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ABSTRACT: We develop a generic coarse-grained model of
soluble conjugated polymers, capable of describing their self-
assembly into a lamellar mesophase. Polymer chains are
described by a hindered-rotation model, where interaction
centers represent entire repeat units, including side chains. We
introduce soft anisotropic nonbonded interactions to mimic
the potential of mean force between atomistic repeat units.
The functional form of this potential reflects the symmetry of
the molecular order in a lamellar mesophase. The model can
generate both nematic and lamellar (sanidic smectic)
molecular arrangements. We parametrize this model for a
soluble conjugated polymer poly(3-hexylthiophene) (P3HT) and demonstrate that the simulated lamellar mesophase matches
morphologies of low molecular weight P3HT, experimentally observed at elevated temperatures. A qualitative charge-transport
model allows us to link local chain conformations and mesoscale order to charge transport. In particular, it shows how
coarsening of lamellar domains and chain extension increase the charge carrier mobility. By modeling large systems and long
chains, we can capture transport between lamellar layers, which is due to rare, but thermodynamically allowed, backbone bridges
between neighboring layers.

1. INTRODUCTION

Soluble semiconducting polymers are promising materials for
manufacturing flexible, lightweight electronic devices using
scalable and low-cost technologies, such as printing.1−4

Polymer solubility and processability are achieved by
mitigating the attraction of conjugated backbones with flexible
alkyl side chains. The underlying molecular architecture,
together with processing conditions, define chain conforma-
tions and packing in a film and, therefore, its electronic
properties. In particular, charge mobility is intimately related to
film morphology. Understanding the link between morphology
and mobility is therefore essential for improving electronic
properties of polymeric films.
Because of slow polymer dynamics, conjugated polymers

seldom reach global thermodynamic equilibrium even after
annealing.5 The resulting thin films are normally heteroge-
neous6 with kinetically trapped regions of varying molecular
order.5−8 In amorphous regions, for example, side chains and
backbones are completely disordered. In crystalline lamellae,
formed by layers of cofacially stacked backbones alternating
with layers of side chains, both side chains and backbones are
crystalline.9,10 Finally, in partially ordered domains, backbones
are stacked cofacially but the lamellae do not form three-
dimensional crystals.8

Heterogeneity of a polymeric film complicates the analysis of
its morphology, since a single spectroscopic technique
normally targets only a limited spatial resolution. Optical
spectroscopies, for example, use wavelengths that are

significantly larger than the molecular scale.11 X-ray scatter-
ing12,13 resolves the molecular-scale structure but provides only
area-averaged information.14 Scanning-probe techniques pro-
vide real-space imaging of morphologies on a molecular
scale14,15 but have limited resolution and imaging depth.7 In
most cases morphological analysis is complemented by a
phenomenological model.16

In principle, models of morphology can be devised using
computer simulations. The complications here are the time
and length scales involved: morphological features as large as
hundreds of nanometers12 prohibit the use of all-atom
simulations. Coarse-grained (CG) models reduce the compu-
tational cost, but their development and parametrization are far
from trivial since they should quantitatively capture various
local enthalpic and entropic contributions from side chains as
well as “π”-stacking of backbones.
In coarse-grained models of semiconducting polymers,

where CG particles correspond to small groups of atoms,
molecular features that drive structure formation can be
resolved explicitly.17−23 Bonded and nonbonded CG inter-
actions are chosen to reproduce atomistic distribution
functions and hand-picked thermodynamic properties, e.g.,
solvation free energies. In Martini-based CG models,24 local
chain planarity is additionally incorporated by resolving
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aromatic rings.21 Models with explicit side chains are capable
of driving the system into a lamellar arrangement19 and are
useful to study polymer aggregation in solutions20 as well as
effects of polymer architecture19 and processing21 on
morphology of heterojunction blends.
Despite the reduction of the degrees of freedom, relaxation

times in these CG models become prohibitively large once the
polymers are long enough to be entangled.25 Topological
constraints appear because these potentials conserve the
(hard) excluded volume, similarly to all-atom descriptions.
Another fundamental issue is that any CG description averages
over many underlying microscopic states. Accordingly, CG
potentials represent an atomistic potential of mean force26−28

(PMF). This PMF is a complex many-body function of
translational and orientational degrees of freedom, particularly
in structured phases, and is usually unknown.28 Therefore, CG
potentials are only approximations to the actual PMF: typical
examples are isotropic and pairwise CG potentials. In fact, the
choice of a suitable potential function is not trivial, especially if
the CG potential cannot be directly related to the structure of
the mesophase.
One way to increase efficiency even further is to use coarser

models where a single CG particle represents an entire repeat
unit, including all its cyclic moieties and side chains.29 Because
many atomistic states contribute to a single CG configuration,
the long-range part of the underlying PMF is soft, i.e.,
comparable to the thermal energy.26,27,30 Therefore, it
becomes possible to relax local excluded volume constraints
and focus on the long-range packing of the repeat units by
introducing soft nonbonded potentials. Their softness
facilitates efficient sampling and boosts computational
efficiency.
In a lamellar phase the PMF between entire atomistic repeat

units is expected to be anisotropic. Accordingly, nonbonded
potentials in coarser models must be anisotropic as well. One
can, for example, approximate these potentials by analytic
functions, such as the Gay−Berne potential, and parametrize
them using atomistic simulations. This approach, however,
retains the hard excluded volume.31,32 In soft models, a more
general route is to construct the anisotropic potentials using
the symmetry of the molecular order in different mesophases.33

Using this approach, we devise a generic soft model that can
simulate amorphous, nematic, and partially ordered lamellar
mesophases, even though cyclic moieties and side chains are
not explicitly resolved.
We then use this model to study self-assembly and charge

transport in poly(3-hexylthiophene) (P3HT). This material
has been a fruit-fly system of polymeric organic semi-
conductors for decades,34−36 but many fundamental questions
remain unanswered. Because of that, P3HT is a perfect case for
new theoretical approaches. For example, the link between
charge mobility and morphology of P3HT or, in general,
semiflexible conjugated polymers is still under debate.37−39 It is
generally assumed that the value of the mobility depends on
the amount of amorphous and semicrystalline material in a
film. In P3HT, the mobility in fully amorphous regions, ∼10−5
cm2/(V s), is due to interchain hopping. In partially crystalline
P3HT, the mobility is 2 orders of magnitude higher but never
reaches the magnitude typical for a crystalline polymer, ∼10−2
cm2/(V s). This reduction is due to random orientations of
crystallites and boundaries between them.40 Chain rigidity
plays a crucial role here: stiffer chains have less conformational
defects and lead to a higher overall mobility.38,39

We first perform Monte Carlo simulations of lamellar
mesophases of experimentally relevant41−43 chain lengths.
These mesophases are compared with experimentally reported
structures of partially ordered lamellae (phase III),42 which
belong to the general class of sanidic liquid-crystalline
mesophases.44,45 They can be used to drive soluble polymeric
semiconductors into solid-state morphologies with improved
electronic properties.5,45,46 Subsequently, we simulate large-
scale morphologies with different degrees of lamellar order and
heterogeneity and use a qualitative charge-transport
model37−39 to link charge mobility to mesoscopic molecular
organization.

