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Background. Wumei pill (WMP) has a long history of colitis treatment in China, but the protective mechanisms have not been
elucidated. To uncover the potential mechanisms of WMP against ulcerative colitis (UC), the network pharmacology approach
was utilized in this study. Methods. Public databases were utilized to identify the potential targets of WMP and genes related to
UC. Based on the identified overlapping common targets, drug-ingredient-target gene network, Gene Ontology (GO) analysis,
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein-protein interaction (PPI) analysis were conducted.
Molecular docking was carried out to verify the selected key active ingredients and core targets. Results. 129 active ingredients
and 622 target genes were obtained. The drug-ingredient-target gene network revealed 52 active ingredients of WMP acting on
73 targets related to UC. GO analysis revealed that biological processes were mainly associated with oxidative stress, such as,
reactive oxygen species metabolic processes, response to oxidative stress, cellular response to oxidative stress, response to
reactive oxygen species, and regulation of reactive oxygen species metabolic processes. KEGG analysis revealed that the
immune- and inflammation-related pathways, tumor-related signaling pathways, and microbial infection-related signaling
pathways were the most significant. PPI network identified 13 core target genes. The molecular docking results indicated the
formation of stable bonds between the active ingredients and core target genes. Conclusions. The approach of network
pharmacology reveals the key ingredients, potential core targets, and biological process of WMP in the treatment of UC. The
mechanisms of action of WMP involve anti-inflammation, antioxidation, and modulation of immunity, which provides
evidence for the therapeutic role of WMP in UC.

1. Introduction

Ulcerative colitis (UC) is an inflammatory bowel disease char-
acterized by relapsing and remitting mucosal inflammation
[1]. Globally, the incidence of UC is increasing, with 24.3/
100,000 in Northern Europe [2]. UC results in a heavy socio-
economic burden, with annual costs of $8.1–$14.9 billion in
the United States and €12.5–29.1 billion in Europe [3]. UC is
a dynamic disease with severity that can change over time
[4], and the etiologies have not been fully elucidated. The ther-
apeutic armamentarium for UC is expanding [1]; however,

common therapies have been reported to be far less effective
than ideal [5].

Chinese herbal medicine (CHM) has been widely used in
colitis treatment in China, with potential benefits including
high efficacy, safety, and relatively low economic costs [6].
Since CHM prescriptions contain complex compounds, they
often have variousmultitargeted and synergistic effects.Wumei
pill (WMP) originated from ShangHan Za Bing Lun (200–210,
AD) with10 herbs (Wumei (Mume Fructus), Xixin (Asari
Radix Et Rhizoma), Guizhi (Cinnamomi Ramulus), Huanglian
(Coptidis Rhizoma), Huangbai (Coptidis Rhizoma), Danggui
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(Angelicae Sinensis Radix), Rensen (Panax Ginseng C. A.
Mey.), Huajiao (Zanthoxyli Pericarpium), Ganjiang (Zingiberis
Rhizoma), and Fuzi (Aconiti Lateralis Radix Praeparata)) and
has been widely used to treat UC in clinical practice. Evidence
from meta-analysis suggested that the clinical efficacy of com-
bined use of WMP with conventional medicine is better than
that of conventional medicine alone [7]. Despite its clinical
effectiveness, the potential mechanisms of WMP on UC are
not yet explained.

Network pharmacology is a priori analytical approach
that combines system network analysis with pharmacology
and can efficiently elucidate the relationship between drugs,
compounds, diseases, and targets [8, 9]. Thereby, network
pharmacology was utilized to explore the potential mecha-
nisms of WMP against UC in this study. Figure 1 illustrates
the workflow.

2. Methods

2.1. Active Ingredient and Target Gene Screening. A systematic
search was conducted in Traditional Chinese Medicine Sys-
tems Pharmacology (TCMSP) database (https://tcmspw
.com/tcmsp.php) [10] to obtain ingredients of WMP. The oral
bioavailability ≥ 30% and drug-likeness ≥ 0:18 were estab-
lished as screening criteria [10].

Target genes corresponding to WMP that obtained from
TCMSP were imported into UniProt (https://www.uniprot
.org/) [11] to obtain standard gene symbols.

