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Purpose: The aim of the present study was to screen differential metabolites of gastric can-
cer (GC) and identify the key metabolic pathways of GC.
Methods: GC (n=28) and matched paracancerous (PC) tissues were collected, and
LC-MS/MS analysis were performed to detect metabolites of GC and PC tissues. Metabo-
lite pathways based on differential metabolites were enriched by MetaboAnalyst, and genes
related to metabolite pathways were identified using the KEGGREST function of the R soft-
ware package. Transcriptomics data from The Cancer Genome Atlas (TCGA) was analyzed
to obtain differentially expressed genes (DEGs) of GC. Overlapping genes were acquired
from metabonimics and transcriptomics data. Pathway enrichment analysis was performed
using String. The protein expression of genes was validated by the Human Protein Atlas
(HPA) database.
Results: A total of 325 key metabolites were identified, 111 of which were differentially ex-
pressed between the GC and PC groups. Seven metabolite pathways enriched by Metabo-
Analyst were chosen, and 361 genes were identified by KEGGREST. A total of 2831 DEGs
were identified from the TCGA cohort. Of these, 1317 were down-regulated, and 1636
were up-regulated. Twenty-two overlapping genes were identified between genes related
to metabolism and DEGs. Glycerophospholipid (GPL) metabolism is likely associated with
GC, of which AGPAT9 and ETNPPL showed lower expressed in GC tissues.
Conclusions: We investigated the tissue-based metabolomics profile of GC, and several
differential metabolites were identified. GPL metabolism may affect on progression of GC.

Introduction
Gastric cancer (GC) is one of the most common malignant tumors and ranks fifth as the cause of death
among 36 cancers in the world [1]. Approximately 50% of cancer patients in China have gastrointestinal
tumors, mainly in GC, and the 5-year survival rate is less than 35% [2]. GC has a multistep progression [3].
The 5-year survival rate of patients with advanced GC is less than 20%, but it may reach more than 90%
if it only invades the mucosal or submucosal layer [4]. However, GC has no specific clinical symptoms in
the early stage, and most patients are in the middle and advanced stage when diagnosed, which leads to a
poor prognosis. Therefore, it is imperative to explore the mechanism of GC and identify biomarkers for
early diagnosis.

Metabolomics is a novel technique that explores the biological states of metabolites in tissue extracts
and body fluids such as plasma, serum and urine [5,6] and has been used to characterize metabolic disor-
ders and identify potential biomarkers of various cancers [7–9]. Early studies on GC using metabolomics
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were mainly performed on plasma [10–12], serum [13,14], and urine [15] samples, and there were few studies involved
in GC tissues. Metabolic profiling of patients with GC using tissue samples with and without lymph node metastasis
(LNM) was performed, and some differential metabolites were identified as potential factors for the diagnosis and
prognosis of GC patients with or without LNM [16]. The present study aimed to screen differential metabolites and
reveal metabolic pathways related with GC with the help of transcriptomics data from TCGA.

Materials and methods
Patient selection
Patients recruited in the study were diagnosed with GC according to results of a gastroscopy examination and a biopsy.
Inclusion criteria included (i) aged between 20 and 80 years old, both male and female; (ii) primary tumor; and (iii)
no previous treatment for cancer such as radiation, operation, and chemoradiotherapy. Exclusion criteria included (i)
metabolic disease including hyperlipoidemia, diabetes mellitus and gout; (ii) congenital diseases; (iii) severe gastric
cancer (survival < 2 months); and (iv) distant metastases.

The present study was approved by the Ethics Committee of Henan Provincial People’s Hospital, and all subjects
provided informed consent. The registration number is ChiCTR2100041912.

Sample collection
GC and matched paracancerous (PC) tissues were collected from dissected specimens of patients undergoing radical
gastrectomy of the same anatomical region and they were obtained from mucosa to muscle layers but serosa was
removed. PC tissues were 5 cm from the cancer tissues. Samples were washed immediately with phosphate buffered
saline and frozen in liquid nitrogen and stored at −80◦C. The pathological stages were determined based on the
tumor node metastasis (TNM) staging system from the American Joint Cancer Committee/Union for International
Cancer Control (AJCC/UICC).

