional motifs for
mammalian and invertebrate ECRs and ECEs were identified
from the published literature (see File SI 3) and all positive hits
were examined visually for the presence of any key residues/
motifs via multiple sequence alignments using EMBL-EBI
Clustal-Omega [https://www.ebi.ac.uk/Tools/msa/clustalo (50)].
The presence of known protein family or structural domains in
ECE BLAST hits was analysed using InterProScan [https:
www.ebi.ac.uk/interpro/search/sequence-search, (51)]. Putative
ECR hits were analysed for the presence of GPCR
transmembrane (TM) domains using EMB TMpred server
[https://embnet.vital-it.ch/software/TMPRED_form.html (52)].
Any putative ECE hits which lacked the required family/
protein domains for designation as an ECE, or putative ECR
sequences which possessed ≤ 3 TM domains, were excluded from
further analysis. ECRs and ECEs were analysed for the presence
of conservative substitutions of key residues or within binding
motifs using WebLogo3 (53, 54) (see Supplementary Table 2).

Phylogenetic Analysis
MUSCLE was used to create multiple sequence alignments
(MSAs) of protein sequences for all positive EC protein hits
using MEGA X (55). For ECRs, alignments were manually edited
to include only TM domains, for ECEs only functional domains
were included in analysis. Functional domains for ECEs and TM
domains for ECRs were identified via the NCBI Conserved
Domains Database [CDD; https://www.ncbi.nlm.nih.gov/
Structure/cdd/wrpsb.cgi (56)]. Maximum likelihood (ML)
phylogenetic trees were constructed using PhyML [http://
www.phylogeny.fr (57)] from the domain only MUSCLE MSAs
with default parameters and branch support assessment using
the approximate likelihood ratio test (aLRT) with “SH-like”
parameters. Trees were exported from PhyML in Newick
format and were drawn and annotated using the Interactive
Tree of Life [iTOL; https://itol.embl.de (58).

Transcriptome Analysis
180 publicly available transcriptome datasets (145 life stage- and 35
tissue-specific datasets) representing 32 nematode species were
analysed in this study. One hundred and fifty publicly
available life stage and tissue specific transcriptome datasets
Frontiers in Endocrinology | www.frontiersin.org 4
representing 27 nematode species were collated from WBP v14
Gene Expression database (48) and published literature (see
File SI 2). WBP datasets (see File SI 2) consisted of metadata,
raw counts, transcripts per million (TPM) and DESeq2
differential expression data (in log2foldchange and adjusted p
value formats). Data for an additional 34 datasets, representing
five species [Haemonchus contortus, Toxocara canis, Globodera
pallida, Strongyloides venezuelensis and Strongylodies
papillosus; see File SI 2] were identified from published
literature, and metadata and raw counts were accessed from
NCBI Sequence Read Archive [SRA; www.ncbi.nlm.nih.gov/
sra] (59) for analysis. TPM and median TPM data for H.
contortus, T. canis and G. pallida were downloaded using the
European Bioinformatics Institute RNAseq-er Application
Program Interface (60) (File SI 2).

S. venezuelensis and S. papillosus (raw counts and TPM) data
were analysed using an established RNA-Seq pipeline (61).
Briefly, raw sequences reads were processed into forward and
reverse fastq files using the NCBI SRA Toolkit (62). Reads were
then trimmed using Trimmomatic (v0.36; parameters:
LEADING:5 TRAILING:5 SLIDINGWINDOW:3 :15
MINLEN:34) (63) and sequences below this established
inclusion threshold were removed. Corresponding genome
assemblies [BioProject accessions; PRJEB530 and PRJEB525,
respectively] (64) were downloaded from WormBase ParaSite
v14 (48) and reads were mapped to the relevant genome using
HISAT2 v2.1.0 (65). Raw gene counts were assigned via SubRead
v 2.0.1 featureCounts (66). Raw counts of orthologous genes
were transformed to TPM and subsequently median TPMs were
calculated to represent raw gene expression in the life stages with
RNA-Seq data available. An inclusion threshold for expression of
1.5 TPM was applied [TPM thresholds are typically set between 1-2
TPM (67, 68)], any transcripts which failed tomeet the threshold for
expression were excluded from downstream analysis.

Differential expression data for H. contortus, T. canis, G.
pallida, S. venezuelensis and S. papillosus RNA-Seq data were
generated using DESeq2 in the format of log2foldchange and
adjusted p values (69, 70). Datasets were then mined for pathway
protein gene IDs identified in the HMM searches. Heatmaps
displaying log2AverageTPM were generated using the
Heatmapper Expression protocol, with an average linkage
clustering method and Pearson’s distance measurement
method (71).
RESULTS AND DISCUSSION

Nematodes Possess Homologs of
Canonical Endocannabinoid Signalling
Pathway Effectors
In this study we mined 133 nematode genomes (representing 109
species, 7 clades and 3 lifestyles) for 13 putative ECS pathway
effectors, expanding upon previous studies (18). Our HMM-
based in silico approach returned a total of 1289 putative ECS
effector homologs (ECEs and ECRs; ECRs included some
receptors linked to ECS function) (see Figure 2 and File SI 3).
July 2022 | Volume 13 | Article 892758
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The data demonstrate that: (i) ECEs and ECRs display pan-
phylum conservation; (ii) representatives of Clades 8 and 12
exhibit the lowest level of EC-effector conservation [clade 8: 68%
and 79% of all possible ECEs and ECRs conserved, respectively;
clade 12: 83% and 72% of all possible ECEs and ECRs conserved,
respectively] and, (iii) free-living and parasitic nematodes display
a comparable level of EC-effector conservation [free-living: 91%
and 96% of all possible ECEs and ECRs conserved, respectively;
parasitic: 83% and 92% of all possible ECEs and ECRs conserved,
respectively] (see Figure 2). To our knowledge this is the first
pan-phylum examination of nematode ECS profiles and
represents a comprehensive analysis of ECS pathway
conservation in parasitic species that impact human, animal
and plant health. Several important points emerge from these
data (see below).

