
MA IN PA P E R

A comparison of reweighting estimators of average
treatment effects in real world populations

Chen-Yen Lin1 | Eloise Kaizar2 | Douglas Faries1 | Joseph Johnston1

1Eli Lilly and Company, Indianapolis,
Indiana, USA
2Department of Statistics, Ohio State
University, Columbus, Ohio, USA

Correspondence
Chen-Yen Lin, Eli Lilly and Company,
Drop Code 1776, Lilly Corporate Center,
Indianapolis, IN 46285-0001, USA.
Email: lin_chen_yen@lilly.com

Funding information
Eli Lilly and Company

Abstract

Regulatory agencies typically evaluate the efficacy and safety of new interventions

and grant commercial approval based on randomized controlled trials (RCTs).

Other major healthcare stakeholders, such as insurance companies and health

technology assessment agencies, while basing initial access and reimbursement

decisions on RCT results, are also keenly interested in whether results observed in

idealized trial settings will translate into comparable outcomes in real world

settings—that is, into so-called “real world” effectiveness. Unfortunately, evidence
of real world effectiveness for new interventions is not available at the time of ini-

tial approval. To bridge this gap, statistical methods are available to extend the

estimated treatment effect observed in a RCT to a target population. The generali-

zation is done by weighting the subjects who participated in a RCT so that the

weighted trial population resembles a target population. We evaluate a variety of

alternative estimation and weight construction procedures using both simulations

and a real world data example using two clinical trials of an investigational inter-

vention for Alzheimer's disease. Our results suggest an optimal approach to esti-

mation depends on the characteristics of source and target populations, including

degree of selection bias and treatment effect heterogeneity.

KEYWORD S

entropy, external validity, propensity, weight estimation, weight trimming

1 | INTRODUCTION

Participants in randomized controlled trials (RCTs) are rarely chosen to resemble a simple, stratified or cluster random
sample of any well-defined real world population. Even practical clinical trial designs rely on convenience samples or eco-
nomic decisions that shift them away from true random sampling. In turn, if treatment effects systematically vary across
individuals, raw treatment effect estimates reported from trials are not likely to be directly applicable to decisions con-
fronting medical decision makers, with important consequences. For example, when evaluating new medications, a health
plan may conclude that the patients enrolled in pivotal trials are too dissimilar to enrollees in its plan and decide to
exclude or disadvantage the product from its formulary until “real world evidence” of effectiveness becomes available.

A growing number of studies have advocated reweighting methods to adjust trial-based estimators to be more rele-
vant to specific target populations.1-10 As a result of the importance of this topic to healthcare decision makers and
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stakeholders, use of new methods for generalizing evidence from RCTs was chosen as the focus for one of the five work-
ing packages for the Innovative Medicine Initiative Get Real Consortium.11 Conceptually, the idea is to use statistical
adjustments to estimate the average treatment effect had the trial had been conducted in a specific target population.
While some of this literature starts to explore practical statistical performance of this type of estimator, there is still
much to be learned about how such properties relate to practical choices such as exact estimator formulation and
weight construction methodology. The aims of this paper are to begin to fill this knowledge gap using both simulated
data and real data from two RCTs of a potential treatment for Alzheimer's disease.

Conceptually, we focus on the scenario in which a single RCT was conducted to evaluate the efficacy of a new inter-
vention, hereafter termed the active treatment, versus control treatment (e.g., standard care or placebo). We assume a
simple trial design so that efficacy (i.e., the sample average treatment effect) is reasonably estimated by the difference in
mean outcomes between treatment groups. We define the target population with an observational dataset, which is pos-
sibly a subset of a larger database. The observational dataset is considered to resemble a simple random sample from
the target population, for which a census is a special case. In contrast, we assume that the RCT participants do not
resemble a simple random sample from the target population. Borrowing ideas from survey sampling, generalization or
transportation reweighting estimators assign a weight to each RCT participant so that the weighted distribution of par-
ticipant characteristics resembles that of the target population. Weighting can, in theory, be used to overcome selection
biases introduced by standard recruitment practices. For example, it is well known that African Americans are typically
under-represented in United States (U.S.) trials, even when race is not an inclusion/exclusion criterion.12 In the RCT
context, selection bias often refers to biases that result from differences in subject characteristics between treatment
arms, but it is also defined to encompass differences across other subject-specific conditions.13 Throughout this manu-
script, we use the term selection bias to indicate biases that result from imbalance in subject characteristics between
trial participants and the target population.

However, if there is no RCT participant that represents some characteristic of the target population that is deemed
potentially important to the treatment effect (e.g., the RCT cohort includes only patients with mild symptoms, but the
target population includes patients with mild through severe symptoms), then no set of RCT weights could lead to
the target distribution. This phenomenon is akin to violation of the positivity assumption of causal inference,5,14,15 and
the reweighting-only estimation may be hopelessly inconsistent. One approach to overcoming this lack of positivity is
to use another source of information about treatment effect for those not represented by anyone enrolled in the RCT,
for example, via cross design synthesis.16-20 Because such extra data are typically not available during drug develop-
ment, we are forced to conceptually avoid this difficulty by specifically excluding individuals that could not be enrolled
in the RCT from the target population. That is, we require that the target population be some subset of the collection of
all trial-eligible individuals. To this end, we apply as many of the RCT exclusion criteria likely to be relevant to treat-
ment effect as practical (often originally imposed to enhance safety, thrift, or statistical power) to the observational
database, and hence our target population. In this way, functions of weighted averages of the RCT participant outcomes
can potentially reflect the average treatment effect in the target population.

We study two types of estimators. One is of the same form as inverse propensity weight (IPW) estimators, which have
long been used to adjust for selection effects in analysis of probability sample surveys, and more recently in causal infer-
ence from observational data.21 Our second type of estimator combines IPWs with a parametric model of the outcome.
This general approach also has a rich history in survey sampling22 and more recently in causal inference23 and extending
inferences.8 In the latter two cases, methods that rely on both weights and models are often termed “robust” or “doubly
robust.” In the probability sampling framework, IPWs are the inverse of the probability that an individual is chosen to
participate in the study. As such, the sampled individuals “represent” a number of individuals in the same population
from which they were randomly sampled that is proportional or equal to their weight. Thus, ideally, the weighted distri-
bution of any variable in the sample resembles its distribution across the whole population. In extending this idea to the
generalization application, we typically wish to preserve this characteristic: key attributes of weighted sample distributions
resemble those attributes of distributions in a target population. An algorithmic approach can be used to specify weights
to achieve this same distributional features matching without explicitly estimating the probability of study participation.