2. COARSE-GRAINED MODEL
2.1. Degrees of Freedom. We base our CG scheme on a

model developed for uniaxial and biaxial nematic liquid-
crystalline (LC) mesophases.33 Each P3HT monomer, that is,
a thiophene ring and attached alkyl side chain, is represented
by a single interaction site, located at the intersection of two
lines extending from the bonds that connect the thiophene
rings (see Figure 1a). A P3HT chain contains N such CG

monomers, and the entire system is composed of n polymer
molecules. The position vector of a CG site is denoted by ri(s),
where i = 1, ..., n is the chain index and s = 1, ..., N is the
monomer index.
Anisotropic nonbonded interaction potentials between CG

sites require orientational CG degrees of freedom.47 We
describe the orientation of thiophene rings by three
orthonormal unit vectors {ni

(k)(s)} (k = 1, 2, 3), as shown in

Figure 1. (a) Coarse-graining of atomistic P3HT (side chains are
omitted for clarity). Each thiophene monomer is mapped on a single
CG interaction site. The site has boardlike symmetry and is assigned
three unit vectors {ni

(k)(s)} (k = 1, 2, 3, while i and s are chain and
monomer indices). Angular and torsional degrees of freedom, θ and
ϕ, of the coarse-grained model are also shown (cf. eq 2). The length
of the CG bond is fixed to b. (b) Sketch of partial lamellar order
considered in this work. Polymer backbones form stacks alternating
with “empty” layers. They represent molten (noncrystalline) layers of
hexyl side chains that are implicitly described in our model. rij(s,t) is
the interparticle vector connecting two CG sites. To clarify better the
meaning of occupied and “empty” alternating layers, an atomistic
P3HT molecule underlying a CG chain is shown.
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Figure 1a. In fact, the orientation of these vectors is fully
determined by the local chain conformation. Indeed, if ui(s) =
ri(s+1) − ri(s) is a vector along the bond connecting the sth
and (s + 1)th CG sites, then ni

(1)(s)||ui(s) + ui(s − 1), ni
(2)(s)||

ui(s) − ui(s − 1), and ni
(3)(s) = ni

(1)(s) × ni
(2)(s) (cf. Figure 1a).

The unit vectors at the two end monomers of a chain are
defined by adding to each of them a fictitious site (indexed by s
= 0 or N + 1) which does not introduce nonbonded
interactions. The fictitious site is linked to the respective
chain end via a “ghost” bond. These “ghost” bonds are
subjected to the same bonded interactions as the normal CG
bonds (see section 2.2). On the basis of the local molecular
frame, we associate48,49 with each CG monomer a symmetric
tensor with biaxial symmetry:

= ⊗ − ⊗s s s s sb n n n n( ) ( ) ( ) ( ) ( )i i i i i
(2) (2) (3) (3)

(1)

2.2. Bonded Interactions. The bonded interactions
consist of angular and torsional potentials:33

∑

θ θ

ϕ
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= −
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where θ denotes a bond angle and ϕ is a dihedral angle, as
illustrated in Figure 1a.
The length of the bonds linking the CG monomers into a

chain is fixed to b = 4 Å. ϕ = 180° of the dihedral angle
corresponds to the trans conformation. The constants θ0 =
147.46°, kθ = 462.653 kJ/mol, c0 = 2.75248, c1 = −1.37645, c2
= −5.29397, c3 = 3.19667, c4 = 3.12177, and c5 = −2.41059, all
in kJ/mol, are obtained by Boltzmann inversion of angular and
dihedral probability distributions extracted from atomistic
simulations of a single P3HT 20-mer in conditions mimicking
implicitly Θ-solvent. To mimic these conditions, nonbonded
interactions in atomistic simulations are active only if the
participating atom pairs belong to monomers in the 1−2, 1−3,
or 1−4 position.33

2.3. Nonbonded Interactions. We construct the non-
bonded potential using the symmetry of the lamellar
mesophase, which is sketched in Figure 1b. In lamellae of
P3HT, these stacks alternate with layers of side chains. In our
model the stacks of the backbones must be separated by empty
space with “virtual” side chains. In other words, our lamellar
mesophases will be characterized by strong density modulation
along the direction of lamellar stacking (cf. Figure 1b).
Maximum density will be observed in regions of stacked
backbones, while minimum (almost zero) density will be found
in between. Because side chains are not explicitly resolved, our
model is more suitable for simulations of lamellae with
noncrystalline side chains.42,46,50

The phenomenological nonbonded potential, Vnb, promot-
ing the lamellar order has several contributions:

κ λ ζ= + +V V V Vnb iso biaxial stack (3)

Vnb acts between all pairs of CG sites, unless they belong to the
same chain and are less than four bonds apart. This exclusion is
consistent with the bonded CG potential, which incorporates
the effect of atomistic interactions for these intramolecular
pairs. Vnb is a sum of three interaction terms; their strength is
set by non-negative parameters κ, λ, and ζ. Each term has a

specific function and is motivated by simple arguments, as
follows.
The isotropic repulsive potential

=V U r s t( ( , ))ijiso (4)

provides finite compressibility and hence prevents the collapse
of the liquid. This interaction can be used to model an
isotropic polymer melt and depends only on the interparticle
distance r ≡ rij(s,t) = |rij(s,t)| via the soft core function

i
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The Heaviside function Θ(r) sets the interaction range to 2σ.
The physical meaning of Viso has been discussed previously.33

It is proportional to the overlap integral of two spherical
“clouds” with radius σ and uniform density w(r) = 3/4πσ3,
centered on each CG site.27,30 In an isotropic melt, these
clouds approximate the spatial distribution of the atomistic
degrees of freedom that were coarse-grained out. The
repulsion between CG sites should begin at length scales
where the underlying side chains come into contact. Therefore,
we set σ = 7.6 Å, which is the length of a hexyl chain in the all-
trans conformation. ρ0 stands for33 some characteristic,
reference, density and is seen here as a prefactor rescaling
the interaction strength parameters. We use ρ0 = 4 nm−3,
which is about the number density of monomers in crystalline
P3HT.9,51 Drastic coarse-graining implies26,27,30 substantial
overlap between CG P3HT monomers.33 For the repulsive
interaction to be soft, κU(0) should be comparable to the
thermal energy, kBT, at a representative temperature T.
Throughout this study we set κ/kBT = 15, leading to κU(0)/
kBT ≃ 2. The temperature is set to T = 500 K, which is close to
the melting point of P3HT.
The anisotropic potential33,48,49,52−54

= −V U r s t s tb b
1
2

( ( , )) ( ): ( )ij i jbiaxial (6)

is defined via the Frobenius product bi(s):bj(t) of the biaxial
tensors of two interacting CG sites. It is designed to promote
biaxial nematic order of polymer chains. This mesophase lacks
density modulation but already reproduces one feature of
lamellae−parallel arrangement of planes of chain backbones
(see Figure 1b). That is, in the biaxial nematic the local axes of
the CG particles, ni