Endocannabinoid Signalling System
Effectors Are Broadly Conserved Across
Phylum Nematoda
Nematode EC-effectors (ECEs responsible for synthesis and
degradation of EC ligands, and putative ECRs) appear to be
broadly conserved across phylum Nematoda (Figure 2A). ECEs
display greater conservation than putative ECRs across all
nematodes, with the exception of the ECE nape-1/2 which
appears to be absent from 37% of nematodes, many of which
are representatives of clades 8 and 9 (Figures 2A, B). The more
conserved profile of ECEs versus ECRs is consistent with the
requirement for specific ECEs in the biosynthesis and
degradation of EC-ligands and the potential for redundancy
among ECRs, which has been documented in other systems
(74, 75).

Genes encoding the key ECEs responsible for 2-AG synthesis
and metabolism, DAGL-2 and ABHD-12 respectively, are co-
conserved in 87% of nematodes (see Figure 2), indicating that a
significant proportion of nematode species are likely to possess a
functional, canonical, 2-AG synthesis and degradation pathway.
Most (95%) nematode species examined possess an gene
ortholog of the 2-AG biosynthesis enzyme DAGL-2, while the
gene encoding ABHD-12, responsible for catalysing 2-AG
metabolism is present in 88% of species. Parascaris equorum
and Globodera pallida do not appear to possess either a dagl-2 or
abhd-12 homolog, however their genome quality is lower as
indicated by CEGMA/BUSCO scores [see Figure 2; (76, 77)].

Genes encoding NAPE and FAAH, the primary enzymes
responsible for the synthesis and metabolism of AEA, are co-
conserved in 55% of nematode species, suggesting that a
significant proportion nematodes have the ability to metabolise
AEA (Figure 2). This is corroborated by studies that have
identified AEA in several nematodes, including C. elegans and
N. brasiliensis, via mass-spectrometry (18, 39). While 88% of
species encode at least one FAAH homolog, the NAPE-
encoding gene is conserved in only 63% of nematodes (either
nape-1 or -2). Notably, many of the species that lack a nape
homolog are filarial nematodes, Strongyloides species, or
members of the Diplogasteroidea superfamily (Figure 2).
Whilst the absence of nape in some species may be explained
Frontiers in Endocrinology | www.frontiersin.org 5
by genome quality, in other species with robust genome data an
alternative AEA synthesis pathway may exist (see below).
Previous studies have demonstrated the presence of two,
functionally divergent, nape orthologs in C. elegans that
o c c u p y a d j a c e n t g e n om i c p o s i t i o n s ( n a p e - 1 ,
IV:3739520 .3740880 ; nape -2 , IV:3735470 .3738925 ;
[WormBase; (78)], share 73% sequence identity, and display
complete conservation of the NAPE-PLD signature sequence (43).
Our pan-phylum analysis confirms that C. elegans is the only
nematode species that possesses two distinct NAPE-encoding
genes. In all other species that encode NAPE the same gene ID
was returned for both the nape-1 and nape-2 BLASTp searches (one
positive nape hit was considered a positive return for both nape-1
and nape-2 and was designated nape-1/2; see Figure 2 and File SI
3). The presence of a single nape-1/2 in all of the nematodes
examined, including other Caenorhabditis species, suggests that
nape-1 and -2 may have arisen as a result of a relatively recent
gene duplication event in C. elegans (43).

Of the seven putative ECRs included in this study NPR-19
and NPR-32 have been most closely linked to ECS in nematodes
(16, 17, 27). Our in silico analysis reveals that 79% of the
nematode species investigated in this study possess NPR-19
and 89% possess NPR-32, underscoring their putative
importance to nematode biology. In addition to NPR-19 and -32,
OCR-2 an ortholog of the human transient receptor potential
vanilloid channel (TRPV) (79), has also been closely linked to
ECS (25). OCR-2 regulates signal transmission and thus modulates
several C. elegans behaviours (19, 80). It is interesting to note that
100% of nematode species examined in this study possess a gene
encoding OCR-2, also suggesting a significant role in nematode
biology. NPR-9 has been implicated in locomotion, regulation of
innate immune responses, roaming and foraging behaviours in C.
elegans (81–83), while GPR-55, the human ortholog of nematode
NPR-9, is known to interact with human CB1 and CB2 to form
functionally important heteromers (84, 85). The lower level of npr-9
conservation across phylum Nematoda revealed here (npr-9
conserved in 60% of species examined; Figure 2) may indicate a
less conserved functional role for this putative ECR in nematodes.