Weighted representations of particular populations arise in the causal inference setting as well. Weights can be
assigned separately to those who received the control and active treatments, so that each of the two group-specific distribu-
tions of characteristics resemble the single marginal (combined treatment group) distribution of these characteristics.
Thus, weighting may reduce possible confounding by observed characteristics whose distributions differ across the two
treatment groups. By comparing the group-specific IPW-weighted distributions of the outcome of interest, we can learn
about the treatment effect in the entire combined study sample. For example, the difference in the weighted mean in the
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control group and the weighted mean in the active treatment group may be a good estimate of the population average
treatment effect, where we define the population of interest to be the entire set of study participants (or a population
related to it by simple random sampling). The validity of the comparison between weighted distributions rests on treating
the two treatment groups as if they were each separate random (probability) samples from this single target population.

For our trial generalization work, we similarly weight the participants of a RCT to represent a single target popula-
tion. This approach differs from traditional causal inference in two key ways: (1) the target population is defined sepa-
rately from the trial participants, and (2) the treatment is randomly assigned to participants. The former indicates that
we need external information to define the target population, similar to how a probability sampling survey design
defines the population. The latter suggests we do not need to distinguish between the two arms in the model of selec-
tion, since randomization is expected to balance characteristics across the two trial arms, particularly in large scale late
phase clinical development programs, and thus lessen concerns about confounding.

In practice, we typically do not know each individual's probability of trial participation, and thus their respective
weights—even for designs that invite participation via probability sampling. The weights must be estimated. Estimation
methods can be roughly put into two categories: (1) a model-based approach that inverts a predicted probability of
selection and (2) mathematical algorithms that calculate weights that directly minimize the imbalance in characteris-
tics. While the merits of these respective methods have been investigated elsewhere,24 we are not aware of any other
exploration of the practical implications of the choice of estimator in the generalizability context. We focus on one
implementation of each approach to study the practical implications of this choice on the statistical properties of
reweighted treatment effect estimators.

For the model-based approach to weight calculation, we use logistic regression, which is arguably the most com-
monly implemented method for estimating propensity scores. In principle, we could use other soft classifiers, including
but not limited to bagging, boosting,25 and random forests.26 For direct weight calculation, we use entropy balancing,
although a number of similar approaches have also been investigated.24,27

Returning to classical survey sampling, researchers have long known that the variance of weighted estimators can
become quite large whenever the weights themselves have a large variance.28 One intuitive explanation is that if a small
number of individuals account for most of the weight, the effective sample size (and thus the precision) for the
weighted estimator is also small. Trimming the weights to some maximum value (and redistributing the trimmed
weight to the other study participants to maintain their representative interpretation) reduces the variability of the
weights, and in turn reduces the variability of the weighted treatment effect estimator. Although weight trimming also
introduces bias when the weight calculation/estimation is correct, this cost can pay for itself with a reduced mean
squared error.29,30

Weight trimming should similarly reduce the variance of trial generalization estimators of average treatment effects.
However, the relative impact on bias and the practical implications of this variance-bias tradeoff have not previously
been studied in the generalization context. Several weight trimming methods have been proposed,30,31 but we focus on
two exemplars—a prespecified inflation factor cutoff and a prespecified percentage trim.

The paper is organized as follows. In Section 2, we formally define the population estimand, estimators, and meth-
odology for constructing and trimming the weights. In Section 3, we describe and summarize two separate simulation
studies focused on the two approaches to weight estimation and weight trimming and evaluate the impact of alternative
approaches in scenarios involving varying degrees of selection bias and heterogeneity of treatment effect. We demon-
strate the implementation of the reweighting methods and trimming in a real case study in Section 4, and discuss our
recommendations in Section 5.

2 | STATISTICAL METHODS

We begin by clearly defining our population estimand, the target population average treatment effect (TATE), before
turning to weight calculation and trimming, and finally introducing a collection of weighted estimators.

2.1 | Estimand: Target population average treatment effect

We use Rubin's causal model (RCM)32 as a building framework to define the estimand, TATE. In the RCM, each indi-
vidual has potential outcomes, Yi(1), and Yi(0), which would be the outcomes had the i-th subject received active and
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control treatment, respectively. The treatment effect for this individual is the difference in their potential outcomes,
TEi = Yi(1) − Yi(0). It follows that the TATE is the average treatment effect across the individuals in that population:

TATE=
1

ntarget

X
i∈Γtarget

TEi =
1

ntarget

X
i∈Γtarget

Yi 1ð Þ−Yi 0ð Þð Þ, ð1Þ

where ntarget is the number of individuals in the target population and Γtarget is the collection of indices for individuals
in the target population. Equation (1) serves as a conceptual quantity of interest that cannot be measured in practice,
since the treatment effects for those in the target population are not measurable for many reasons. One obvious reason
is that a subject cannot typically receive both active and control treatments. Secondly, target population members may
not have access to the active treatment (as in the case of a drug that is unavailable to the target population). Third, the
outcome measure is often not available in data describing the target population. For the remainder of this paper, we
assume these three practical limitations. In addition, the specific individuals in the target population and their attri-
butes, Xi, may change over time and so measured characteristics resemble a random sample from some common distri-
bution of interest. Thus, our well-defined estimand is the expected value of the TATE over both the distributions of
potential outcomes and of relevant characteristics of individuals in the population:

E TATEð Þ=E
1

ntarget

X
i∈Γtarget

Yi 1ð Þ−Yi 0ð Þ
0@ 1A=EXi E Y i 1ð Þ−Yi 0ð Þ Xij Þð Þ=EXi E Y i 1ð Þ Xij Þð Þ−EXi E Y i 0ð Þ Xij Þð Þ,ððð ð2Þ

where XT
i = xi1…xip

� �
is a p-dimensional vector of characteristics, and subscript i indexes an individual who is randomly

selected from the target population (with equal probability). An alternative interpretation of this quantity is the center
of the distribution of TATE across many similar populations, such as an insurance pool on a randomly selected day.