(k)(s) and nj
(k)(t) (k = 1, 2, 3), tend to be

mutually parallel or antiparallel (we consider only nonpolar
biaxial phases). Although Vbiaxial is only a special case

48,54 of a
general quadrupolar pair potential between objects with D2h
symmetry, it is sufficient to obtain biaxial nematic mesophases
in simulations of polymers.33 For simplicity, the biaxial
potential has the same distance dependence as the repulsive
interactions, U(rij(s,t)).
The potentials Viso and Vbiaxial have been already

incorporated into the coarse-grained model of ref 33. These
interactions alone are not sufficient for obtaining lamellar
order. Here, to enable the formation of lamellae, we add to Vnb
a new interactionthe “stacking ” potential:

= − [ · ̂ + · ̂ ]V U r s t P s s t P t s tn r n r( ( , )) ( ( ) ( , )) ( ( ) ( , ))ij i ij j ijstack 2
(3)

2
(3)

(7)

Here rîj(s,t) = rij(s,t)/rij(s,t) is the unit interparticle vector and
P2 is the second-order Legendre polynomial. We introduce this
interaction considering that a sanidic lamellar mesophase, apart
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from the isotropic repulsion and biaxial order, requires two
additional features. First, as shown in Figure 1b, polymer
backbones must stack on top of each other. In a stack, CG
particles tend to arrange face-to-face, so that ni

(3)(s)·rîj(s,t) =
±1 and nj

(3)(t)·rîj(s,t) = ±1. Second, density modulation must
accompany stacking: in a side-by-side arrangement, where
ni
(3)(s)·rîj(s,t) = 0 and nj

(3)(t)·rîj(s,t) = 0, the CG particles must
repel each other strongly. The product of the isotropic core
U(rij(s,t)) with an anisotropic term of P2 symmetry promotes
these two features.
As an illustration, Figures 2a−c show Vnb between two

particles having perfect biaxial alignment with respect to each

other. Without loss of generality, the axes of the particles {n(1),
n(2), n(3)} are chosen parallel to the {X, Y, Z} axes of the
laboratory frame, as sketched in Figure 2d. Figures 2a and 2b
present contour plots of Vnb as a function of the magnitude of
the components r⊥, rZ of the interparticle vector, r; r⊥ is the
projection of the vector on the XY-plane, and rZ is the
component parallel to the Z-axis. In Figure 2a only repulsive
and biaxial interactions are active, κ/kBT = 15, λ/kBT = 7, and
ζ = 0, while in Figure 2b these interactions are augmented with
the stacking potential, ζ/kBT = 3.5. For the given configuration
of particles, Vnb has cylindrical symmetry around Z and is fully
characterized by the two-dimensional contours of Figures 2a
and 2b. For the chosen values of interaction parameters, Vnb ≥
0 everywhere in both plots. However, the symmetry of Vnb is
different in the two cases. With only repulsive and biaxial terms
active, Vnb is insensitive to the orientation of the interparticle
vector, r, and the isosurfaces are spheres. Activating Vstack
breaks the spherical symmetry. For a given interparticle

distance r, particles repel the least when they arrange face-to-
face, r⊥ = 0, and the most when they pack side-by-side, rZ = 0,
as manifested by the “peanut-like” shape of the potential
isosurfaces. To illustrate better the strength of interactions for
these two specific particle arrangements, Figure 2c presents55 a
one-dimensional plot of Vnb as a function of r.
We have constructed Vnb using symmetry arguments. To

connect qualitatively to the underlying molecular picture, it is
helpful to consider the combination

κ ζ κ

ξ

+ =

× { − [ · ̂ + · ̂ ]}

V V U r s t

P s s t P t s tn r n r

( ( , ))

1 ( ( ) ( , )) ( ( ) ( , ))

ij

i ij j ij

iso stack

2
(3)

2
(3)

(8)

where ξ = ζ/κ. For ξ < 0.5 the right-hand side of eq 8 is
positive and ζVstack perturbs the isotropic potential κViso,
generating anisotropic repulsion. The combined interaction in
eq 8 mimics the average effect of steric interactions between
side chains in a lamellar mesophase; the conformations of the
side chains are very anisotropic because they extend outside
the volume occupied by the stacked backbones. An approach
for qualitatively connecting ξ to shape anisotropy of P3HT
monomers is discussed in the Supporting Information. In
principle, the effect of side chains can be captured more
accurately, introducing a soft repulsion without the cylindrical
symmetry of Figure 2b. This asymmetry would take into
account that side chains are attached only to positions 3 and 4
of a thiophene ring. Using the spherically symmetric Viso only
is acceptable for approximating effective repulsive interactions
in isotropic and nematic (uniaxial or biaxial) mesophases
where the liquid is more or less homogeneous.
Potentials with anisotropic terms P2(r·̂û) (here û is a generic

molecular axis), analogous to those in Vstack, have been
employed in studies of low-molecular-weight liquid crys-
tals.56−59 These studies, however, considered only particles
with uniaxial symmetry and focused on objects with prolate
shape, which typically form nematic or smectic A mesophases.
Hence, the P2(r·̂û) terms were constructed to promote side-by-
side configurations of particles.

3. MONTE CARLO SAMPLING
We sample the configuration space with Monte Carlo (MC)
simulations. Depending on the objectives, they are performed
either in a canonical or an isostress ensemble. In both
ensembles, the temperature T and the density of the system ρ
= nN/V (V is the volume of the simulation cell) are fixed. We
use orthorhombic simulation cells with edge lengths Lα (where
α = X, Y, Z) and periodic boundary conditions (PBC) in all
directions.
In the canonical ensemble, Lα are fixed. The configuration

space of the system (translational and internal degrees of
freedom of the chains) is sampled using the standard60,61

“slithering snake”, reptation, MC move. The move has been
adjusted33 to the current CG model to account for “ghost”
bonds.
The simulations in the isostress ensemble optimize Lα,

making them commensurate with the natural geometry of the
lamella morphology at the prescribed density ρ. “Natural
geometry” refers to lengths characterizing the periodicity of a
morphology in the bulk, free of any bias from PBC. In a lamella
with natural geometry the stress acting on the simulation cell is
isotropic;62 i.e., the diagonal elements of the stress tensor
should be equal. We implement a variable-shape-constant-