Nematode EC-Effector Conservation
Profiles Display Clade Specific Trends
Our data demonstrate distinct conservation patterns of EC-
effectors across nematode clades. Whilst clade 9 and 10
nematodes exhibit the highest degree of EC-effector
conservation, clade 8 species display the most reduced
complements (Figure 2). This could be, in part, explained by
lower CEGMA/BUSCO scores for clade 8 genomes, such that the
profiles presented here may not be a true representation of EC-
effector complements in this clade. Variable genome quality is an
inherent caveat to in silico approaches such as those employed in
this study however, the use of tBLASTn for all negative BLASTp
returns can help to mitigate this in addition to continued
improvements in genome quality (86).

For other clades there appear to be ECR specific trends. For
example, npr-32 is broadly conserved across all clades, pointing
towards a more conserved function for this receptor pan-
July 2022 | Volume 13 | Article 892758
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A B

FIGURE 2 | Nematodes possess homologs of canonical endocannabinoid signalling pathway effectors that display broad pan-phylum conservation.
(A) Pan-phylum conservation of ECS proteins in all nematodes that possess genome data. Black boxes represent the presence of a homolog. Core Eukaryotic Genes
Mapping Approach (CEGMA)/Benchmarking Universal Single-Copy Orthologs (BUSCO) scores represent genome quality [data derived from WormbaseParasite, each circle
represents 10% increase in genome quality, colours represent scale (red represents lower percentage genome quality, green represents higher percentage genome quality)].
Asterix denotes multiple genomes (*). Nematode genome references listed in File SI 2. All homolog gene IDs identified listed in File SI 3. Clades based on Holterman and
Blaxter classifications where roman numerals represent Blaxter classification and numbers represent Holterman classification (i.e. 2/I denotes Holterman clade 2 and Blaxter
classification clade I) (72, 73). (B) Bar chart displaying the percentage of nematode species that possess each ECR/ECE.
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phylum. Other ECRs display more clade-specific, restricted
profiles, including nhr-49 which appears to be entirely absent
from clade 2 (Figure 2A). Clade 2 nematode genome assemblies
are high quality [as indicated by CEGMA/BUSCO scores; (48)]
and likely provide a true reflection of the nhr-49 profile. Notably,
npr-19 is also entirely absent from clade 12 species, indicating
that alternative ECRs may contribute to the ECS pathway in
these nematodes. Indeed, clade 12 nematodes exhibit broad
conservation of other putative ECRs (e.g. npr-9, -32, nhr-49,
octr-1, ser-4, ocr-2; see Figure 2A).

Filarids Possess Distinctive EC-
Effector Profiles
Whilst there appear to be limited differences between free-living
and parasitic nematode EC-effector profiles in general [96% ECR
conservation in free-living nematodes (FL) vs 92% in parasitic
species; 91% ECE conservation in free-living nematodes vs 83%
in parasitic species], filarial nematodes display distinct EC-
effector gaps. For example, filarial species completely lack
genes encoding NPR-9 and NAPE-1/2, and have a significantly
reduced FAAH-2 encoding gene profile (Figure 2A). The
absence of NAPE-1/2 points towards the presence of an
alternative AEA synthesis pathway in filarids, which may also
be the case for other species e.g. Pristionchus spp. and
Strongyloides spp. that likewise lack NAPE-1/2 encoding genes
(see below; Figure 2A).

Nematodes That Lack NAPE-1/2 Possess
Putative Alternative AEA
Synthesis Enzymes
Our data indicate that 41 nematode species lack genes encoding
the nematode NAPE-PLD ortholog NAPE-1/2, the enzyme
primarily responsible for AEA synthesis (Figure 2A) (34). In
vertebrates, two additional pathways have been implicated in the
synthesis of AEA: (i) hydrolysis of NAPE by ABHD-4 forming
the intermediate glycerophosphoanandamide (Glycero-p-AEA)
which, following further hydrolysis by glycerophosphodiester
phosphodiesterase 1 (GDE-1), results in the formation of AEA
(see Figure 3A ii); (ii) hydrolysis of NAPE by phospholipase A2
(PLA-2) to form the intermediate N-acyl-1-acyl-lyso-PE (lyso-
NAPE) and subsequent ly , fo l lowing hydrolysis by
lysophospholipase D (Lyso-PLD), results in the formation of
AEA (see Figure 3A iii) (87–90). To determine if alternative
AEA synthesis pathways exist in nematodes that appear to lack
the classical NAPE-1/2 AEA biosynthesis pathway, we mined all
available genome data for abhd-4, gde-1, pla-2 and lyso-PLD.

Our data reveal that 39 of the 41 species that lack NAPE-1/2
possess at least one putative alternative AEA synthesis
pathway (see Figure 3B, File SI 3). 95% of these species possess
both abhd-4 and gde-1 (alternative pathway shown in Figure 3A
ii), while 56% encode both PLA-2 and Lyso-PLD (alternative
pathway shown in Figure 3A iii); 56% of nematodes encode the
enzymes for both alternative AEA synthesis pathways. Therefore
these data suggest that nematodes which lack the classical NAPE-
1/2 biosynthesis pathway predominantly synthesise AEA via
ABHD-4 and GDE-1. However, within clades 8, 9 and 10 there
Frontiers in Endocrinology | www.frontiersin.org 7
are examples of species which may have the ability to synthesise
AEA via either alternative pathway e.g. Strongyloides species and
several filarial nematodes (Figure 3B).