To ensure that both TATE and E(TATE) are identifiable, we follow the generalization of typical RCM assumptions
for the treatment assignment and outcome distributions, including consistency (i.e., the stable unit treatment value
assumption) and positivity (the probability of receiving either treatment is theoretically strictly positive).5,14

2.2 | Weight calculation

As mentioned in the introduction and discussed in more detail in Section 2.3, our proposed generalization reweighting
estimators are based on individually weighting each RCT participant. We derive the subject weights using two
approaches: a model-based approach and an algorithmic balancing approach. For the weighting approach to work, it
must be possible for every member of the target population to be statistically represented by RCT participants. This con-
dition is closely related to the positivity assumption in the previous section. By putting the assumption in the generali-
zation context, relevant exclusion criteria implemented in the trial must also be applied to the target population so that
everyone in the target population would have a positive chance to be enrolled in a trial. For example, if the RCT explic-
itly only recruits patients with mild-to-moderate Alzheimer's disease, then we must exclude anyone with severe disease
from the target population. Those with severe disease would have had zero probability of being enrolled in to the RCT.
Unlike the traditional causal inference setting, we do not require the reverse to be true. That is, RCT participants may
have zero probability of being included in the target population.

Under the model-based approach, we weight each subject by the inverse of their propensity score. Here we use the
term propensity score in a different context from its common definition in the causal inference literature, based on a
“propensity to choose treatment.” In this paper, we instead use the “propensity to enroll in a RCT,” that is, the condi-
tional probability of an individual included in either a RCT or observational database being a RCT participant. In this
context, the generalization propensity score is defined as Pr(Si = 1j Xi), where binary variable Si = 1 and Si = 0 indicates
that the i-th individual is included in a trial and part of the observational database, respectively.

We define the model-based subject weight to be

~Wi =
1−Pr Si =1jX ið Þ
Pr Si =1jX ið Þ IΓtrial ið Þ, ð3Þ
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where I is the indicator function. The subject weight in Equation (3) is reminiscent of the weight commonly used in the
IPW estimator frequently employed for casual inference. The odds formulation implies that each individual's weight
equals the number of individuals he or she “represents” in the target population. Note that only trial participants have
positive weight, since they are the only individuals who may contribute to the weighted estimator.

The model-based generalization propensity score must be estimated by leveraging subject-level data from the com-
bined RCT data and observational database. For our implementation, we follow the most common practice by assuming
the conditional probability of RCT inclusion, membership variable Si's are conditionally independent Bernoulli random
variables and the conditional probability Pr(Si = 1j Xi) can be characterized using a logistic model of the form:

log
Pr Si =1jXið Þ

1−Pr Si =1jXið Þ
� �

= α0 +αTXi, ð4Þ

where (α0 α
T) = (α0 α1� � �αp) is a vector of unknown parameters that can be estimated using maximum likelihood esti-

mation. In the logistic model setting, the estimated propensity-based weights can be written explicitly,
~Wi =1= eα̂0 + α̂TXi

� �
, i∈Γtrial . We use iteratively reweighted least squares via the glm R function33 to estimate the model

parameters.
In addition to model-based weights, we propose using an algorithmic approach to calculate individual weights

directly without considering generalization propensities. In particular, we implement entropy balancing.34 The concep-
tual framework of this approach is straightforward: adjust patient weights from the RCT such that the weighted
moments of the RCT participants exactly match (or balance) those in the target population. Unlike propensity weights,
entropy weights do not have a parametric representation nor an analytical form, but are calculated numerically by opti-
mizing the objective function:

min
~W

−1
X
i∈Γtrial

~Wilog
~Wi

qi
ð5Þ

such that
P

i∈Γtrial

~Wi

 !−1 P
i∈Γtrial

~WiXk
ij =n−1

target

P
i∈ΓTarget

Xk
ij, for j=1,…,p, ~Wi =0 for i∈ΓTarget,and k∈K �ℕ+ , where qi is the

base weight and K is the set of natural numbers that identify the first k moments to be matched. The minimand in
Equation (5) is the so-called entropy divergence,35 hence giving rise to the name entropy balancing. The constraints
ensure that weighted moments for the trial population exactly equal those of the target population. Unless prior knowl-
edge about the RCT recruitment plan would suggest otherwise, we propose setting an equal base weight at 1/ntrial, the
inverse of the trial size. We use the R package ebal36 to implement the simplest entropy balance where K = 1 so that
only the marginal means of X are balanced.

Regardless of whether we use model- or algorithm-based methods, we expect the weights to in some sense “balance”
the characteristics X between the trial and target population by adjusting the empirical distribution of X among the
RCT participants to resemble its distribution in the target population. The model-based propensity method has long
been popular in the causal inference literature. It is particularly attractive because of the straightforward sampling
probability interpretation, practitioner familiarity with logistic regression, and the ease with which we can explore
potential causes for selection bias (by interpreting the model parameters α) and degree of imbalance (by comparing
weight distributions across the RCT and target samples). However, algorithm-based balancing methods are gaining a
stronger foothold because they result in an exact distributional balance with respect to the predefined characteristic.
For the generalization setting, this is particularly simple because only summary data, such as the first few moments of
the target population, must be specified in Equation (5). On the contrary, model-based propensity methods, such as
logistic model, typically require subject-level data in both RCT and target populations.

Irrespective of which method we use to obtain initial weights, as a final step, we rescale each collection of weights such
that the sum of weights in the trial population is equal to the size of the trial population. The final weight has the form:

Wi =
~Wi

1
ntrial

P
j∈Γtrial

~Wj
, i∈Γtrial: ð6Þ
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The rescaling gives an intuitive interpretation. Wi loosely represents the number of people similar to trial participant
i that should have been included in the trial so that, when taken together, the trial participants would naturally repre-
sent the target population.

In addition to these “final” weights, we consider post-processing trimming procedures in an effort to alleviate large
variances for our E(TATE) estimates. Two trimming procedures are considered: a prespecified inflation factor cutoff,
and a prespecified percentage trim. The first approach explicitly sets the upper bound of the final weight of any individ-
ual at a constant C. That is, we adjust the weight of any trial participant who was representing more than C times the
number of individuals that they would have under simple random sampling. The trimmed weights are:

W�
i Cð Þ= min Wi,Cð Þ

1
ntrial

P
j∈Γtrial

min Wj,C
� � !