Figure 2. (a, b) Contour plots of the nonbonded potential Vnb as a
function of the components rZ and r⊥ of the interparticle vector r (cf.
scheme (d)). The plots are obtained, assuming that the two particles
are oriented in a perfectly biaxial configuration, with their axes n(1),
n(2), n(3) parallel respectively to the X, Y, Z axes of the laboratory
frame. The interaction parameters are κ/kBT = 15, λ/kBT = 7 and (a)
ζ/kBT = 0, (b) ζ/kBT = 3.5. White lines highlight selected isosurfaces
of Vnb. (c) One-dimensional profiles of Vnb as a function of the
interparticle distance r, for two limiting particle configurations: side-
by-side (r = |r⊥| and rZ = 0, dashed line) and face-to-face (r = |rZ| and
r⊥ = 0, solid line).
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volume (VSCV) MC algorithm. The method has been
discussed extensively in the literature63−70 so we provide
only a summary, clarifying aspects specific to polymers. We
apply the technique to systems where the directions of lamellar
and “π”-stacking are parallel to the Y- and Z-axes, respectively.
Chain backbones are oriented, on the average, along the X-axis.
In a VSCV move, new edge lengths are proposed according to
LY
new = LY

old + ΔLY and LZ
new = LZ

old + ΔLZ. The random
increments ΔLY and ΔLZ are distributed uniformly in the
interval [−ΔLmax, ΔLmax]. The new LX follows from the
constraint of constant volume: LX

new = V/LY
new LZ

new.
Subsequently, the new coordinates of the CG monomers,
ri
new(s), are obtained by applying an affine transformation only
to the first monomer of every chain: ri

new(1) = T·ri
old(1), i = 1,

..., n. Here T is a diagonal matrix with elements Tαα = Lα
new/

Lα
old. The coordinates of the remaining s = 2, ..., N monomers of

each chain follow from ri
new(s) = ri

new(1) + ∑t=1
s−1ui

old(t). In this
scheme, ui

old(t) are the vectors of the N − 1 bonds of the ith
chain in the old configuration. The move is accepted with
probability: pacc = min (1, exp[−βΔH]) where βΔH = βΔUnb
+ ln(LY

newLZ
new/LY

oldLZ
old). Because the internal degrees of

freedom of the chains are not affected by the move, only the
difference of nonbonded energies, ΔUnb, in the new and the
old configuration enters ΔH. The logarithmic term stems from
a Jacobian associated with the constraint of constant volume. A
typical mix of MC moves contains only 0.1% VSCV moves; the
rest is given to reptation moves. This small fraction is
motivated by the computational cost of VSCV moves
whenever a change of Lα is attempted, the nonbonded energy
of the system must be calculated from scratch. Setting ΔLmax =
b leads to an acceptance rate of VSCV moves of ∼2%.
We consider three cases of monodisperse systems,

composed of molecules with N = 16, 24, and 32 monomers.
These degrees of polymerization are comparable to low-
molecular-weight polyalkylthiophenes in experiments.42,43 For
a first generic study, we consider only one temperature, i.e., T
= 500 K. The number of molecules and volume of modeled
systems are chosen such that ρ = ρ0 (for the definitions of ρ0
see section 2.3).

4. MODEL PARAMETRIZATION
We first investigate the phase behavior as a function of λ and ζ.
In general, correlating quantitatively λ and ζ with molecular
features is formidable because Vnb approximates a PMF which
is not a conventional potential but a free energy. The
ingredients of this free energy, such as the coefficients κ, λ,
and ζ, are determined by subtle, unknown, entropic and
enthalpic contributions from side chains and thiophene rings,
underlying single interaction centers in our CG model. The
difficulties in molecular-based interpretations of free-energy-
like parameters have been illustrated, for example, by studies71

estimating Maier−Saupe constants in polymer nematics.
Although we provide in the Supporting Information some
(very) qualitative arguments linking λ and ζ to molecular
properties, the main body of our study considers them as
phenomenological input parameters. In this section we
heuristically identify a region of λ and ζ values where lamellae
are formed. In the following, a representative combination of λ
and ζ from this region will be used to study molecular
organization and charge transport in the lamellar mesophase.
During the phenomenological development of Vnb, the

biaxial and stacking terms were conceived to promote lamellar
order synergistically. Therefore, we initially characterize the

phase behavior for ζ = 0 and identify the range of λ for which
the system exhibits biaxial order. Focusing on this range of λ,
we activate the stacking potential to locate the region where
lamellae are formed. We scan the (ζ, λ) plane, shown in Figure
3, only in the region where Vnb ≥ 0, for any choice of

arguments. For cases where Vnb < 0 our soft potential can lead
to an instability:72,73 the system may collapse, gathering the
molecules in a small region of space. The secure region Vnb ≥ 0
is defined through the condition λ + 2ζ − κ ≤ 0. The
constraint follows from eq 3, requiring that Vnb ≥ 0 even when
λVbiaxial + ζVstack is the most negative. This situation happens
when two interacting particles are found in a perfectly biaxial,
face-to-face registration, irrespective of their distance. In Figure
3, the boundary of the stability region is marked by the red
dashed line.
To probe phase behavior, we consider chains with N = 16

monomers. These molecules are sufficiently long to exhibit a
biaxial nematic phase33 and are, at the same time, short enough
to allow fast exploration of the phase diagram. Simulations are
performed in the NVT ensemble, using a cubic box with n =
512 chains and edge length L = 16.72σ. Two types of initial
configurations are employed: (i) chains in all-trans con-
formation with perfect biaxial orientational but no positional
order; (ii) chains with conformations drawn from the bonded-
potential distribution and arranged randomly in the box,
without any orientational or positional order.
We quantify orientational order in a standard way74,75 by

computing three molecular ordering tensors Q(k) (k = 1, 2, 3):

∑= ⊗ −
=nN

s sQ n n
I1 3

2
( ) ( )

2
k

i s

n N

i
k

i
k( )

, 1

,
( ) ( )

(9)

where I is the unit matrix. Diagonalization of Q(k) provides a
set of nine eigenvalues and eigenvectors. The largest of these
eigenvalues is the major order parameter S; its eigenvector
defines the principal phase director. The biaxiality of the phase
is quantified via an additional order parameter B which is

Figure 3. Phase behavior as a function of the interaction parameters λ
and ζ, for N = 16 and κ/kBT = 15. The boundary of the biaxial
nematic−lamellar (NB → L) transition is shown with solid circles (the
black solid line is a guide to the eye). The width of the error bars
corresponds to the step Δζ/kBT = 0.25 used to scan the values of ζ.
The red dashed line marks the boundary of the stability region of the
nonbonded potential; the part of the (ζ, λ) plane above the stability
line is not considered (see text for details). The region where lamellar
structures are unambiguously formed is shaded with lines. The
snapshots provide 2D XY-views of a biaxial morphology (λ/kBT = 7,
ζ/kBT = 0) and a lamellar morphology (λ/kBT = 7, ζ/kBT = 3).
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calculated from the remaining eigenvalues, eigenvectors, and
respective ordering tensors. Details are available in several
publications33,74,75 and the Supporting Information.
Configurations with confirmed biaxial order are screened for

lamellar order by observing distinct density modulations and
quantifying long-range positional order. For this purpose, we
use an intermolecular pair-correlation function76,77 probing
positional correlations along the n(2) particles axes, i.e., along
the molecular axis pointing into the lamellar stacking direction
(cf. Figure 1b). This function is defined as
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Here δ(r) is the Dirac function. The argument r∥,n(2) is the
projection of the distance vector between a test particle and
one of the surrounding particles on the vector n(2) of the test
particle. As clarified in the inset of Figure 4a, surrounding

particles contribute to g(r∥,n(2)) only when found in a cylindrical
sampling region, with radius Rc = σ. Long-range order is
revealed by oscillations in g(r∥,n(2)), extending over many
molecular distances. Resolving positional correlations along a
molecular axis, instead of a laboratory axis, enables us to detect
positional order not only in a lamellar monodomain but also in
multidomain morphologies. Introducing the cutoff radius, Rc,