Interestingly in mammals, in addition to PLA-2, other
enzymes have been linked to the synthesis of lyso-NAPE (38),
for example, ABHD-4 can remove an acyl group from NAPE
resulting in the creation of lyso-NAPE (89). Therefore the
presence of abhd-4 in 100% of the nematodes investigated in
this study suggests that some nematodes that possess lyso-PLD
but lack pla-2 could compensate by employing ABHD-4 in the
synthesis of lyso-NAPE.

Interestingly, it appears that a subset of the species that do
encode NAPE-1/2 (20 key species selected for their relevance to
human, veterinary or plant health and broad clade
representation), also encode all of the alternative AEA
synthesis enzymes (abhd-4, gde-1, pla-2 and lyso-PLD), with
the exception of Trichuris muris which appears to lack pla-2 (see
File SI 4). It is unclear whether NAPE-1/2 is indeed the
predominant AEA synthesis pathway in these species or, if the
alternative pathways also contribute to AEA production.

In silico evidence for the presence of putative, alternative,
AEA biosynthesis enzymes in a range of therapeutically relevant
nematodes strongly suggests that NAPE-1/2 independent
pathways may contribute to AEA synthesis in these species.
Further analysis, including mass spectrometry to isolate AEA,
will begin to unravel the importance of alternative AEA
biosynthesis pathways in these nematodes.

Nematode FAAH Homologs Display
Conservative Substitutions in a Key AEA
Binding Site
The mammalian AEA hydrolysis enzymes FAAH-1 and FAAH-2
possess four key residues required for catabolic activity (FAAH-1:
K142, M191, S217, S241; FAAH-2: K131, C180, S206, S230) (42,
91, 92). Analysis of nematode FAAH-1 homologs identified in
this study (see Figure 2) revealed that >90% possess the key
mammalian binding site residues K142, S217 and S241, while
83% of identified nematode FAAH-2 homologs possess K131,
S206 and S230 (see Figures 4A–C). However, 87% of nematode
FAAH-1 homologs display a conservative substitution
(methionine for leucine) at position 191 while 80% of
nematode FAAH-2 homologs substitute cysteine for leucine at
position 180 (Figures 4A–C). M191 has been implicated in
mammalian FAAH-1 EC-derivative binding, with studies
demonstrating lipophilic interactions between this residue and
partial cannabinoid receptor agonists, linking it to AEA binding
(93), however the significance of C180 (FAAH-2) is less clear
(94–96).

Mammalian FAAH-1 and -2 also possess a highly conserved
130 bp amidase signature domain that enables enzyme
characterisation (97, 98); this domain is conserved in 94% of
the nematode species examined in this study (Figure 4A).

While these data demonstrate that nematodes possess
homologs for FAAH enzymes that display broad conservation
with vertebrates, the presence of a distinct substitution in a key
AEA binding site across many nematodes may highlight the
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A

B

FIGURE 3 | Nematode species lacking the anandamide (AEA) synthesis enzyme N-arachidonyl phosphatidyl ethanol (NAPE) possess putative alternative AEA
synthesis enzymes. (A) Diagram showing canonical (i) AEA synthesis pathway alongside two alternative synthesis pathways: (ii) hydrolysis of NAPE by Abhydrolase
Domain Containing 4 (ABHD-4) forming the intermediate glycerophosphoanandamide (Glycero-p-AEA) and hydrolysis by glycerophosphodiester phosphodiesterase
1 (GDE-1) to synthesise AEA, and (iii) hydrolysis of NAPE by phospholipase A2 (PLA-2) to form the intermediate N-acyl-1-acyl-lyso-PE (lyso-NAPE) and hydrolysis by
lysophospholipase D (Lyso-PLD) to synthesise AEA. (B) Conservation of genes encoding the alternative AEA synthesis enzymes ABHD-4, GDE-1, PLA-2, Lyso-PLD
is shown in all nematodes that lack NAPE. Black boxes represent the presence of a homolog. Core Eukaryotic Genes Mapping Approach (CEGMA)/Benchmarking
Universal Single-Copy Orthologs (BUSCO) scores represent genome quality [data derived from WormbaseParasite, each circle represents 10% increase in genome
quality, colours represent scale (red represents lower percentage genome quality, green represents higher percentage genome quality)]. Asterix denotes multiple
genomes (*). Nematode genome references listed in File SI 2. All homolog gene IDs identified listed in File SI 3. Clades based on Holterman and Blaxter
classifications where roman numerals represent Blaxter classification and numbers represent Holterman classification (i.e. 2/I denotes Holterman clade 2 and Blaxter
classification clade I) (72, 73).
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potential for drug target selectivity towards parasitic
nematode species.
Nematodes Possess Homologs for the
Mammalian 2-AG Degradation Enzyme
ABHD-12
In mammals, MAGL is primarily responsible for 2-AG
degradation and thus the termination of EC signalling (31, 99).
Additional 2-AG degradation enzymes, ABHD-6 and -12, have
also been reported (33, 100) however, ABHD-6 is thought to play
a less significant role in 2-AG degradation (31, 99).