: ð7Þ

Despite the many systematic methods for choosing the constant C presented in the survey sampling literature,31

many real-world survey analysts continue to choose the cutoff for unacceptably large weights, C, in an ad-hoc manner.
For example, the National Assessment of Educational Progress (NAEP) survey uses cutoffs similar to C = 3.5 or 4.537;
the National Health and Nutrition Examination Survey (NHANES) uses cutoffs close to C = 3.38 In this type of ad hoc
approach where C is determined prior to data collection, if no final weights are relatively large, then the weights are
not trimmed at all. Other approaches attempt to identify unusually large weights. For example, the National Immuniza-
tion Survey (NIS) trims weights that are more than three times the interquartile range larger than the median weight.39

A similar simple method is to simply trim weights that exceed some empirical percentile so that C=W �ntrialb c½ � , where
 is the pre-specified percentile, square brackets indicate order statistics and b�c is the floor function. The percentile
approach guarantees some predetermined number of participants have trimmed weights. It has been explored in a simi-
lar weight-based causal inference context.15,30

2.3 | Estimators

We propose three possible estimators of average treatment effect, each of which relies on computed weights. As noted
previously, we use a single set of weights to overcome the limited external validity of the RCT and rely on the strong
internal validity imparted by the random assignment to treatment to make causal inference. As a result, no further
adjustment is made to address imbalance between treatments even though deviations from an ideal trial could be pre-
sent and might undermine this internal validity, as discussed in the Introduction. Nonetheless, we recommend in prac-
tice checking balance of key covariates across treatment groups after reweighting.

We consider three different weight-based estimators of E(TATE) that follow one of two general approaches to esti-
mation. First, motivated by the simple IPW estimator in causal inference, we propose a nonparametric approach by sep-
arately estimating each of the counterfactual averages in the final line of Equation (2) and then subtracting:

dE TATEð Þnp =
1P

i∈Γtrial

WiZi

X
i∈Γtrial

YiWiZi−
1P

i∈Γtrial

Wi 1−Zið Þ
X
i∈Γtrial

YiWi 1−Zið Þ, ð8Þ

where Yi is the outcome variable measured in the RCT and Zi is an indicator of active treatment. This procedure mimics
the simplest analysis of a simple RCT (without stratification) for which participants are a simple random sample from
the target population. Under proper regularity conditions, the nonparametric estimator is asymptotically consistent.
The proof follows the same form as the usual IPW estimator,14 and the simulation study presented in Section 3 provides
further evidence for such consistency.

In our second approach, we consider two estimators that mimic a slightly more complex analysis of a simple trial.
As a result of its ease of interpretation and potential for smaller standard errors, we assume a parametric form for the
conditional expectations in the last line of Equation (2). A parametric form also lays the groundwork for generalizing
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from more complex trial designs. We posit a linear regression model to characterize the relation between the outcome
and treatment, baseline characteristics and their interactions:

Yi = μ+ γZi + βTX i + θTX iZi + εi,εi � 0,σ2
� � ð9Þ

where μ, γ, β and θ are unknown parameters, and εi's are independently and identically distributed (iid) random errors
with mean zero and common variance σ2 < ∞. This linear model implies a concise representation of E(TATE), which
depends on the model parameters and characteristics in the target population:

E TATEð Þ= γ+ θT EX jS=0 Xð Þ ð10Þ

In this parametric representation, the treatment effect heterogeneity is explicitly quantified through θ.
The model parameters can be estimated from the trial data using a weighted least squares (WLS) approach so that

the distribution of the covariates X resembles that in the target population. A weighted least squares estimator also miti-
gates any effects of model mis-specification, similarly to design-based regression in the survey setting.40,41 We complete
plug-in estimators of E(TATE) by estimating the conditional expectation of X in the target population via one of two
methods. We use either a weighted average from trial participants, or a sample average from the target population,
respectively denoted as.

dE TATEð Þp− trial = γ̂+ θ̂
T 1

ntrial

X
i∈Γtrial

WiX i

� �
dE TATEð Þp− target = γ̂+ θ̂

T 1
ntarget

X
i∈Γtarget

Xi

� � ð11Þ

One noteworthy point is that these two estimators coincide for un-trimmed entropy balanced weights. However,
they may diverge for propensity-based weights, and the difference may be large for small sample sizes or if the propen-
sity model is mis-specified. Extra caution should be taken when these two estimates do not agree, and diagnostic proce-
dures may help identify potential model misspecification.

2.4 | Variance estimation

The analytical form of the estimators is presented above, but the complex correlation makes it prohibitive to render a
closed form variance function. Some large sample approximations are available for the variance of some propensity
balanced estimators when the weights are based on logistic regression.42 However, to our knowledge, such approxi-
mations are not derived more broadly for all the estimators described in Section 2.3. Instead, we rely on bootstrap
methods to estimate the variance of our estimators. In particular, we create multiple pseudo datasets by randomly
sampling with replacement subjects from both the RCT and target populations and use the pseudo datasets to carry
out the estimation. This nonparametric bootstrap approach is repeated multiple times, and we use the empirical vari-
ance across the replicates as a variance estimate. In addition to variance estimation, nonparametric bootstrap also
allows us to construct two types of confidence intervals. One is based on normal approximation by plus/minus a nor-
mal quantile times the square root of the variance estimate; the other is based on the equal-tailed lower and upper
empirical quantiles.

3 | SIMULATION STUDY

In all, we have described two methods of calculating weights, two methods of trimming weights, and three different
estimators of E(TATE). Each method has a theoretical or practical advantage. We use simulation to explore the practi-
cal impact of these choices in a range of realistic settings.
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3.1 | Simulation methods

3.1.1 | Data generating mechanisms

The data generation consists of two components: a selection data generating mechanisms (DGM) and an outcome
DGM. The selection mechanism determines the subjects' trial membership (trial participants versus target population)
based on their characteristics; the outcome mechanism governs the relationship between the outcome of interest and
subject characteristics. In this demonstration, we use a logistic model and a linear model as noted in Equations (4) and
(9) for the selection and outcome mechanisms, respectively.

In the selection mechanism, the logistic model parameters, α, are chosen such that we expect 20% of the subjects
will be assigned to RCT population (i.e., the marginal odds of trial membership is 1:4). Within this framework, we con-
sider three simulation scenarios by varying the overlap in the characteristics between trial and target population via the
magnitude of model parameters (α's, including setting some αj = 0). We will elaborate on how to quantify the degree of
overlap in the next sub-section. The number and magnitude of characteristics' effects are shown in Table 1.

Treatment assignment and outcome variables are generated per specifications of the outcome mechanism for the
trial participants only. For the treatment assignment, we randomly assign half of the trial participants to the active
treatment. For the outcome, we follow the linear model structure given in Equation (9), where the errors follow a stan-
dard normal distribution. The overall mean μ and main characteristic effects β are not contributing to the E(TATE),
thus we arbitrarily set all these parameters equal to zero. Similarly, the size of the baseline treatment effect is not of pri-
mary interest (although it does affect absolute estimator properties, such as relative bias); we set γ = 2σ2 = 2.