2.2. Acquisition of UC-Related Target Genes. Targets related to
UCwere retrieved from the follow public databases: GeneCards
database (https://www.genecards.org/), PharmGKB database
(https://www.pharmgkb.org/), OMIM database (https://omim
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Figure 1: Workflow of the study.
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.org/), TTD database (http://bidd.nus.edu.sg/group/cjttd/), and
DrugBank database (https://www.drugbank.ca/). Targets from
GeneCards with the relevance score ≥ 5 were screened out [12].

2.3. Drug-Ingredient-Target Network Construction. Intersec-
tions of target genes for drugs and diseases were obtained
through a Venn diagram, and the overlapping genes were
considered potential targets of WMP for UC. Cytoscape
3.7.2 software was utilized to establish the drug-ingredient-
target network [13].

2.4. Analysis of GO and KEGG Pathway. To further investi-
gate the biological characteristics of WMP on UC, analysis
of GO and KEGG pathway was carried out using the cluster-
Profiler package [14] in R 4.0.5 software. P < 0:05 was con-
sidered statistically significant.

2.5. PPI Network Construction and Core Gene Screening. PPI
analysis was carried out in STRING database (https://string-
db.org/) [15] and visualized with Cytoscape 3.7.2 software.
The minimum required interaction score was set as the “high-
est confidence (0.400).” The core genes were screened through
Cytoscape plugin cytoHubba [16] by calculate betweenness
centrality, closeness centrality, degree centrality, eigenvector
centrality, network centrality, and local average connectivity.
The target nodes with all six parameters above the corre-
sponding median value in the PPI network were reserved to
build a new PPI network for core gene screening.

2.6. Verification through Molecular Docking. Molecular
docking was performed to validate the compound-target
associations. Structures of compounds were downloaded
from the PubChem (https://pubchem.ncbi.nlm.nih.gov/)
[17], and the macromolecular protein target receptors were
downloaded from the RCSB PDB (http://www.rcsb.org/)
[18]. Molecular docking was performed by AutoDock Vina
[19]. The value of the Vina score less than “−5” indicates a
good binding interaction between the compound and target
[20], and the results were visualized using PyMOL [21].

3. Results

3.1. Active Ingredients and Target Genes. From the TCMSP
database, a total of 129 active ingredients were identified,
including 8 ingredients of Wumei, 8 of Xixin, 7 of Guizhi, 14
of Huanglian, 37 of Huangbai, 2 of Dangui, 22 of Rensen, 5
of Huajiao, 5 of Ganjiang, and 21 of Fuzi. Moreover, 1927 tar-
get genes were obtained and subsequently uploaded to Uni-
Prot to obtain standard gene symbols. After eliminating the
redundancy, 1710 target genes were identified finally. Details
of the 129 active ingredients and the 1710 target can be found
in supplementary A and supplementary B, respectively.

3.2. Target Genes Related to UC. In total, 5273 target genes
were identified, including 549 from the GeneCards, 3 from
OMIM, 15 from PharmGKB, 15 from TTD, and 189 from
DrugBank. After eliminating the redundancy, 622 target
genes were obtained finally. Details of the 622 target genes
can be found in supplementary C.

3.3. Construction of Drug-Ingredient-Target Gene Network.
A Venn diagram (Figure 2) identified 73 overlapping genes.
Subsequently, a drug-ingredient-target gene network was
constructed, which included 52 ingredients, 73 target genes,
136 nodes, and 308 edges (Figure 3).

3.4. GO and KEGG Pathway Analyses. The results of GO and
KEGG pathway analyses were visualized in Figure 4. Based on
the biological processes, the targets were mainly enriched in
reactive oxygen species metabolic process, cellular response
to chemical stress, response to drug, response to oxidative
stress, cellular response to oxidative stress, response to reactive
oxygen species, response to lipopolysaccharide, regulation of
reactive oxygen species metabolic process, response to toxic
substance, and response to nutrient levels. The top 10 signifi-
cantly enriched pathways contained pathways in cancer, lipid
and atherosclerosis, fluid shear stress and atherosclerosis,
AGE-RAGE pathways, TNF pathways, IL-17 pathways, and
microbial infection-related pathways.