Preparation and LC-MS/MS analysis of tissue samples
Prior to analysis, 50 mg of the tissue sample was weighed and 1000 μl of extract solution (acetonitrile: methanol:
water = 2:2:1, with an isotope-labeled internal standard mixture) was added. After vortexing for 30 s, samples were
grind for 4 min and homogenized by sonicating for 5 min in an ice-water bath. These steps were repeated three more
times. Samples were incubated for 1 h at −40◦C and centrifuged at 12000 rpm for 15 min at 4◦C. The supernatant
was transferred to a fresh glass vial for analysis.

LC-MS/MS analysis were performed using an ultra-high-performance liquid chromatography (UHPLC) system
(Vanquish, Thermo Fisher Scientific) with a UPLC BEH amide column (2.1 mm * 100 mm, 1.7 μm) coupled to
the Q Exactive HFX mass spectrometer (Orbitrap MS, Thermo). The mobile phase was composed of 25 mmol/L
ammonium acetate and 25 ammonia hydroxide in water (pH 9.75) and acetonitrile [17]. The injection volume was 3
ml and the auto-sampler temperature was 4◦C. The Q Exactive HFX mass spectrometer was used to acquire MS/MS
spectra in information-dependent acquisition (IDA) mode in the control panel of the acquisition software (Xcalibur,
Thermo). In this mode, the acquisition software continuously evaluated the full-scan MS spectrum. The ESI source
conditions were set as follows: sheath gas flow rate: 25 Arb, Aux gas flow rate: 20 Arb, capillary temperature: 350◦C,
full MS resolution: 60000, MS/MS resolution: 7500, collision energy: 10/30/60 in NCE mode, and spray voltage: 3.6
kV (positive) or -3.2 kV (negative).

Data preprocessing and annotation
The original data were converted to mzXML format by ProteoWizard and R package XCMS (version 3.2) [18].
An in-house program was used for peak detection, extraction, alignment, and integration. Then an in-house MS2
database (BiotreeDB, V2.1) was used for in metabolite annotation [18]. The cutoff for annotation was set at 0.3.

Statistical analysis
The data were processed using the SIMCA 16.0.2 software package (Sartorius Stedim Data Analytics AB, Umea,
Sweden) [19,20] for principal component analysis (PCA) and orthogonal projections to latent structures-discriminant
analysis (OPLS-DA). As an unsupervised pattern recognition method, PCA shows the distribution of origin data and
general separation. OPLS-DA was used to obtain maximal covariance between variables and the sample category in
both positive and negative models. Seven-fold cross-validation and 200 permutation tests were used to estimate the
robustness and the predictive ability of our model [21].
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Table 1 The characteristics summary of subjects

Characteristics Patients (n=28)

Age (years, means +− SD) 60 +− 9

Gender (female/male) 9/19

Weight (kg, means +− SD) 58.6

Height (m, means +− SD) 1.65

BMI (kg/m2, means +− SD) 21.62

Hobbies

Smoking 15

Drinking 10

Tumor localizations, no

Cardia 5

Fundus of stomach 1

Body of stomach 5

Lesser curvature 8

Antrum 9

Pathologic tumor stages, no

I (IA, IB) 1

II (IIA, IIB) 7

III (IIIA, IIIB) 10

IV (IVA, IVB) 10

Note: BMI, body mass index.

Variables with variable importance in the projection (VIP) > 0.5 were defined as key metabolites. MetaboAnalyst
(https://www.metaboanalyst.ca/) was used to perform a search for metabolite pathways based on key metabolites, and
metabolite pathways that satisfied the condition of P<0.05 were chosen for further analysis.

Integration of metabolomics and transcriptomics data
Genes related to metabolite pathways were identified using the KEGGREST function of the R software package.
GC transcriptomic data were obtained from The Cancer Genome Atlas (TCGA) and comprised 375 GC and 32
non-tumor tissues. The DESeq2 R package was used to conduct normalization and differential gene expression anal-
ysis, and we specified |log2FC| (fold change) > 2 and the P value < 0.05 as cutoffs to identify differentially expressed
genes (DEGs). A Venn diagram was generated by VENNY 2.1 to obtain overlapping genes.