We consider three different patterns of heterogeneous treatment effect, θ, as defined by the outcome mechanism
parameters listed in the four scenarios in Table 2. (Note that Scenarios C and D have the same overall pattern of hetero-
geneous treatment effect, but with covariate numbering schemes as explained below). First, we consider a “moderate
narrow” treatment effect heterogeneity, where four of the p characteristics moderately influence treatment effect and

TABLE 1 Parameters used in simulating selection model

Selection mechanism
parameter or summary

Scenario

1 2 3

Small Uneven broad Strong focused

α0 −3.4 −11.1 −5.15

αj α1,2,3,4 = 1
α5 − 16 = 0

α1,2,3,4 = 3
α5 − 16 = 0.5

α1 = 6
α2 − 16 = 0

Δp 0.05 0.31 0.28

BT 0.96 0.76 0.76

TABLE 2 Parameters used in simulating outcome model

Outcome mechanism
parameter or summary

Scenario

A B C D

Moderate narrow Moderate broad Strong focused Strong focused

μ, β1 − 16 0 0 0 0

γ 2 2 2 2

θj θ1,2,3,4 = 1
θ5 − 16 = 0

θ1 − 16 = 0.25 θ1 = 5
θ2 − 16 = 0

θ2 = 5
θ1 = θ3 − 15 = 0

σ2 1 1 1 1

R2 0.46 0.41 0.67 0.67

CV 14% 7% 32% 32%

Abbreviation: CV, coefficient of variation.
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the other have no association with the outcome. Second, we suppose a “moderate broad” heterogeneity where all
p characteristics affect the treatment effect, but only slightly. Finally, we consider a “strong focused” heterogeneity
where heterogeneity is driven by a single very influential characteristic. In this last case, we implement simulations
where this single covariate is the same as for the selection model (the first covariate for Scenario C) and where it is dif-
ferent (the second covariate for Scenario D).

For all simulations, we set the number of characteristics, X, at p = 16, and generate these independently for each
subject from mutually independent Uniform(0,1) distributions. We run 500 repetitions for each combination of scenar-
ios in selection and outcome mechanisms.

We focus on a large sample situation by setting the sum of trial and target sample sizes, jΓtrialj + jΓtargetj, to 3000
(a count similar in size to trials and observational data that are, in our experience, typical for Alzheimer's disease
research). For each simulated dataset, we estimate E(TATE) using all three versions of the proposed estimator in Equa-
tions (8) and (11) without weight trimming and with trimming. Because our logistic regression propensity estimation
models are defined correctly, we anticipate any weight trimming will introduce some bias, and thus propose relatively
conservative cutoff constants via the ad-hoc values C = 4 and C=W 0:99�ntrialb c½ �, the 99th empirical percentile. The former
value is consistent with the cutoff used in some large sample surveys; the latter is consistent with the most conservative
threshold considered by Cole and Hernan.15 The standard error of the proposed estimator is approximated using non-
parametric bootstrap with 200 resamples, as described in Section 2.4.

3.1.2 | Measures of data generating mechanism and model performance

We first introduce a few useful metrics to quantify (1) the degree of overlap for the selection mechanism and (2) the
magnitude of signal-to-noise for the outcome mechanism, and then explain (3) how to evaluate the performances of the
different reweighting estimators.

To begin with the selection mechanism, excessive distributional imbalance between the trial and target populations
theoretically suggests that E(TATE) estimates have large error and, as such, are of limited practical use. We quantify
this imbalance with two previously proposed measures. First, Stuart et al. proposed looking at the difference in mean
propensity scores, denoted as Δp. Here, larger scores indicate less overlap; while the effect of overlap has not yet been
extensively studied in the generalizability context, differences greater than 0.25 or 0.1 standard deviations raise con-
cerns about estimator stability and sensitivity to the propensity model specification in the usual causal inference con-
text.43 Second, Tipton quantified the affinity in propensity score distributions between the groups, denoted as BT , by
the notion of the Bhattacharyya Coefficient.44,45 Tipton suggested estimates of BT <0:5 to indicate that the estimate E
(TATE) may suffer from mean squared error (MSE) large enough to provide little useful information.44 Estimates
greater than 0.9 tend to indicate situations where the covariate distributions are quite similar, so that reweighting may
not even be necessary. Estimates between these two extremes may suffer from increased variance (due to large weights)
or bias (due to poor overlap in the finite sample). We simulated three scenarios with small to moderate differences in
the characteristic distributions.

Among the three selection mechanisms introduced earlier, Scenario 1 represents small imbalance (Δp ≈ 0.05 and
BT≈0:96) due to a small selection effect in four out of the 16 characteristics. Scenario 2 represents moderate imbalance
(Δp≈ 0.31 and BT≈0:76) due to larger selection effect in four characteristics and smaller effect for the remaining ones.
Finally, in Scenario 3, we again have moderate imbalance (Δp≈ 0.28 and BT≈0:76), but this selection effect is entirely
driven by a single, strong characteristic.

In addition, we use two model summary metrics, R2 and coefficient of variation (CV), to give some further intuition
to these different outcome scenarios, and report these in Table 2. The formulas for calculating these two metrics are
shown below:

R2 =
Var μ+ γZi + βTX i + θTX iZi
� �

Var μ+ γZi + βTX i + θTX iZi + εi
� � = 4

25γ
2 + 1

12

Pp
i=1β

2
j +

17
300

Pp
i=1θ

2
j

4
25γ

2 + 1
12

Pp
i=1β

2
j +

17
300

Pp
i=1θ

2
j + σ2

,CV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var γ+ θTX i
� �q

E γ+ θTX i
� � =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
12

P
jθ

2
j

q
γ+ 1

2

P
jθj

: ð12Þ

While the CV measure greatly depends on the baseline treatment effect γ = 2, we find it helpful for improving our
intuition. For example, out of the four outcome scenarios, Scenarios A and B have comparable R2, but Scenario B has
smaller treatment effect variability, as represented by a percentage of the mean, since the source of heterogeneity is
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spread evenly across many variables. Scenarios C and D have more treatment effect heterogeneity than the other sce-
narios, as the source of heterogeneity is both strong (i.e., has a large regression coefficient) and focused (i.e., only
involves one characteristic).

Lastly, the primary measure of performance of the reweighting estimator is mean squared error (MSE). At each rep-
etition, the estimated E(TATE) from different estimators will be compared against the true value as specified per out-
come mechanism and Equation (10). After all the repetitions are completed, MSE will be computed as well as its
decomposition: squared bias and variance. To evaluate the validity of the nonparametric bootstrap variance estimate,
we further calculate the 95% confidence interval within each repetition and summarize the empirical coverage
percentage.