3.5. PPI Network and Core Gene Analysis. A PPI network
with 73 nodes and 2150 edges was obtained in STRING.
Through Cytoscape plugin cytoHubba, the results of the first
screening found 32 nodes and 440 edges. For the second
screening, a dense region network with 13 nodes and 78
edges was obtained. The 13 core target genes included
CCL2, HIF1A, JUN, NFKBIA, MMP9, CXCL8, IL1B,
TP53, AKT1, IFNG, PPARG, PTGS2, and ICAM1. Details
are presented in Figure 5.

3.6. Molecular Docking Analysis. With molecular docking,
the results showed that all values of the Vina score less than
“−5,” suggesting that the key active ingredients have good
binding ability with the core target genes (Figure 6, Table 1).

4. Discussion

UC is an urgent global public health concern. Although con-
ventional drugs such as 5-aminosalicylates, hormones, and
immunosuppressive agents have played a good role in the
treatment of UC, they still failed to achieve ideal effects
and were often accompanied by side effects [5]. In China,
CHM prescriptions have been widely used to treat UC and
show beneficial preventive and therapeutic effects [6]. How-
ever, complex components and targets also pose a challenge
for mechanistic researches [22]. Through the method of

Disease Drug

549 73 134

Figure 2: Venn diagram of targets from WMP and UC.
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Figure 3: Drug-ingredient-target gene network of WMP.
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Figure 4: Results of GO and KEGG pathway analyses.
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network pharmacology, the targets and specific mechanisms
of CHM prescriptions on diseases can be more clearly
defined, which is of great value for the research and develop-
ment of natural medicines. Therefore, in this study, network
pharmacology was applied to uncover the mechanisms of
WMP against UC. The results suggested that 52 active ingre-
dients of WMP act on 73 UC-related targets. Further analy-
sis revealed that multiple biological processes were involved,
such as reactive oxygen species metabolic processes, cellular
responses to chemical stress, and responses to oxidative
stress. And WMP might have effects on the outcomes of
UC through the IL-17 pathway, TNF pathway, AGE-RAGE
pathway, and cancer-related pathways.

For the targets of WMP on UC, GO analysis showed that
the enriched biological processes were mainly focused on
oxidative stress. Oxidative stress stems from the altered bal-
ance between reactive oxygen species production and the
ability to rapidly detoxify reactive intermediates [23], and
excess ROS can destroy oxidizable biomolecules and form
lipid peroxidation products, which in turn disrupt cell mem-

brane function and structure [24, 25]. Thus, oxidative stress
is one of the triggering factors for UC development [26, 27].
Furthermore, increased oxidative stress is associated with
mucosal inflammation in UC, and it may be a contributing
factor to the progression to malignancy associated with this
disease [23]. Importantly, inhibition of oxidative stress in
colon tissues has been reported to have beneficial effects on
lowering intestinal inflammation and altering the gut micro-
biome diversity [28]. Results of this study revealed that
WMP is mainly involved in regulating oxidative stress; thus,
it can be considered a potential option for the UC treatment.
For KEGG analysis, the most significant pathways are all
associated with oxidative stress, namely, pathways in cancer
[29], lipid and atherosclerosis [30], and fluid shear stress and
atherosclerosis [31]; AGE-RAGE pathway [32]; TNF path-
way [33]; IL-17 pathway [34]; and microbial infection-
related pathways [35]. Moreover, most of the signaling path-
ways are also involved in immune and inflammatory
responses, which are closely related to UC. For example,
IL-17, which is secreted by T17 cells, acts as a key mediator
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Figure 5: Process of topological screening for the PPI network. (a) PPI network from STRING visualized with Cytoscape. (b) PPI network of
more significant proteins extracted from (a) by filtering 6 parameters: BC, CC, DC, EC, NC, and LAC. (c) Core PPI network of core targets
extracted from (b).
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Figure 6: Continued.
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Figure 6: Continued.
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Figure 6: Continued.
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Figure 6: Continued.
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in the pathogenesis of intestinal inflammation [36]. Further-
more, IL-17 can be promoted by IL-23 to increase, thus
forming the IL-23/17 axis to amplify the inflammatory
response [37]. By producing antimicrobial peptides, IL-17A
can also be involved in amplification of inflammatory
responses and regulation of mucosal barrier function [38].