The nematode literature presents conflicting data on the
identity of the 2-AG degradation enzyme; indeed prior to this
study it was unclear whether nematodes possess a true ortholog of
MAGL (19, 27) or, if the nematode 2-AG degradation enzyme is
actually an ABHD-12 ortholog (11, 18). It is interesting to note
that previous work indicates that magl homologs are absent in
some nematode species (18), which has been confirmed here
using our pan-phylum in silico approach (Figure 2A). Indeed, in
our analyses only two nematode species (of the 109 in this study)
returned an magl-like sequence within the top 5 BLASTp hits
(Strongylus vulgaris, SVUK_0001964001; Steinernema scapterisci,
L892_g30127.t1), both of which failed to meet E-value inclusion
criteria. The absence of MAGL in nematodes indicates the
presence of an alternative 2-AG degradation enzyme.
Frontiers in Endocrinology | www.frontiersin.org 9
In light of the limited role for ABHD-6 in mammalian 2-AG
degradationand theabsenceofMAGLacrossnematodes (as reported
here and in previous studies), we focused our attention onABHD-12
as a putative alternative to MAGL in nematodes. Pan-phylum
analysis of nematode genomes identified orthologs for ABHD-12
in 88% of nematode species examined. Significantly, phylogenetic
analyses of these putative abhd-12 homologs demonstrated that 99%
of nematode BLAST returns for abhd-12 cluster more strongly with
human abdh-12 than human magl (Figure 5 and Supplementary
Figure 1) suggesting that the nematode 2-AG hydroxylase enzymes
identified here, and originally designated as magl in C. elegans
[Y97E10AL.2; (19)], are orthologous with abhd-12.

Nematode NPR-19 and -32 Orthologs
Possess Key Functional Motifs and EC
Binding Residues
NPR-19 has been identified as a putative EC-GPCR in C. elegans
and appears to modulate key aspects of nematode biology
including axon regeneration, locomotion, modulation of
noiceception and feeding, and therefore may represent a
promising anthelmintic target (27).

78% of the nematodes examined in this study possess an npr-
19 ortholog (see Figure 2 and Figure 6A). Phylogenetic analysis
demonstrates that nematode npr-19 orthologs failed to cluster
with human CB1 and CB2, confirming that NPR-19 is not the
direct ortholog of the human EC-GPCRs receptors (CB1 and
A

B C

FIGURE 4 | Nematode FAAH homologs conserve key functional domains and motifs, but display conservative substitutions in a key AEA binding site. (A) Protein
sequence alignment of Homo sapiens fatty acid amide hydrolase (FAAH-1), H. sapiens FAAH-2, Caenorhabditis elegans FAAH-1 and C. elegans FAAH-2. Amino
acids are highlighted in the same colour if > 60% of residues are conserved. Legend denotes conserved amino residues, key ligand binding residues in FAAH-1 and
FAAH-2, and the amidase signature domain. AA denotes amino acid; H. sapiens denotes Homo sapiens, C. elegans denotes Caenorhabditis elegans. (B) Amino
acid sequence-logo representing sequence diversity between key residues in nematode FAAH-1 homologs (consensus) vs H. sapiens FAAH-1 [O00519,
FAAH1_HUMAN] and, (C) Amino acid sequence-logo representing sequence diversity between key residues in nematode FAAH-2 homologs vs H. sapiens FAAH-2.
Key EC binding site residues were derived from H. sapiens FAAH-1 and -2 and are detailed in the top column of each table. Colours indicate hydrophobicity of
amino acid residues (hydrophilic residues are blue, neutral residues are green and hydrophobic residues are black).
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CB2) (Figure 6A and Figure SI 1). Further analysis of the
nematode npr-19 orthologs revealed that whilst the nematode
NPR-19 consensus sequence has only 23% similarity to human
CB1, several of the known human CB1 EC binding residues
(N46, D88, F189, L193, F379, S383) (101, 102) are conserved
(Figure 6B). This indicates that nematode NPR-19 orthologs
are likely to possess EC ligand binding capacity and aligns with
previous work in C. elegans (27). When examined at the clade
level, sequence analysis showed that two conservative
substitutions are present at position K192 (82% of clade 2
species substitute K192 for N192), while species in clades 8, 9,
10 and 12 substitute K192 for D192. K192 forms a hydrogen
bond with the amide oxygen of AEA, implicating this residue in
ligand binding (101) (see Figure 6B).

NPR-32 is implicated in C. elegans axon regeneration (17) and,
in addition to NPR-19, is believed to be a putative EC-GPCR (27).
In this study we identified 97 NPR-32 homologs (Figure 2 and
Supplementary Figure 1) which share (consensus sequence) only
21% identity with the human EC-GPCR CB1, but conserve several
key residues (N46, D88, K115, F189; Figure 6B) that are believed to
be important for ECS function (17).

In addition, CB1 possesses a “toggle switch” (residue W356), a
putative molecular hinge that interacts with F200 to change the form
Frontiers in Endocrinology | www.frontiersin.org 10
and state of the receptor which in turn aids EC ligand binding (103,
104). In nematodes the “toggle switch”W356 is conserved in >85% of
NPR-19 and -32 orthologs, whereas NPR-19 F200 is substituted for
W200 in 59% of species and NPR-32 F200 is substituted for L200 in
90% of species, (see Figure 6B). The significance of these observations
will be revealed through molecular docking studies, crystal structure
analysis, and functional genomics in relevant parasite species, and will
inform the role and importance of these receptors in nematode
ECS biology.