when considering particles in the direction perpendicular to
n(2), reduces the effects of deformations, e.g., buckling, or
fluctuations of lamellar layers, which can wash out density
modulations. In addition to lamellar order, we probe positional
order along the “π”-stacking direction using the correlation
function g(r∥,n(3)). It is defined through an expression identical
to eq 10, replacing n(2) by n(3). The radius of the sampling
region is again Rc = σ (cf. inset of Figure 4b).
Figure 3 reports the phase diagram. Without stacking

interactions, ζ = 0, the system develops biaxial order at about
λ/kBT = 5.25. Interestingly, the roughness of the orientational
energy landscape of CG monomers produced by λVbiaxial for λ/
kBT ≈ 5.25−7 is qualitatively comparable with estimates from
ab initio calculations78 for pairs of 3-methylthiophenes in a
vacuum. More details are provided in the Supporting
Information. We remind, however, that this comparison should
not be taken too literally: λVbiaxial is a free energy that
encapsulates entropic and enthalpic contributions when
coarse-graining an interacting liquid. The (ζ, λ) plane above
λ/kBT = 5.25 and below the stability line is scanned with
resolution Δλ/kBT = 0.5 and Δζ/kBT = 0.25. For low values of
ζ the system remains in a homogeneous biaxial state. By
further increasing ζ, a biaxial−lamellar transition (NB → L)
takes place. Solid circles mark the (ζ, λ) points at which a well-
developed lamellar morphology is formed. Clearly, this
boundary is only an approximation of the true thermodynamic
phase boundary. The accurate determination of the latter
within NVT simulations is not straightforward. Because we are
working with a compressible model, phase coexistence might
occur, complicating the analysis of the phase transition.79

Moreover, uncertainties in the location of the biaxial−lamellar
transition can result from a mismatch between the natural
lamellar periodicity and the length of the edges of the
simulation box. This effect is known, for example, for the
order−disorder transition in block copolymer systems.66 Our
work focuses on lamellar morphologies, rather than on the
phase transition itself. For our purposes the approximate phase
boundary drawn in Figure 3 is sufficient to identify a region
where well-developed lamellar structures are unambiguously
formed. This region is shaded in Figure 3 with lines.
The snapshot in Figure 3 (right) illustrates a lamellar

morphology obtained for λ/kBT = 7 and ζ/kBT = 3. It consists
of a single lamellar monodomain, where the chain long axes lie
on average in the XY-plane and the backbone planes are on
average perpendicular to the Z-axis. For the system size
examined here, such monodomains are obtained even in
simulations started from a disordered initial configuration. The
tilt of the lamellar stacking direction with respect to the X- and
Y-axes indicates a mismatch between the size of the simulation
box and the equilibrium lamellar periodicity. For comparison,
Figure 3 (left) shows a homogeneous biaxial morphology
obtained for the same value of λ but ζ = 0.
To illustrate how the “phase boundary” is determined in

practice, Figure 4a reports the correlation function g(r∥,n(2))
obtained for λ/kBT = 7 and different values of ζ. For ζ = 0,
g(r∥,n(2)) exhibits only a hump at r∥,n(2) ≈ 1.5σ. For ζ ≠ 0,
oscillations start to appear; their amplitude and range grow
with increasing ζ. The data suggest that long-range order sets
in for ζ/kBT ≈ 2.5−3. Inspecting visually the morphologies
obtained within this range of ζ, we conclude that well-
developed lamellar order is clearly observed at ζ/kBT = 2.75.
This value of ζ is chosen to mark the NB → L transition
boundary for λ/kBT = 7. A similar procedure is applied to

Figure 4. Intermolecular positional correlations resolved along the (a)
n(2) and (b) n(3) particle axis. Different values of ζ are considered for
fixed λ/kBT = 7. The plots are obtained from the simulations used to
construct the phase diagram in Figure 3. The cartoons in the insets
clarify the geometrical construction used to compute these functions
(cf. eq 10).
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identify the other boundary points. The spatial modulation of
g(r∥,n(2)) for these points is very close to that obtained at the
boundary point λ/kBT = 7, ζ/kBT = 2.75. Figure 4b shows the
correlation function g(r∥,n(3)) for the systems considered in
Figure 4a. For ζ = 0, the shape of g(r∥,n(3)) is analogous to that
of g(r∥,n(2)), in agreement with the spherical symmetry of the
nonbonded potential (cf. Figure 2a). When the stacking
potential is activated, the first-neighbor peak shifts to smaller
distances, consistently with the decreased repulsion along the
n(3) axis (cf. Figure 2b). Correlations become more
pronounced, although their rapid decay indicates that
positional order along the “π”-stacking direction remains
rather short range. In the Supporting Information, we attempt
to link qualitatively ζ, via the asymmetry parameter ξ = ζ/κ, to
shape asymmetry of P3HT monomers, assuming that their
conformations in the lamellar phase can be approximated by
disc-like objects.
We observe in Figure 3 that the NB → L transition boundary

shifts to lower values of ζ as λ increases. However, the
relationship is not linear: the boundary line becomes steeper as
ζ decreases, suggesting that a minimum value of ζ is necessary
to induce lamellar order. Another interesting result is that for
our soft interactions no lamellar morphologies are formed in
the presence of the stacking potential only, i.e., for λ = 0, even
when ζ is just below the stability line. These observations
indicate that the biaxial and stacking potentials work
cooperatively to promote lamellar order.
In this study, we investigate the properties of lamellar

mesophases described by our model on generic level.
Therefore, we choose a representative set of values λ/kBT =
7 and ζ/kBT = 3.5, where the lamellar order is well developed.
Indeed, Figure 3 demonstrates that for N = 16 this pair of
parameters is located well inside the lamellar phase. The
lamellar order becomes even stronger for the longer N = 24
and 32 chains (see section 5.1). The structural characterization
in section 5.1 will demonstrate that for this representative
parametrization the lamellar and “π”-stacking distances are
fairly close to experimental data. Taking into account the
generic character of the study, we do not perform any
parameter optimization to achieve more quantitative agree-
ment.