PPI network was constructed to explore the key active
ingredients and core targets. The results revealed that quer-
cetin, kaempferol, ginsenoside rh2, frutinone A, and dia-
nthramine were the key active ingredients of WMP in the
treatment of UC. Previous studies have shown that these key
active ingredients have antioxidant and anti-inflammatory
effects and can modulate the immune system at the molecular
level [39]. It is reported that quercetin administration can
reduce the levels of TNF-α and lipocalin-2 mRNA and
enhance the expression of Slip protein, which in turn inhibits
inflammation in UC organoids [40]. Kanagol has the property
of protecting endothelial cells from oxidative damage, which
in turn can be used to treat inflammatory diseases [41]. Simi-
larly, ginsenosides have benefits in enhancing immunity and
can be involved in regulatory processes of inflammation by
affecting the immune system [42]. Moreover, CCL2, HIF1A,
JUN, NFKBIA, MMP9, CXCL8, IL1B, TP53, AKT1, IFNG,
PPARG, PTGS2, and ICAM1 were identified as core targets.

CCL2 and CXCL8 belong to a family of chemokines, which
are mainly involved in immunoregulatory and inflammatory
processes [43]. HIF1A acts as a master regulator of cellular
and systemic homeostatic responses to hypoxia and has a reg-
ulatory role in intestinal mucosal inflammation in UC patients
[44]. For JUN, it has been confirmed to improve gastrointesti-
nal mucosal conditions in UC patients by modulating JUN-
related pathways [45]. NFKBIA encodes a member of the
NF-κB inhibitor family, which plays a key role in inflamma-
tion, oxidative stress, and immunity [46]. Expression of
MMP9 is elevated in UC, and MMP9 inhibitors are a promis-
ing therapeutic strategy for the treatment of UC patients with
MMP9 upregulation [47]. IL-1B is a member of the interleu-
kin 1 cytokine family, and UC is largely the result of cytokines
such as IL-1B promoting inflammatory responses [48]. TP53
is a tumor suppressor protein; a previous study indicated that
alterations in TP53 may be an early biomarker of a progressor
colon and that TP53 is accumulated early in UC-related carci-
nogenesis [48]. Similarly, AKT1 has been confirmed to have a
relationship between UC and colon adenocarcinoma [49].
IFNG encodes a soluble cytokine, and it can be used as a blood
marker for antitumor necrosis factor therapy in IBD patients
[50]. PPARG is closely related to oxidative stress, and partial
PPAR-γ agonists may be a new target for UC treatment [51].

(m)

Figure 6: Molecular docking models. (a) CCL2, (b) HIF1A, (c) JUN, (d) NFKBIA, (e) MMP9, (f) CXCL8, (g) IL1B, (h) TP53, (i) AKT1, (j)
IFNG, (k) PPARG, (l) PTGS2, and (m) CAM1.
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PTGS is responsible for prostaglandin biosynthesis involved in
inflammation and mitosis, and it has been identified as crucial
genes related to UC [52]. Similarly, ICAM1, which is typically
expressed on endothelial cells and cells of the immune system,
has been also identified as crucial genes related to UC by bio-
informatics analysis [52].

Furthermore, the molecular docking validation results
showed that the key active ingredients had good binding
ability to the core target genes, indicating that the potential
mechanism of WMP for UC treatment revealed by the net-
work pharmacology approach is reasonable.

Limitations must be acknowledged. First, the use of net-
work pharmacology to reveal the mechanism of WMP in the
treatment of UC is an in silico prediction method; thus, further
in vivo experimental validation is required to support the reli-
ability of the prediction results. Furthermore, the application
of network pharmacology in CHM research is only in its
infancy; further integration of multiple disciplines such as bio-
informatics, computer science, and pharmacology needs to be
promoted to improve the scientificity of research methods.

5. Conclusion

The approach of network pharmacology reveals the key ingre-
dients, potential core targets, and biological process of WMP
in the treatment of UC. The mechanisms of action of WMP
involve anti-inflammation, antioxidation, and modulation of
immunity, which provides evidence for the therapeutic role
of WMP in UC.
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