EC-effectors Are Differentially Expressed
Across Nematode Life Stages, Sexes and
Tissues, Suggesting Key Roles in
Parasite Biology
EC-effector expression has previously been examined in several
parasites demonstrating differential expression across life stages (18).
Here we further profiled EC-effector expression in 32 nematode
species representing several distinct lifestyles (see File SI 2).

Our data demonstrate that several of the putative ECRs
examined in this study are upregulated in third-stage larvae (L3)
of several parasites including Ancylostoma ceylanicum,
Teladorsagia circumcincta, Dictyocaulus viviparus, H. contortus,
S. ratti, S. stercoralis and Onchocerca volvulus (see Supplementary
FIGURE 5 | Maximum likelihood phylogeny of nematode ABHD-12 homologs. 98 nematode lysophosphatidylserine lipase alpha/beta-hydrolase domain containing-
12 (ABHD-12) homologs are shown in addition to Homo sapiens ABHD-12 [Q8N2K0 (ABD12_HUMAN)] H. sapiens monoacylglycerol lipase (MAGL) [Q99685
(MGLL_HUMAN)], Caenorhabditis elegans fatty acid amide hydrolase (FAAH-1-4) [WBGene00015047, WBGene00015048, WBGene00019068, WBGene00013232]
and C. elegans AHO-3 [WBGene00045192; alpha/beta hydrolase containing protein]. Non-ABHD-12 homologs are marked with a red asterisk (*). Outer ring denotes
nematode clade and coloured circles represent branch support values. Tree was generated from an alignment trimmed to include protein functional domains. Branch
supports indicate statistical support from approximate likelihood ratio test (aLRT).
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Figure 2). Parasitic nematode L3 larvae are analogous to the dauer
life stage of C. elegans; both C. elegans dauer and parasitic
nematode L3 stages display similar physiology, are in arrested
development, are non-feeding and are highly resistant to their
environment (105–107). L3 parasites of species such as those
outlined above transition from arrested (dauer-like) L3 larvae to
infective L3 (iL3) larvae either constitutively or via the influence of
host and environmental factors (108). The ECS pathway has been
implicated in antagonization of dauer formation and abolishing
dauer larval arrest via stimulation of cholesterol in C. elegans and,
in turn, promotion of nematode growth and development (15).
Thus, the upregulation of putative ECRs in L3 stages of parasitic
nematodes could suggest an analogous role for EC signalling in
Frontiers in Endocrinology | www.frontiersin.org 11
parasite growth and development at a critical stage in the
parasitic lifecycle.

Upregulation of putative ECRs, and a key ECE (dagl-2)
associated with EC ligand biosynthesis, is evident in
Strongyloides iL3s (see Supplementary Figure 2). In contrast,
the ECEs responsible for EC ligand degradation (abhd-12 and
faah-1-4) are downregulated at the iL3 stage (see Supplementary
Figure 2). The opposite expression profile is noted in the adult life
stage (free-living and parasitic females) of Strongyloides spp.
where EC-degradation enzymes are upregulated and putative
ECRs and dagl-2 are downregulated (see Supplementary
Figure 2). These data suggest that higher levels of EC ligands
may exist in the iL3 stage of S. ratti and S. stercoralis and is
A

B

FIGURE 6 | Maximum likelihood phylogeny of nematode npr-19 homologs. (A) 85 nematode NPR-19 homologs are shown in addition to Homo sapiens CB1 and
CB2 [P21554 (CNR1_HUMAN), P34972 (CNR2_HUMAN)], H. sapiens GPR-55 [Q9Y2T6 (GPR55_HUMAN)] and several Caenorhabditis elegans biogenic amine
receptors (serotonin [SER-1,-3,-6; WBGene00004776, WBGene00004778, WBGene00021897] dopamine [DOP-1-3; WBGene00001052, WBGene00001053,
WBGene00020506] and tyramine [TYRA-2 and -3; WBGene00017157, WBGene00006475]). Non-NPR-19 homologs are marked with a red asterisk (*). Outer ring
denotes nematode clade and coloured circles represent branch support values. Tree was generated from an alignment trimmed to include functional domains.
Branch supports indicate statistical support from approximate likelihood ratio test (aLRT). (B) Amino acid sequence-logo demonstrating sequence diversity between
nematode NPR-19 and NPR-32 orthologs (consensus) and H. sapiens CB1 [P21554 (CNR1_HUMAN)]. Known vertebrate endocannabinoid binding and GPCR
motifs/residues are indicated in the top row of the sequence logo table, transmembrane regions 1-7 are indicated by orange boxes and numbers, amino acid
colours indicate hydrophobicity of amino acid residues (hydrophilic residues are blue, neutral residues are green and hydrophobic residues are black).
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consistent with the elevated production of EC-ligands by N.
brasiliensis iL3s (18). Together these data indicate that the ECS
system may be involved in processes linked to host infection.
Parasitic nematodes exploit numerous sensory cues and
mechanisms in order to find their host (109), thus the
upregulation of EC-effectors in iL3s may also implicate EC
signalling in sensory perception, host-seeking, and the
establishment of host infection. These data will direct future
functional genomics studies around the role of EC signalling in
host finding and infection in tractable parasitic nematodes.