5. PROPERTIES OF LAMELLAE

5.1. Mesophase Structure and Chain Conformations.
Before investigating structural and conformational properties,
we optimize the geometry of lamellar monodomains with
VSCV simulations. The procedure is described in the
Supporting Information and is performed in such a way that
the optimized monodomains have their lamellar stacking
direction along the Y-axis, the “π”-stacking direction is along
the Z-axis, and the chain long axes are along the X-axis of the
laboratory frame. For all considered N, the monodomains
contain n = 500 chains and their LX is approximately twice as
large as the end-to-end distance of a chain in the all-trans
conformation. This condition avoids artifacts due to
interactions between chains and their periodic images. To
illustrate the monodomain orientation, Figure 5a presents an
XY and an YZ view of an optimized configuration for a lamellar
system formed by chains with N = 16 monomers.
First, the strength of orientational order in the optimized

monodomains is quantified via the major and the biaxial order
parameters, S and B. We find high values of S and B, ranging

from S ≈ 0.86 and B ≈ 0.82 for N = 16 to S ≈ 0.88 and B ≈
0.85 for N = 32.
Figures 5b and 5c quantify positional order by presenting,

respectively, the correlation functions g(r∥,n(2)) and g(r∥,n(3)), for
two chain lengths: N = 16 (black solid lines) and 32 (red
dashed lines). The long-range oscillatory behavior of g(r∥,n(2))
confirms the existence of long-range positional order along the
lamellar stacking direction of our monodomains. From the
distance of the peaks we estimate the optimum lamellar
spacing: dlam ≈ 1.67σ = 12.7 Å. Similarly to the nonoptimized
lamellae (cf. Figure 4b), the optimized monodomains have
only short-range positional order along the “π”-stacking
direction: the function g(r∥,n(3)) in Figure 5c exhibits peaks
only at short distances. From the distance of the first two peaks
we estimate the optimum π−π packing distance for our model:
dπ ≈ 0.68σ = 5.2 Å.
Experimental studies of P3HT (for example, see refs 42 and

80) typically report for lamellar spacing and “π”-stacking
distance ≈16 and ≈3.8 Å, respectively. Considering the simple
and phenomenological way our model is developed, dlam ≈
12.7 Å and dπ ≈ 5.2 Å are reasonably close to these
experimental observations. We expect that the geometrical
characteristics of the lamellae can be brought closer to values
reported in experiments by tuning the various parameters
entering Vnb (including the characteristic length scale, σ).
Interestingly, the positional order increases slightly as the

chains become longer (for fixed κ, λ, and ζ). In Figure 5b, the

Figure 5. (a) The snapshots illustrate an optimized lamellar
morphology formed by chains with N = 16 monomers. Left and
right panels correspond respectively to XY and YZ views of the same
system. The plots in (b) and (c) present intermolecular positional
correlations resolved along the n(2) and n(3) particle axis. In contrast
to Figure 4, the plots are obtained from lamellar monodomains with
optimized geometry equilibrated at λ/kBT = 7 and ζ/kBT = 3.5 for
chains with N = 16 (black solid line) and N = 32 (red dashed line)
monomers.
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amplitudes of oscillations in g(r∥,n(2)) are a bit larger for N = 32
compared to the N = 16 monodomain. The trends in Figure 5c
are consistent: the range and the amplitudes of oscillations in
g(r∥,n(3)) are somewhat larger for N = 32 than for the N = 16
system. A plausible explanation for the increase of positional
order with N is cooperativity effects, i.e., correlations in the
order of monomers originating from chain connectivity and
stiffness. These correlations play a role, for example, in
uniaxial71,81−83 and biaxial33 nematic liquid crystalline
polymers, where they cause a shift of the isotropic−nematic
transition with chain length.
The snapshot in Figure 6a illustrates the organization of

polymers in one representative layer of a lamellar monodomain

composed of N = 16 chains. The chains are more or less
planar. They are, on average, biaxially aligned, though some
variations in orientation along the contour of the chains are
clearly visible. There is no long-range order along the “π”-
stacking direction, in agreement with the behavior of g(r∥,n(3)).
Moreover, it is evident that there is no mutual registration of
chains along their backbones, i.e., the X direction. Overall, the
structure of a single lamella can be described as a quasi-2D
biaxial nematic. The chains are extended, almost without
hairpins (U-turns along the polymer contour). In addition to
visual inspection, we compute cos(ni

(1)(s)·X), for each chain i
and each site s on this chain. A hairpin is found when this
quantity changes sign.84 According to this analysis, only 0.1%
of chains contain at least one backfold. The percentage of
backfolding in monodomains with N = 24 and 32 chains is
similar. Still, backfolding might become more significant for
chains with higher molecular weights. We do not find any long-
range correlations between the positions of chains belonging to
two neighboring stacks (i.e., stacks that are beside each other
along Y).
On the basis of all morphological features, we conclude that

our monodomains belong to the class of sanidic, liquid-
crystalline, smectic mesophases.44,45 These mesophases,
denoted as Σr, Σo, and Σd, have been initially described44 for
nonconjugated polymers (polyesters and polyamides). In all
these mesophases, stacks of backbones alternate with layers of
disordered side chains. Therefore, neighboring stacks of
backbones are stochastically displaced with respect to each
other and are uncorrelated. However, the mesophases differ in
structure of individual stacks. In Σr, each stack is a two-
dimensional crystal: there is long-range cofacial registration
along the backbone axis and long-range order along the π-
direction. In Σo, the long-range cofacial registration within each

stack is lost, whereas the long-range order along the π-direction
is maintained. In Σd there is neither long-range cofacial
registration nor long-range order along the π-direction. Our
monodomains correspond to the least ordered Σd mesophase.
Experimentally, morphologies reproducing the phenomenol-
ogy of the Σd mesophase have been observed42 near 170 °C for
P3HT molecules with lengths comparable to those in our
simulations. In those experimental studies these mesophases
were termed “phase III”.

5.2. Interlamellar Bridging. Figure 6b presents a close
view of a monodomain with N = 16 chains and illustrates an
interesting effect: chains, bridging neighboring stacks through
the lamellar stacking direction. In terms of atomistically
resolved P3HT lamellae, this effect corresponds to aromatic
backbones bridging neighboring stacks by crossing the
intermediate layer of hexyl side chains. Such bridges can
provide conducting pathways through the insulating aliphatic
region, so it is useful to quantify their number. For this
purpose, for each monodomain configuration, we compute the
density profile ρ(Y) along the lamellar stacking direction. A
monomer is considered to be inside a lamella if located in a
region where ρ(Y) is larger than the average density of the
system and part of a bridge otherwise. For monodomains with
N = 16 the average number of bridges per chain is found to be
nbridge/n = 0.014, and their average length is Nbridge = 3
monomers. Similar values are obtained for N = 24 and N = 32.
These results demonstrate that bridging segments, though
present, are quite rare and relatively short. To the best of our
knowledge, bridging through the side-chain layer, along the
lamellar stacking direction, has not been explicitly addressed in
experiments. Currently, it is difficult to say whether the
bridging events are specific to our model or whether they
indeed occur also in the actual material. It is worth mentioning
that bridges are observed in other coarse-grained models,85

though their formation has not been explicitly discussed.
A rough estimate suggests that bridges may be at least

thermodynamically possible in the actual P3HT. We quantify
the free-energy cost of a bridge, simply as Ubridge ≈ NbridgekBTχ.
Here Nbridge is the number of thiophene monomers in the
bridge, and χ is the Flory−Huggins interaction parameter
describing the incompatibility between the backbone and the
side chains. We evaluate χ through86 Hildebrand solubility
parameters, considering thiophene (T) and hexane (H) as the
mixing species: kBTχ = (δT − δH)

2/(ρTρH)
1/2. The Hildebrand

solubility parameters are given by δα, while ρα is the number
density of the α compound (α = T, H). Setting Nbridge = 3, and
using experimental data for the Hildebrand solubility
parameters and densities (δT = 20.22 J1/2 cm−3/2, δH =
14.988 J1/2 cm−3/2, ρT = 7.58 nm−3, ρH = 4.595 nm−3),87 the
free-energy cost of a bridge is estimated to be Ubridge ≈ 8 kJ/
mol. Even for rather low temperatures, e.g., T = 50 °C, this
free-energy cost is moderate: Ubridge is only about 3 kBT.