Identification of key signaling pathways, genes, and metabolites
String (https://string-db.org/) was used to find Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indi-
cating the interaction between proteins. KEGG pathways were obtained using String to identify signaling pathways
enriched by overlapping genes. The diagram of the metabolic pathway with the minimum value, glycerophospholipid
(GPL) metabolism, for the false discovery rate (FDR) was drafted. The protein expression of genes related to GPL
metabolism between GC and normal tissues was determined using immunohistochemistry (IHC) from the Human
Protein Atlas database (HPA) (https://www.proteinatlas.org/).

Results
Baseline clinical characteristics of patients
A total of 28 GC tissues and 28 matched PC tissues were collected. Characteristics of subjects were showed in Table
1, including age, gender, weight, height, body mass index (BMI), hobbies, types of tumor localization, and pathologic
tumor stages.

Metabolic profiles of gastric cancer
An overview of the study profile is shown in Figure 1. A total of 4893 peaks (negative ion mode: 2163, positive ion
mode: 2730) were obtained, and 485 metabolites (negative ion mode: 145, positive ion mode: 340) were identified.
There were different mass spectrum peaks identified between the GC and PC groups, as shown in Supplementary
Figure S1. Examination of the PCA score plots (Supplementary Figure S2a–d) showed that most of the samples were
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Figure 1. An overview of study profile for identifying metabolites and metabolic pathways of GC

within a 95% confidence interval (CI) but failed to provide satisfactory separation of data. Permutation tests of the
OPLS-DA models for the two groups were carried out to prevent overfit of models (Supplementary Figure S2e and
S2f), and the results showed that the models have good predictability and do not overfit.

A total of 325 key metabolites (Supplementary Table S1) were identified under the condition of VIP > 0.5. Of
these metabolites, there were 35 significantly different peaks (27 up-regulated and 8 down-regulated) in the negative
ion model, and 76 significantly different peaks (29 up-regulated and 47 down-regulated) in the positive ion model
(P<0.05 and VIP > 1, Figure 2A,B).

Pathway enrichment analysis
Pathway enrichment analysis was performed to identify signaling pathways related to key metabolites. A total of 48
metabolic pathways were found (Figure 2C and Table 2); of these, seven were chosen (P<0.05) for further anal-
ysis, including alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthe-
sis, glycerophospholipid metabolism, pantothenate and CoA biosynthesis, purine metabolism, arginine and proline
metabolism and sphingolipid metabolism. The KEGGREST function of the R software package was used to identify
genes involved in the seven metabolite pathways, and 361 genes were obtained after removal of duplicates (Supple-
mentary Table S2).

Differentially expressed genes in GC
To explore genes related to the metabolism of GC and establish relationships between genes and metabolites, DEGs
between GC and non-tumor tissues from the TCGA were screened. A total of 2831 DEGs were identified as shown
in Figure 2D, of which 1195 were down-regulated and 1636 were up-regulated. 878 DEGs were failed to be identified
as gene, then excluded. So, 1953 DEGs were included in further analysis.
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Figure 2. Integration analysis of metabolomics and transcriptomics data

(A) Volcano plots derived from negative ion mode of GC patients. (B) Volcano plot derived from positive ion mode of GC patients. The

red and blue points represented up-regulated and down-regulated genes, respectively. (C) Bubble analysis of metabolic pathways

between GC and PC groups. Ordinate showed the significance and abscissa represented the impact of pathway. (D) Volcano plot

of DEGs from TCGA. The red and blue points represented up-regulated and down-regulated genes, respectively. (E) Venn diagram

of metabolic pathways related genes and DEGs. (A) represented genes related with metabolites and (B) indicated DEGs obtained

from TCGA.