Expression profiling of EC-effectors in sex-specific transcriptome
data reveal differential expression patterns in male and female
nematodes of several species (see Supplementary Figure 2). In T.
circumcincta EC-ligand degradation enzymes are broadly
downregulated in adult males, and upregulated in adult females
(Supplementary Figure 2). Conversely, O. volvulus exhibits
upregulation of all pathway components in adult males, and
downregulation in adult females (Supplementary Figure 2). Sex-
specific expressionofEC-effectors is common inmammalian species,
where they exhibit alternative actions on neuropsychiatric processes
and reproductive events (110–112). In addition the ECS pathway has
been implicated in mammalian fertility regulation (113–117) and in
invertebrate reproduction (118, 119). Interrogation of expression at
the tissue level is challenging innematodeswheredata sets are limited
to species which are readily amenable to dissection, for example
Ascaris suumandDirofilaria immitis.Whilst itwouldappear thatEC-
effectors are upregulated in reproductive tissues (e.g. in A. suum),
furtheranalysis acrossmore tissue typesandspecies is requiredbefore
meaningful comparisons can be made (data not shown). While the
role of EC signalling in the regulation of vertebrate and invertebrate
reproduction has been documented, ECS system function in
nematode reproduction is yet to be determined. Indeed, enhancing
the ability to generate life- and tissue-specific data from key parasitic
nematodes will inform functional biology.
CONCLUSIONS

In silico approaches and the proliferation of nematode omics
resources provide a valuable opportunity to identify putative
novel anthelmintic drug targets for the control of parasite
disease. This study focuses on the characterisation of the
nematode ECS pathway, driven by its putative biological
importance and therapeutic appeal (16, 27, 28, 39, 42). Here
we: (i) provide a comprehensive pan-phylum overview of EC-
effector complements in nematodes, that represent divergent
clades and lifestyles; (ii) unravel the complexity of the
nematode ECS to identify putative species- and lifestyle-
specific EC-pathways and drug target selectivity, and (iii)
reveal life stage-, and sex-specific EC-effector expression
patterns in relevant parasite species. These data will direct the
selection of novel ECS pathway targets for functional validation
efforts in parasitic nematodes to inform biology and anthelmintic
drug discovery pipelines.
Frontiers in Endocrinology | www.frontiersin.org 12
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.
AUTHOR CONTRIBUTIONS

LA, AM, AGM, and NM designed the research. BC, DM and LC,
performed the research. BC, DM and LC, analysed the data with
assistance from CM and PM. LA, AM, BC, AGM and NM wrote
the manuscript. All authors contributed to the article and
approved the submitted version.
FUNDING

This work was supported by: the Academy of Medical Sciences
Springboard Award (SBF004\1018 to LA); the Biotechnology
and Biological Sciences Research Council (BB/H019472/1 to
AM); the Biotechnology and Biological Sciences Research
Council/Boehringer Ingelheim (BB/T016396/1 to AM, NM,
AGM, and LA); the Department of Education and Learning for
Northern Ireland (studentships awarded to BC and LC); the
Department of Agriculture, Environment and Rural Affairs for
Northern Ireland (studentship awarded to DM).
ACKNOWLEDGMENTS

The authors wish to thank WormBase ParaSite for helpful
assistance with transcriptome resources.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fendo.2022.892758/
full#supplementary-material

File SI 1 | Caenorhabditis spp. EC-effector gene IDs. List of EC-effector gene IDs
from Caenorhabditis spp. that were used as query sequences in this study.

File SI 2 | Nematode genome and transcriptome accession numbers and
citations. List of accession numbers for all genome and transcriptome datasets
used in this study along with original citations.

File SI 3 | Nematode HMM/BLAST hit gene IDs. List of all BLAST hit gene IDs
generated in this study.

File SI 4 | Presence of alternative AEA synthesis pathways in NAPE encoding species.
Presence/absence list of alternative AEA synthesis pathway enzymes in 20 key species
that do possess NAPE orthologs (Tab 1) and BLAST hit gene IDs (Tab 2).

Supplementary Table 1 | Table of EC-effectors included in study.

Supplementary Table 2 | Table of EC-effector motifs and relevant citations.
July 2022 | Volume 13 | Article 892758