3.1.3 | Models being compared

There are in total 18 estimates (three reweighting estimators by two weight calculations by three weight trimmings) per
combination of selection and outcome scenario. The primary focus is to identify the optimal, if any, reweighting estima-
tor and weight calculator across various DGMs. The risk–benefit profile of weight trimming comes secondary. The
results will be presented first by selection mechanism and then sub-stratifying by outcome mechanism.

To provide a benchmark performance, we consider an additional estimator based on the true propensity score. Spe-
cifically, we plug the true propensity based on Equation (4) into Equations (3) and (6) to compute subject weights and
use these in the nonparametric estimator in Equation (8).

3.1.4 | Other implementation details

An R package ebal36 was utilized to calculate the entropy weights that minimizes the objective function in Equation (5),
but the constraints are limited to balance the first moment. The simulation code can be provided upon request.

3.2 | Simulation results

We present the MSE, and its decomposition into variance and squared bias, of the proposed estimators for each selec-
tion model in Figures 1–3, one for each selection model. Each quadrant of the figure represents one outcome model,
and different estimator-by-weight combinations are shown across bars within a quadrant. Because the results for the
nonparametric and parametric-trial estimators, and the results for the two trim cutoffs C are similar, we relegate the
presentation of the latter of each pair to the Appendix (Figures S1–S3). The total height of each bar indicates the MSE,
which is further decomposed into variance and squared bias, as color coded in green and blue, respectively.

We first consider estimation with untrimmed weights (the second, third, sixth and seventh bars of each figure).
Across all combinations of selection-by-outcome scenarios, we observe approximately unbiased estimates, indicating
the proposed procedure accurately generalizes the treatment effect observed in a RCT to a target population. Entropy-
based weighting appears to provide smaller variance when a nonparametric estimator is used, whereas a propensity
score-based method has an advantage when a parametric estimator is implemented. It is also evident that the paramet-
ric estimators are in general more efficient than the nonparametric one, which is expected given that parametric models
were used to generate the simulated data. However, caution should be taken and model diagnostics should be carried
out whenever a parametric model is used to alleviate the concern of model mis-specification.46 Another common obser-
vation is that the MSE of the proposed estimators is either on par with or smaller than that of benchmark performance,
where the known PS is used in the nonparametric estimator. This finding is reminiscent of efficacy gain using propen-
sity score estimates rather than true propensity scores.47,48 The effect of trimming is not uniform across all selection-by-
outcome scenarios. As indicated in Figure 1, under Selection Model 1, where there is substantial overlap in the
characteristic distributions, the performances across all estimator-by-weight calculation combinations are very similar
for the trimmed and untrimmed weights. Given a substantial overlap between trial and target populations, understand-
ably there are not many outlying weights and thus the weight trimming has limited effect in this case.

On the other hand, in Selection Model 2 where there is less overlap, Figure 2 highlights some differences across the
simulated combinations. First, trimming reduces a considerable amount of variance. However, the net gain in MSE in
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some cases is offset by the large amount of bias it introduces, especially in the presence of treatment effect heterogene-
ity. It is also noticeable that trimming introduces more bias in the nonparametric estimator than the parametric one.
The parametric estimator is arguably less sensitive to weight trimming as a result of an indirect trimming effect on the
WLS estimates in Equation (10). On the contrary, the effect of weight trimming on the nonparametric estimator is more
directly and explicitly evidenced in Equation (7), making the nonparametric estimator less robust to trimming. Simi-
larly, the weighted RCT characteristics after trimming will no longer be unbiased to the target characteristics, thus
making the other parametric estimator that utilizes weighted RCT characteristics ( ^E TATEð Þp− trial ) behave similarly to
the less robust nonparametric estimator, as shown in the Appendix (Figure S2).

Although the degree of characteristic overlap is comparable between Selection Models 2 and 3, the selection effect is
singularly driven by the first characteristic in Model 3, resulting in different patterns of MSE. That difference is
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FIGURE 1 Bias and variance of estimators of E(TATE) from selection mechanism 1.

Note: The range of y-axis varies from one outcome mechanism to another. Abbreviations: C, cutoff; PS, propensity score; TATE, target

population average treatment effect
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especially noticeable from Outcome Models C and D. Without implementing a trimming strategy, both propensity- and
entropy-based methods are able to overcome the selection effect despite the different effect mechanisms, resulting in
the very small amounts of bias shown in Figure 3. However, due to a strong, focused selection effect of the first charac-
teristic, subjects with low X1 values will be heavily weighted, with weight values presumably much larger than the pre-
specified upper bound C=4. Trimming will not introduce a significant amount of bias if the treatment heterogeneity is
mild or moderate as observed in Outcome Models A and B. However, there is a sharp contrast between Selection Model
2 and 3 coupled with Outcome Models C and D. In o Outcome Model C, where the characteristic that drives selection
bias coincides with the one that drives treatment heterogeneity, trimming results in nonparametric estimators with con-
siderable amounts of bias that are three to four times greater than the variance trimming reduces. On the other hand,
when the characteristics that account for selection bias and treatment heterogeneity are different, trimming becomes a
powerful tool to reduce variance without trading off much bias. (Note that the panels in Figure 3 have markedly differ-
ent scales on the vertical axes). This example illustrates the multitude of factors to consider when generalizing the treat-
ment effect observed in a RCT to a target population, including not only patient characteristic differences and potential
treatment heterogeneity, but also the synergistic effect between the two.

These patterns in the effect of weight trimming are similar for the 99th percentile trim, as shown in the Appendix
(Figures S1–S3). As expected, the pattern is slightly more pronounced for the percentile trim for the Selection Model
1 simulations, where few of the small individual weights would exceed the fixed C = 4 trimming threshold, but 1% of
the weights are still trimmed in the percentile trim. The pattern is less pronounced in Selection Model 2 and 3 simula-
tions, where more than 1% of the estimated weights would exceed the C = 4 trimming threshold.

Through simulations, we also evaluate bootstrap variance estimation. The empirical SD out of 500 replicates is pres-
ented side-by-side with the average SE estimate in Table 3. In most cases, the bootstrap method provides a comparable
estimate, though fairly consistently slightly under-estimates the empirical standard deviation. In Outcome Models C
and D, the bootstrap method provides a more starkly under-estimated variability particularly for the propensity-based
estimates. This subsequently impacts the CI coverage based on normal approximation as shown in Table 4. Conversely,
constructing a CI by quantiles is more robust and the coverage rate is close to the nominal rate of 95% in all scenarios
(see Table S2).