5.3. Scattering Patterns. We calculate scattering patterns
that can be qualitatively compared with GIWAXS experiments.
Namely, we consider a scattering function with the general
form
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Two scattering geometries are addressed where (i) q∥ is
oriented along the lamella stacking direction Y, while q⊥ lies in

Figure 6. (a) XZ view of one representative layer in a lamellar
monodomain. (b) Enlarged local XY view of three lamellar layers. The
red dashed oval highlights a bridge connecting two neighboring
lamellae. Both (a) and (b) are extracted from a snapshot of an
optimized monodomain, composed of N = 16 chains (λ/kBT = 7, ζ/
kBT = 3.5).
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the XZ-plane and (ii) q∥ is oriented along the “π”-stacking
direction Z, while q⊥ lies in the XY-plane. Accordingly, rj∥(t)
and rj⊥(t) are the projections of the position vector of the
monomer on the (i) lamella stacking direction Y and XZ-plane
and (ii) “π”-stacking direction Z and XY-plane. The Cartesian
components of the vector q = q∥ + q⊥ comply with the PBC,
i.e., qα = 2πm/Lα, where m is an integer. Angular brackets
denote the canonical average.
The first scattering geometry is analogous to GIWAXS

experiments on films with edge-on orientation and random in-
plane distribution of lamellar domains. The snapshot on the
left of Figure 7a illustrates this situation. The scattering

function S(q⊥,qY) is presented on the right of Figure 7a. A
series of bright and sharp diffraction spots are visible along the
qY-axis, in analogy to observations made in experiments for
morphologies with well-defined lamellar stacking.8 The
position of the spots corresponds to a periodicity dlam = 12.4
Å, which is consistent with the values extracted from the pair
correlation function and the box size. Two additional scattering
features are distinguished. The broad feature around q⊥ ≈ 1.7
Å−1 (corresponding to a distance of ≈3.7 Å) results from
intramolecular scattering by monomers along the chain. The
halo at q⊥ ≈ 1.0−1.3 Å−1 corresponds to a d-spacing of 4.8−
6.3 Å, which is consistent with the “π”-stacking distance dπ =
5.2 Å estimated from the correlation functions.
The second scattering geometry mimics GIWAXS experi-

ments on films with face-on orientation and random in-plane
distribution of lamellar domains. An illustration is provided by
the snapshot on the left of Figure 7b. The scattering function
S(q⊥,qZ) is presented on the right of Figure 7b and allows us to
resolve more clearly the scattering features from “π”-stacking.
We observe a distinct spot at qZ ≈ 1.2 Å−1. However, the signal

is diffuse, as expected for a system with very short-range
positional order in the “π”-stacking direction.

6. CHARGE TRANSPORT
To simulate charge transport in partially ordered morpholo-
gies, we consider three types of events: (i) fast intrachain
transitions which represent charge motion in conjugated
segments, (ii) slower intrachain transport between conjugated
segments, and (iii) even slower interchain hopping. In our
transport model the rates of these three events are determined
by the value of the respective values of the charge transfer
integral J in the Marcus rate88,89
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which we fix to 1, 10−1, and 10−2 eV. For T = 300 K and the
reorganization energy of Eλ = 0.1 eV,35 we then get 2 × 1016, 2
× 1014, and 2 × 1012 s−1 for intraconjugated, interconjugated,
and intermolecular rates. The smallest coupling is chosen to
reproduce the “π”-stacking mobility of P3HT, which is ∼0.1
cm2/(V s).
Note that ΔE = F·rij(s,t), where F is the external field, i.e.,

the energetic disorder and the dependence of electronic
couplings on the local structure are not taken into account.
Hence, we only capture a qualitative link between the
morphology and the topology of the charge percolating
network. Also note that the intraconjugated transport is not
in a hopping regime, since the excess charge is delocalized in a
conjugated segment. We model this delocalization by an
effective (large) intraconjugated rate and use the (not
applicable in this case) Marcus rate expression only to set
physically meaningful prefactors (units) in the rate expression.
Each CG bead represents a site of a charge percolating

network. Two beads in a chain belong to a conjugated segment
if the dihedral angle between them deviates from the planar cis
or trans conformations by less than ±45°. As we will see,
conjugation breaking occurs only during the equilibration,
even for the longest chains studied here, N = 32. P3HT chains
are mostly extended, and the number of slow intrachain
transitions due to conjugated breaks is small. The same
conclusion is reached when we compare to the chain length
used in experiments, where much longer chains are required to
observe the charge localization effects.90−92

The interchain hops occur between two beads belonging to
different chains separated by less than σ, which corresponds to
the first minimum of the distribution function g(r∥,n(3)) in
lamellar morphologies (see Figure 5c). An example of charge
transport network is visualized in Figure 8 for one lamella.
Charge dynamics on this network is modeled by solving the

corresponding master equation for state occupation proba-
bilities pi

∑
∂
∂

= −
p

t
p k pki

j
j ji i ij

(13)

using the kinetic Monte Carlo (KMC) algorithm.93,94 KMC
trajectories are used to calculate the components of the
mobility tensor95−97

μ =
⟨ ⟩

αβ
α βv F

F2 (14)

Figure 7. 2D scattering patterns computed for lamellar monodomains
with optimized geometry (N = 32, λ/kBT = 7, ζ/kBT = 3.5), assuming
(a) an edge-on and (b) a face-on orientation of the lamellae. The
cartoons on the left of panels a and b clarify the setup. To mimic
scattering from systems with domains oriented randomly in plane, the
scattered intensities are azimuthally averaged (see rotation arrow in
the cartoons).
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where F is the external field and v is the charge velocity. Note
that in the absence of energetic disorder mobility does not
depend on the applied field. The averaging ⟨...⟩ is performed
over 128 trajectories with different initial positions of a charge.
Charge transport simulations are performed using the VOTCA
package.98,99

6.1. Chain-Length Dependence. First, we consider three
monodomain lamellae with chains of N = 16, 24, and 32 repeat
units. The corresponding eigenvalues of the mobility tensors
are shown in Figure 9. As expected, they differ by about 1
order of magnitude, since the transport along the chains,
perpendicular to the chains, and between the lamellae is
governed by inter- and intramolecular electronic couplings.
The largest value, μ1 ≈ 1 cm2/(V s), corresponds to the
intrachain transport with the fastest rates. The transport in the

“π”-stacking direction is via the slowest, intermolecular rates
and has mobility of μ2 ≈ 0.1 cm2/(V s). The lowest mobility is
observed for the interlamellar transport, since here we have
only a few chains bridging the lamellae, as shown in Figure 6.
This is a remarkable result: in spite of the fact that the
transport between the neighboring lamellae is mitigated by
only a few bridges, the transport in the direction perpendicular
to the lamellae is only an order of magnitude smaller than the
transport along the stacks. This effect would not be possible to
observe in atomistic simulations, where a relatively small
number of lamellar stacks is preassembled. The stacks are well
separated by insulating alkyl chains already in the starting
configuration. This arrangement does not change on the time
scales of molecular dynamics simulations.
The mobility along the direction of chains increases with the

chain length, which is due to a larger number of intramolecular
charge transfers. Along the “π”-stacking direction and
perpendicular to the lamellae it does not change, at least for
the chain lengths studied here.