https://www.frontiersin.org/articles/10.3389/fendo.2022.892758/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2022.892758/full#supplementary-material
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Crooks et al. Nematode Endocannabinoid Signalling Systems
Supplementary Figure 1 | Maximum likelihood phylogeny of: (A) 98 nematode
ABHD-12 homologs. Homo sapiens ABHD-12 [Q8N2K0 (ABD12_HUMAN)] H. sapiens
MAGL [Q99685(MGLL_HUMAN)], Caenorhabditis elegans FAAH-1-
4 [WBGene00015047, WBGene00015048, WBGene00019068, WBGene00013232]
and C. elegans AHO-3 [WBGene00045192; alpha/beta hydrolase containing protein]
also included; (B) 85 nematode NPR-19 homologs. Homo sapiens CB1 and CB2
[P21554 (CNR1_HUMAN), P34972 (CNR2_HUMAN)], H. sapiens GPR-55 [Q9Y2T6
(GPR55_HUMAN)] and several C. elegans biogenic amine receptors (serotonin [SER-1,-
3,-6; WBGene00004776, WBGene00004778, WBGene00021897] dopamine [DOP-1-
3; WBGene00001052, WBGene00001053, WBGene00020506] and tyramine [TYRA-2
and -3;WBGene00017157,WBGene00006475]) also included. (C) 89 nematode NPR-
9 homologs. Homo sapiens CB1 and CB2 [P21554 (CNR1_HUMAN), P34972
(CNR2_HUMAN)], H. sapiens GPR-55 [Q9Y2T6 (GPR55_HUMAN)] and several C.
elegans biogenic amine receptors (serotonin [SER-1,-3,-6; WBGene00004776,
WBGene00004778, WBGene00021897] dopamine [DOP-1-3; WBGene00001052,
WBGene00001053, WBGene00020506] and tyramine [TYRA-2 and -3;
WBGene00017157, WBGene00006475]) also included. (D) 97 nematode NPR-32
homologs. Homo sapiens CB1 and CB2 [P21554 (CNR1_HUMAN), P34972
(CNR2_HUMAN)], H. sapiens GPR-55 [Q9Y2T6 (GPR55_HUMAN)] and several C.
elegans biogenic amine receptors (serotonin [SER-1,-3,-6; WBGene00004776,
WBGene00004778, WBGene00021897] dopamine [DOP-1-3; WBGene00001052,
WBGene00001053, WBGene00020506] and tyramine [TYRA-2 and -3;
WBGene00017157, WBGene00006475]) also included. (E) 78 nematode NHR-49
homologs. Homo sapiens PPARG [P37231 (PPARG_HUMAN)], H. sapiens PPARD
[Q03181 (PPARD_HUMAN)], H. sapiens PPARA [Q07869 (PPARA_HUMAN)], C.
elegansNHR-88 [WBGene00003678],C. elegansNHR-64 [WBGene00003654] andC.
elegans NHR-35 [WBGene00003628] also included. (F) 107 nematode OCR-2
homologs. Homo sapiens TRPV1-3 [Q8NER1 (TRPV1_HUMAN), Q9Y5S1
(TRPV2_HUMAN), Q8NET8 (TRPV3_HUMAN)], alongside C. elegans OSM-9
[WBGene00003889], C. elegans OCR-1 [WBGene00003838], C. elegans OCR-3
[WBGene00003840] and C. elegans UNC-44 [WBGene00006780] also shown. (G) 99
nematodeOCTR-1 homologs.Homo sapiensCB1 andCB2 [P21554 (CNR1_HUMAN),
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P34972 (CNR2_HUMAN)],H. sapiensGPR-55 [Q9Y2T6 (GPR55_HUMAN)],H. sapiens
ADA2A-C [P08913 (ADA2A_HUMAN). P18089 (ADA2B_HUMAN), P18825
(ADA2C_HUMAN)] and several C. elegans biogenic amine receptors (serotonin [SER-1,-
3,-6; WBGene00004776, WBGene00004778, WBGene00021897] dopamine [DOP-1-
3; WBGene00001052, WBGene00001053, WBGene00020506] and tyramine [TYRA-2
and -3; WBGene00017157, WBGene00006475]) also shown. (H) 100 nematode SER-
4 homologs. Homo sapiens CB1 and CB2 [P21554 (CNR1_HUMAN), P34972
(CNR2_HUMAN)], H. sapiens GPR-55 [Q9Y2T6 (GPR55_HUMAN) and several C.
elegans biogenic amine receptors (serotonin [SER-1,-3,-6; WBGene00004776,
WBGene00004778, WBGene00021897] dopamine [DOP-1-3; WBGene00001052,
WBGene00001053, WBGene00020506] and tyramine [TYRA-2 and -3;
WBGene00017157, WBGene00006475]) also shown. Outer colours represent
nematode clade and circles represent branch support values. Tree generated from an
alignment trimmed to include functional domains. Branch supports indicate statistical
support from approximate likelihood ratio test (aLRT).

Supplementary Figure 2 | Life stage and sex-specific expression profiles of EC-
effectors. (A) Ancylostoma ceylanicum, (B) Teladorsagia circumcincta,
(C) Dictyocaulus viviparus, (D) Haemonchus contortus, (E) Strongyloides ratti,
(F) Strongyloides stercoralis, (G) Trichuris muris and (H) Onchocerca volvulus.
Expression heatmaps generated from log2TPM values of all EC-effector transcripts.
Average Clustering Method & Pearson’s Distance Measurement Method employed.
Life stage and sex-specific data are arranged in columns, rows indicate individual
EC-effector transcripts as denoted by effector abbreviation/gene ID. Coloured
circles represent EC-receptors (orange), EC biosynthesis enzymes (green) and EC
degradation enzymes (purple). [Life stages include; L1, L2, activated L3 (L3A), not
activated L3 (L3NA), untreated L3 (L3UT), adult female (AF), adult male (AM)
hypobiotic larvae (Lhyp), mixed L1 & L2 (L1+L2), pre-adult L5 female (L5AF), pre-
adult L5 male (L5AM), pre-adult L5 mixed gender (L5 Mixed), Adult L5 (L5A),
infective larvae (iL3), free-living female (FL Female), tissue migrating L3 (L3+),
parasitic female (P Female), post-free living L1 (PFLL1), post-parasitic L1 (PPL1),
post-parasitic L3 (PPL3)].
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