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Introduction
Cells rely on chemical modification of histones and DNA to 
change chromatin accessibility and regulate their transcrip-
tional program. The levels of these modifications in a cell 
involve the interplay between “writers” such as histone methyl-
transferases and acetyltransferases and “erasers” such as histone 
demethylases and deacetylases. The writer and eraser enzymes 
differ in substrate and target specificity, making them sensitive 
to different metabolic stimuli1,2 (Figure 1). For example, DNA 
and histone methyltransferases use the metabolite S-adenosyl 
methionine (SAM) as a methyl donor and are highly respon-
sive to substrate levels.3 Thus, alterations to metabolism of the 
cell can affect substrate levels in the nucleus resulting in altered 
histone modifications.2,4 However, the interconnectedness of 
the metabolic network makes it highly challenging to predict 
the impact of nutrient changes on histone modifications. For 
example, acetylation is sensitive to acetyl-CoA and methyla-
tion is sensitive to SAM1,2; these metabolites are involved in 
hundreds of metabolic reactions that can compete with histone 
modification enzymes for these substrates. A systems biology 
approach is necessary to comprehend the impact of cellular 
metabolic state on the epigenome.

Genome scale network modeling of metabolic-
epigenetic interactions

To comprehensively account for the complexities of cellular 
metabolism and its impact on acetylation, we recently developed 
a network model of metabolism and histone acetylation.3 Our 
model provides a mechanistic picture of how nutrient shifts or 
mutations in metabolic enzymes affect this epigenetic mark. Our 
analysis makes use of genome-scale metabolic network models, which 

represent the mechanistic relationships between genes, proteins, 
and metabolites within a biological system.5 The genome-scale 
network models are manually curated from the literature and 
represent a map of all known metabolic reactions that happen in 
an organism. For example, the human network model by Duarte 
et  al6 contains 3744 reactions, 1496 genes, 2004 proteins, and 
2766 metabolites. Genome scale metabolic modeling has been 
used successfully to predict the metabolic state of various mam-
malian cell types, including cancer cells and stem cells, using 
transcriptomics or metabolomics data.7,8 However, these models 
cannot predict the impact of metabolism on other cellular pro-
cesses, especially epigenetic modifications.

The metabolic network interfaces with the epigenetic machin-
ery through key intermediate metabolites like acetyl-CoA. To 
integrate epigenetic modifications with the metabolic model, we 
added biochemical reactions corresponding to acetylation, as a 
proof of principle. Similar to using Google Maps, with genome-
scale modeling, we can identify an optimal path through the 
metabolic network from nutrients to epigenetic substrates based 
on reaction stoichiometry. Changes in enzyme activity due to 
gene knockouts, differential expression, or drug inhibition will 
result in the use of alternate metabolic routes through the net-
work leading to differential flux through epigenetic reactions. 
Although this network modeling framework was used to study 
acetylation in our study, this can be easily extended to other his-
tone marks. This network model provided new fundamental 
insights on metabolic-epigenetic interactions, as detailed below.

Excess carbon flux supports acetylation

Given a unit of nutrient carbon, where would the cell channel 
it? To biomass components or to acetylation? By analyzing the 
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impact of various nutrient sources on the levels of histone acetyla-
tion in mammalian cells, our model revealed that histone acetyla-
tion levels reflect the level of excess carbon flux that is available 
beyond the requirement for biomass synthesis. The metabolic 
model recapitulated known effect of addition or depletion of 
nutrients, including glucose, amino acids and fatty acids, on acet-
ylation. Surprisingly, certain starvation conditions resulted in 
increased acetylation. For example, lack of amino acids in the cul-
ture media did not reduce acetylation. However, lack of glucose 
and pyruvate greatly impaired acetylation levels. These results 
suggest that excess carbon availability relative to nitrogen is pre-
dictive of acetylation levels. Cells primarily use nutrient carbon 
and nitrogen sources for biomass synthesis first, and excess car-
bon, if available, is used for supporting acetylation.

Metabolic cost of acetylation

There are a billion potential acetylation sites in the mammalian 
nucleus.9 Although this is a very big number, an equal number 
of acetyl-coA units are synthesized and consumed by the cell in 
an hour in the cytoplasm.10 As only a small number of histones 
are acetylated,11 redirecting a small fraction of cytosolic carbon 
flux used for acetyl-coA metabolism to the nucleus is sufficient 
to support acetylation. Thus, the burden of histone acetylation 

on cellular metabolism is relatively small. In contrast to the flux 
of acetyl-coA, the steady-state concentration of acetyl-coA is 
relatively low.10 Hence, increased acetylation will likely be 
accompanied by rewiring of metabolic fluxes.