4 | REAL DATA EXAMPLE

To examine performance outside the realm of simulated data, we apply the proposed estimation procedures to data col-
lected from two clinical trials in patients with mild-to-moderate Alzheimer's disease. Contrary to the original purpose
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FIGURE 3 Bias and variance of estimators of E(TATE) from Selection mechanism 3.
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of generalizing a treatment effect observed in a RCT to a real world target population, this real data analysis treats
patients from a second clinical trial as the target population. As such, our analysis represents an idealized situation in
which the data collection in these two studies is very consistent, the patient- and population-level data are both avail-
able and, most importantly, efficacy endpoints are available in both studies. The availability of efficacy endpoints in
both studies allows us to showcase additional evidence to support the performance of the proposed estimators outside
of the simulations described above.

In two phase 3 clinical trials, EXPEDITION1 and EXPEDITION2 (NCT00905372 and NCT00904683), patients with
mild-to-moderate Alzheimer's disease were randomized to receive either solanezumab, a humanized monoclonal anti-
body that binds to amyloid beta, or placebo. Study results were previously published.49 Briefly, both studies failed to
meet their respective primary endpoints at week 80: change in an 11-item cognitive subscale of the Alzheimer's Disease
Assessment Scale (ADAS-Cog11) in EXPEDITION1, and change in the full ADAS-Cog14 in the subset of patients with
mild Alzheimer's disease in EXPEDITION2. Due to the nature of the clinical trial, the participants of these two studies
did not consent for their data to be shared publicly, and supporting data is not available.

In this real data analysis, we focus on estimating the effect of solanezumab on ADAS-Cog14. We use the full
mild-to-moderate Alzheimer's disease patient population from EXPEDITION1 as the RCT population and those from
EXPEDITION2 as the target population. While it is unusual to choose the participants of a second trial to be the target
population, this choice could be useful for designing follow-up trials. For purposes of illustration, this choice more
importantly provides the “true” effect so that we can concretely evaluate our generalization methods. In EXPEDI-
TION1, 1012 patients were randomized in a 1:1 ratio to solanezumab (N = 506) and placebo (N = 506). Baseline demo-
graphics and clinical characteristics were well balanced between treatment groups. Compared to the RCT population,
patients in the target population are on average 2 years younger, less frequently have a family history of Alzheimer's
disease, have less severe disease as measured by Mini–Mental State Examination (MMSE) and ADAS-Cog14, and are
more likely to use an acetylcholinesterase inhibitor (AchEI) as mono-therapy. Gender, years of education and ApoE
genotype distributions are very similar. More detailed baseline characteristics can be found in the report of the

TABLE 3 Variance estimate of the nonparametric estimator of E(TATE)

Outcome mechanism

Selection mechanism Balancing method Scenario A Scenario B Scenario C Scenario D

1 PS 0.099/0.101 0.095/0.096 0.122/0.125 0.122/0.126

Entropy 0.098/0.101 0.095/0.096 0.116/0.125 0.119/0.126

2 PS 0.274/0.228 0.251/0.213 0.352/0.291 0.347/0.294

Entropy 0.249/0.228 0.241/0.213 0.309/0.291 0.294/0.294

3 PS 0.260/0.237 0.247/0.224 0.350/0.320 0.338/0.307

Entropy 0.247/0.237 0.239/0.224 0.284/0.320 0.292/0.307

Note: Shown in each cell is SD ( ^tPATE)/Avg ŜEð ^tPATEÞ.
Abbreviations: PS, propensity score; SD, standard deviation; SE, standard error; TATE, target population average treatment effect.

TABLE 4 Empirical coverage of the 95% confidence interval of nonparametric estimator of E(TATE)

Outcome mechanism

Selection mechanism Balancing method Scenario A Scenario B Scenario C Scenario D

1 PS 0.956/0.956 0.952/0.95 0.974/0.970 0.960/0.960

Entropy 0.952/0.956 0.956/0.95 0.966/0.970 0.962/0.960

2 PS 0.908/0.916 0.938/0.94 0.902/0.910 0.906/0.912

Entropy 0.908/0.916 0.902/0.94 0.928/0.910 0.928/0.912

3 PS 0.946/0.944 0.940/0.948 0.892/0.906 0.920/0.926

Entropy 0.940/0.944 0.932/0.948 0.948/0.906 0.950/0.926

Note: Shown in each cell is the empirical coverage of 95% CI constructed by normal approximation and quantiles.
Abbreviations: CI, confidence interval; PS, propensity score; TATE, target population average treatment effect.
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solanezumab phase 3 trial results by Doody et al.48 Due to the nature of clinical trial, participants of these two studies
did not consent for their data to be shared publicly, so supporting data is not available.

In the propensity and entropy models, all the aforementioned characteristics plus duration of disease diagnosis are
included, except for APoE status due to the large amount of missing values. Continuous characteristics are standardized
with sample mean 0 and standard deviation 1 across both studies before model fitting. Odds ratio estimates from the
logistic model are shown in Figure 4. Based on the propensity score, the Tipton index BT and Δp are 0.93 and 0.12,
respectively, indicating fairly similar populations and substantial overlap in EXPEDITION1 and EXPEDITION2. This is
confirmed visually by the histogram in Figure 5, showing the overlap in propensity scores between the two populations.

We apply four generalization estimators, parametric versus non-parametric using propensity- versus entropy-based
weights, to the EXPEDITION1 study. In both propensity and entropy models, patients receiving placebo and
solanezumab are pooled to build a single analytical model. For the parametric estimator, the baseline characteristics
observed in EXPEDITION2 are used. Weight trimming is not considered in this real data implementation given the sub-
stantial degree of overlap evidenced by BT and Δp. No meaningful covariate imbalance was found after weighting.