6.2. Coarsening of Domains. We now look how mobility
behaves during the coarsening of lamellar domains. Eigenval-
ues of the mobility tensor for selected snapshots along the MC
trajectory are shown in Figure 10a, together with the squared
end-to-end distance, Re

2. At t < 105 MC steps, chain extension
leads to an increase of Re

2. The mobility tensor, however, stays
isotropic, indicating that the lamellar domains are randomly
oriented and are smaller than the simulation box (see Figure
10b).
After 105 MC steps, the end-to-end distance begins to

converge, and the preferential (collective) chain alignment
starts to dominate, as can be seen from the rapid increase of
the orientational order parameter. This is reflected in the
increase of the largest eigenvalue of the mobility tensor. In this
regime, the well-formed lamellar domains coarsen, their
average size approaches the box size, and a monodomain
structure is formed in the simulation box at ∼106 MC steps. In
this state, the end-to-end distance and mobilities saturate,
matching the respective values of the monodomain as shown in
Figure 9. Interestingly, the interlamellar component is still
higher than that of a monodomain, implying that the
equilibration of bridging chains requires even longer simulation
times.

7. SUMMARY AND OUTLOOK

We have developed a generic coarse-grained model that can be
used to simulate amorphous, nematic, and partially ordered
lamellar mesophases of polymeric semiconductors. The
polymer architecture is described using a hindered-rotation
chain model, where a single interaction site represents an
entire atomistic repeat unit. The bonded potentials are defined
such that coarse-grained and atomistic angular and dihedral
distribution functions match in Θ-solvent conditions.33 Soft
anisotropic nonbonded interactions are introduced based on
symmetries of molecular order in a lamellar mesophase.
We parametrize this model for the conjugated polymer

P3HT and use Monte Carlo simulations to equilibrate
monodomains of partially ordered lamellae. Structural analysis
shows that these lamellae form smectic sanidic mesophases44

in which disordered side chains alternate with stacks of
backbones. In each stack, there is no long-range order along
the “π”-stacking direction and no regular cofacial registration
between backbones along their long axes. Therefore, these

Figure 8. Charge transport network for a lamella in a monodomain
morphology with N = 16. Bonds are color-coded according to the rate
constants used: fast rates within a conjugated fragment (black),
medium rates between conjugated fragments (red), and slow
intermolecular hops (cyan). The selected layer is identical to the
one in Figure 6a.

Figure 9. Components of the mobility tensor, calculated in
monodomains, as a function of chain length.
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lamellae correspond to the phase III, reported experimentally
in low-molecular-weight P3HT.42

We observe that the neighboring layers of stacked P3HT
backbones can be bridged by chains. An estimate based on
solubility parameters of thiophenes and hexane suggests that
these sparse bridges are thermodynamically allowed. They
connect adjacent P3HT layers of stacked backbones through
the insulating hexyl side chains.
Using a simple charge-transport model, where three distinct

charge transfer rates represent charge delocalization in
conjugated segments, intrachain charge transfer between
conjugated segments, and interchain charge hopping, we
simulated charge carrier mobilities in lamellar monodomains.
In agreement with the rates introduced in the model, systems
with longer chains have higher mobilities along backbones.
Mobilities in the orthogonal directions turn out to be
independent of chain length. In real polymer systems, mobility
along the chains saturates with the increase of the chain length.
In our systems we do not reach this regime, even for chains of
32 repeat units, since the majority of chains are completely
conjugated.
Subsequently, we modeled systems with evolving molecular

order, from amorphous to lamellar, and observed two distinct
regimes. First, chains extend and form small lamellar domains.
The mobility in this regime stays isotropic and does not
increase as the system order increases. The value of the
mobility is comparable to the “π”-stack mobility in a lamellar
arrangement; i.e., it is defined by the intermolecular charge
transfer rates. The domains slowly coarsen and eventually
reach the boundaries of the simulation box. The mobility

tensor becomes anisotropic once there is only one lamellar
domain in the box. In this lamellar domain the mobility
perpendicular to the lamellar layers is only 2 orders of
magnitude smaller than along the chains. This is remarkable
since this type of transport is mitigated only by few chains
bridging neighboring lamellar layers. Interestingly, the average
mobility, which qualitatively describes an average over domain
orientations, increases upon domain coarsening. This is due to
the much faster transport along the chains, which dominates
the average in the lamellar mesophase. This rationalizes the
need of stiff chains: apart from better bridging of crystalline
regions, stiffness also ensures faster average mobility in larger
crystalline regions, since the mobility along the chains
dominates the average. Note, however, that our polydomains
are liquid-crystalline, and their structure is not exactly
equivalent to semicrystalline morphologies.6,45

As an outlook, we would like to comment on the dynamical
behavior of the system since experimentally the morphologies
are kinetically trapped or are far from equilibrium. In our
Monte Carlo simulations we use the reptation as well as a
variable-shape constant-volume move. The reptation has the
advantage of efficient sampling and is straightforward to
implement. Replacing reptation by other ergodic moves will
not change the equilibrium properties of lamellae. However,
the molecular organization of nonequilibrium polydomain
morphologies may change. It would be interesting to see how
other types of MC moves, e.g., the crankshaft move,61 which
leads to Rouse-like pseudodynamics, will affect the evolution of
the morphology.

Figure 10. Properties of an evolving polydomain system with N = 16, obtained from simulations of n = 4096 chains in a cubic box of edge length L
= 25.42 nm (≈33.45σ): (a) The square of the end-to-end distance R̃e

2 normalized by its value in the all-trans conformation, order parameter of the
end-to-end vector Se, and eigenvalues of the mobility tensor μa. (b) Morphologies obtained at various stages of evolution. Color coding reflects the
orientation of the chain end-to-end vector.
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Our charge transport model could be further improved by
reintroducing the atomistic details. In an actual material,
charge transport is not only determined by the mesoscopic
arrangement of chains, but also by the local atomistic structure.
This structure influences both the density of states and
electronic couplings. Our current charge-transport model
neglects these effects, in line with the simplified micro-
structure: in soft models, hard excluded volume constraints are
relaxed and coarse-grained particles can overlap. By reinserting
atomistic details into a morphology generated by a soft
model,100 one could achieve more rigorous description of
charge-transport.35,101
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Formation in Poly(3-hexylthiophene) by Solvent, Molecular Weight,
and Synthetic Method. J. Polym. Sci., Part B: Polym. Phys. 2012, 50,
442−453.
(91) Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J.; Frećhet,
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