Metabolic state influences drug sensitivity

As acetylation depends on the metabolic state of the cell, it 
is foreseeable that the efficacy of drugs that disrupt histone 
acetylation will also be influenced by cellular metabolic 
state. Histone deacetylase inhibitors are widely used for 
treating many cancers, neurodegenerative diseases, and 
immune disorders.12 Their primary mode of action is by 
blocking histone deacetylation, resulting in hyper acetyla-
tion, and subsequently cell death.

We found that the growth inhibition of HeLa cells by 
Vorinostat—a deacetylase inhibitor—changed significantly 
when cells were grown in different nutrient conditions. 
Strikingly, the extent of growth inhibition was directly pro-
portional to the extent of acetylation flux predicted by our 
metabolic model in each growth condition. This effect was 
also observed in a panel of diverse cell lines from different 
tissue lineages with inherently distinct metabolic activities. 
Cell lines predicted by the model to have high acetylation 

Figure 1.  Metabolic dependencies of histone acetylation and methylation. Enzymes that catalyze post-translational modifications of histone tails 

(writers—histone methyltransferases [KMT] and acetyltransferases (HAT or KAT), erasers—histone demethylases (KDM) and deacetylases (HDAC, 

SIRT)) use key metabolic intermediates (SAM, Acetyl-CoA) as substrates). The availability and flux of these metabolic substrates in the nucleus impact 

levels of histone modifications, which subsequently influences gene expression, thus linking gene regulation with the metabolic status of the cell.
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were more sensitive to various deacetylase inhibitors. This 
observation can be potentially used to selectively target spe-
cific cancer cells based on their metabolism.

Impact of metabolic fluxes on histone methylation

Similar to acetylases, the kinetic properties of histone methyl-
transferases make them sensitive to levels of their substrate, 
SAM.4 Hence, histone methylation is also sensitive to cellular 
metabolism. A similar genome-scale modeling framework was 
used to predict the impact of metabolic state on methylation 
in a related study by Chandrasekaran et al.7 As histone meth-
ylation plays a central role in early embryonic development, 
genome scale metabolic modeling was applied to characterize 
the metabolism of naïve and primed murine pluripotent stem 
cells. The naïve and primed stem cells represent two funda-
mental steps during embryonic development with distinct 
pluripotency potential (i.e. ability to differentiate into various 
cell types). By combining metabolomics data from each stem 
cell type with metabolic network models, this study revealed 
the activation of the one-carbon metabolic pathway in embry-
onic stem cells transitioning from naïve to primed pluripotent 
state. The metabolic model predicted that the activation of the 
one-carbon metabolic pathway would result in increased flux 
through the synthesis of SAM. The model revealed that this 
flux supports extensive histone methylation. The model pre-
diction was validated using tracing of 13C labeled glucose and 
serine. Furthermore, perturbing SAM flux using inhibitors of 
SAM synthesis lead to altered histone methylation levels in 
naïve and primed cells consistent with the model predictions. 
Thus, genome scale modeling enables the simulation of the 
influence of various metabolic alterations on SAM synthesis 
and ultimately histone methylation.

Future directions

A key limitation of the model of metabolic-epigenetic interac-
tions in Shen et al3 and Chandrasekaran et al7 is that it is pre-
dictive of only bulk histone marks and does not account for 
modifications in specific histone sites such as K9 or K27. 
Different histone sites can have differing sensitivities to meta-
bolic substrates. Furthermore, although this model focuses on 
“writers,” we lack a similar model for deacetylation or demeth-
ylation enzymes that are sensitive to the redox molecules 
NADH and FADH (Figure 1). Future models need to account 
for the dynamic interplay between writers and erasers in each 
metabolic condition. Finally, another limitation is that the cur-
rent model does not account for other chromatin marks such as 
succinylation, malonylation, crotonylation, and sugar modifica-
tions.13 These modifications also use metabolic substrates and 
are potentially sensitive to metabolic state. Expanding this 
modeling framework to other modifications and incorporating 
the competition between different modifications can provide a 

comprehensive picture of how histone modifications sense and 
respond to metabolic alterations. Furthermore, understanding 
the transcriptomic and chromatin state of the cell along with 
its metabolism can help unravel the feedback regulation of 
metabolism by histone modifications. Two recent studies have 
simulated the impact of transcriptome changes due to altered 
chromatin modifications on metabolic pathways using genome-
scale network modeling.14,15 Hence, in combination with the 
model used in Shen et  al, these tools can help simulate the 
reciprocal regulation of metabolic and epigenetic machinery.
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