The raw treatment effect and generalized effect estimates are presented in Figure 6. The raw treatment effects from
EXPEDITION1 and EXPEDITION2, as measured by mean difference in ADAS-Cog14 between the solanezumab and
placebo groups, are −1.33 and −0.98, respectively. By applying the weighting procedure, the estimated target population
average treatment effect ranges from −0.90 to −1.11. All four estimators coherently indicate a smaller treatment effect
in the target EXPEDITION2 population as compared to the EXPEDITION1 trial results, consistent with the raw

●

●

Odds Ratio (95% CI)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

AChEI+Memantine

AChEI

Memantine

Family History

Female

Age (Year)

Education (Year)

YearSinceDiag

ADAS−Cog14

MMSE

Favor Be Enrolled in EXPEDITION1Favor Be Enrolled in EXPEDITION2

FIGURE 4 Forest plot of logistic model. Abbreviations: AChEI, acetylcholinesterase inhibitor; ADAS-Cog14, 14-item Alzheimer's

Disease Assessment Scale-Cognitive subscale; CI, confidence interval; MMSE, Mini-Mental State Examination

Propensity Score

P
e
rc

e
n
ta

g
e
 o

f 
P

a
ti
e
n
ts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

12

14

16

EXPEDITION1 (RCT)
EXPEDITION2 (Target)
Delta p: 0.12
Tipton Index: 0.93

FIGURE 5 Histograms of propensity score overlap between EXPEDITION1 and EXPEDITION2. Abbreviation: RCT, randomized

controlled trial

778 LIN ET AL.



treatment effect observed in the target population. Among them, the non-parametric estimator shrinks the effect more
aggressively. Similar estimates are calculated from propensity and entropy weight approaches. Notably, the uncertainty
of the generalization estimator, as summarized by the reported confidence interval, is quite large as compared to the
uncertainty of the EXPEDITION1 trial results. This result is expected, as the generalization estimator incorporates
the uncertainty from both sampling and estimation, and the weighting procedure reduces the effective sample size of
the RCT in proportion to the imperfect overlap of propensity score distributions (as shown in Figure 5).

In this real data analysis, we demonstrate the utility of the proposed weighting procedure beyond simulated data.
The logistic model estimate (Figure 4) suggests selection bias (bias due to cross-study characteristic imbalance) is not
driven by a few, strong covariates, but spread across multiple mild-to-moderate covariates. In addition, the parametric
outcome model estimates (not shown) indicate small, non-significant treatment heterogeneity, except for memantine
monotherapy and years since diagnosis. These features share some commonality with simulation Selection Model
1 and Outcome Model C or D. Consistent with what we learn from simulation, there is no discernible difference
between propensity and entropy methods, albeit the entropy method is slightly more efficient when the nonparametric
estimator is employed. Meanwhile, the parametric method remains more efficient regardless of balancing method used.

5 | DISCUSSION

We study trial generalization in the context of extending the treatment effect observed in a RCT to a target population.
The extension is done by weighting the subjects observed in a RCT so that the weighted trial population is more similar
to the target. The estimation procedure performs well in both simulations and real data analyses. Two approaches to
calculate patient weight, a model-based propensity method and a direct weight calculation, result in comparable perfor-
mance in our settings. Given that subject-level data are not always available, this finding provides reassuring prelimi-
nary evidence that population-level summary data can be just as accurate and efficient as subject-level data. Though
not a common practice, availability of subject-level data allows the model-based propensity model to take full advantage
of the joint distribution by incorporating high-order terms in the model. The entropy algorithm can, in theory, also bal-
ance higher-order terms by including additional constraints. However, higher-order summary data are less frequently
reported when only summary data are available.

●
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FIGURE 6 Treatment effect estimate from EXPEDITION1/2 and weighted treatment effect estimate from EXPEDITION1. Shown in the

figure are point estimate (standard error) and 95% confidence interval
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Weight calculation is just one of many components to consider in the estimation procedure. Other consider-
ations include, among others, the type of model used to describe differences in patient characteristics, characteristic
selection for the propensity/entropy model, and whether and how to trim weights. We used a logistic model for its
popularity and simplicity, but more advanced machine learning algorithms have been proposed and demonstrated
to be advantageous.50 Future work can explore novel balancing methods and investigate the benefit of balancing
not only the first moment but higher-order moments and interactions. The limitations of an entropy model
approach should also be studied to understand when population-level data may not be adequate. Also, for simplic-
ity, we did not conduct characteristic selection in weight calculation. This can be less of a concern to achieve a good
balance, but it could be at a cost of higher variability. Finally, weight trimming by itself warrants further investiga-
tion. We consider a fixed upper bound and a percentile-based trimming strategy in the simulations, and the result
varies from one to another. Moreover, our simulations also suggest the success of trimming depends on the charac-
teristics that contribute either to selection bias, treatment heterogeneity or both. A flexible trimming strategy should
be developed and tested so that the degree of trimming can be adapted on a case-by-case basis. Development of diag-
nostic tools to guide weight adjustment decisions in a principled manner would further help practitioners make
sound choices related to weight adjustments.

In this study, we also conclude the estimated propensity is more efficient than the known propensity. As counter-
intuitive as it seems that knowing the truth is not as efficient as estimating it, this finding mirrors earlier results by
Rosenbaum47 and Rubin and Thomas.48 Although this finding gives some reassurance, one caveat to keep in mind is
that any estimation carries the risk of violating certain underlying assumptions (e.g., the unmeasured confounder
assumption).14,29 Our simulations did not assess the effects of such violations.

Despite the encouraging outcomes in simulations and real data analysis, there are some methodological limita-
tions that have not been fully addressed in the current study. For instance, we established the effectiveness of the
weighting method but did not compare it to other competing methods, such as targeted maximum likelihood esti-
mation51 or Bayesian additive regression trees.52 Moreover, while the target population used in our real data analy-
sis is clearly defined, the definition and specificity of a target population may not be well described in real practice
settings. Insurance and registry databases can be used to define the profile of a target population, but these data-
bases are also subject to their own selection biases. Finally, the inclusion/exclusion criteria imposed in clinical trials
inevitably create a barrier from the real world population. For instance, Malatestinic et al.53 reported 28.7% of psori-
asis patients in the U.S. Department of Defense healthcare database were not eligible to enroll in clinical trials due
to the inclusion/exclusion criteria commonly implemented in psoriasis studies. Attempting to extrapolate trial
results beyond the patient population that is representative of the target population could introduce model bias and
inflate variability. From practicality point of view, data collected in a routine practice could fundamentally differ
from that in trail setting due to mandated participation and drug adherence. More importantly, critical confounding
factors, such as clinical or disease-specific characteristics, are less routinely collected in real world databases, like
insurance claims.

In summary, we have found simple generalization estimators to have great practical potential. In exploring several
options for constructing such estimators, we find that propensity-based weights are intuitive and synergistic with para-
metric estimators (particularly when the parametric models are correctly specified), and entropy-based weights are
more adaptable to limited data availability and perform well when utilized in nonparametric estimators. In both cases,
we should avoid weight trimming when treatment effect heterogeneity and selection are strongly influenced by the
same set of covariates. Future development of diagnostic tools may identify such situations when weight trimming
safely provides efficiency gains.
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