Potential biomarker analysis
To explore the relationship between metabolites and genes, we looked for overlap between genes related to metabolites
and DEGs obtained from the TCGA cohort and found 22 gene were overlapping genes (Figure 2E and Table 3). String
was used to explore the interaction networks of 22 overlapping genes, and 23 pathways were enriched in total (Table
4). GPL metabolism with the minimum FDR value contains six genes (PLA2G2C, PLA2G4D, PLA2G12B, ETNPPL,
DGKB, and AGPAT9) and two metabolites (acetylcholine and triethanolamine) and is considered a pathway that
affects the progression of GC. The six genes and two metabolites in GPL metabolism were down-regulated (Figure
3). Moreover, the IHC staining obtained from the HPA database showed lower expression of ETNPPL and AGPAT9
in GC tissue than in normal tissues (Figure 4).

Discussion
In the present study, we performed metabolic profiling of GC using GC and PC tissues and found that certain metabo-
lites were significantly different. Twenty-two genes related to metabolites were identified based on metabolomics anal-
ysis with the help of TCGA transcriptomics data. GPL metabolism, which involves in six genes (PLA2G2C, PLA2G4D,
PLA2G12B, ETNPPL, DGKB, and AGPAT9) and two metabolites (acetylcholine and triethanolamine), is likely asso-
ciated with GC. The protein expression of AGPAT9 and ETNPPL were decreased in GC tissues.

The occurrence and development of cancers are dependent on molecular alterations and multiple of omics tech-
nologies, including metabolomics, transcriptomics, genomics and proteomics, have been performed to elucidate the
mechanisms of cancer [22]. Transcriptomics analysis of cancers provides an orthogonal perspective for the expression
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Table 2 Details of pathway analyses based on metabolomics data

Pathway description Total Count P.value FDR

Alanine, aspartate, and glutamate metabolism 28 9 0.0008 0.0681

Phenylalanine, tyrosine, and tryptophan biosynthesis 4 3 0.0033 0.1389

Glycerophospholipid metabolism 36 9 0.0056 0.1459

Pantothenate and CoA biosynthesis 19 6 0.0069 0.1459

Purine metabolism 65 12 0.0187 0.3138

Arginine and proline metabolism 38 8 0.0251 0.3521

Sphingolipid metabolism 21 5 0.0451 0.5414

Histidine metabolism 16 4 0.0610 0.5987

Phenylalanine metabolism 10 3 0.0641 0.5987

D-glutamine and D-glutamate metabolism 6 2 0.1077 0.9043

Beta-alanine metabolism 21 4 0.1380 0.9817

Arginine biosynthesis 14 3 0.1466 0.9817

Butanoate metabolism 15 3 0.1710 0.9817

Nicotinate and nicotinamide metabolism 15 3 0.1710 0.9817

Aminoacyl-tRNA biosynthesis 48 7 0.1753 0.9817

Cysteine and methionine metabolism 33 5 0.2088 1.0000

Ether lipid metabolism 20 3 0.3044 1.0000

Pyrimidine metabolism 39 5 0.3238 1.0000

Glycine, serine, and threonine metabolism 33 4 0.3984 1.0000

Linoleic acid metabolism 5 1 0.3993 1.0000

Arachidonic acid metabolism 36 4 0.4662 1.0000

Pentose and glucuronate interconversions 18 2 0.5324 1.0000

Ascorbate and aldarate metabolism 8 1 0.5579 1.0000

Valine, leucine and isoleucine biosynthesis 8 1 0.5579 1.0000

Taurine and hypotaurine metabolism 8 1 0.5579 1.0000

Citrate cycle (TCA cycle) 20 2 0.5912 1.0000

Ubiquinone and other terpenoid-quinone biosynthesis 9 1 0.6009 1.0000

Propanoate metabolism 23 2 0.6688 1.0000

Biosynthesis of unsaturated fatty acids 36 3 0.6934 1.0000

Glycolysis/Gluconeogenesis 26 2 0.7341 1.0000

Alpha-linolenic acid metabolism 13 1 0.7352 1.0000

Galactose metabolism 27 2 0.7533 1.0000

Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 14 1 0.7610 1.0000

Starch and sucrose metabolism 18 1 0.8416 1.0000

Pentose phosphate pathway 22 1 0.8952 1.0000

Pyruvate metabolism 22 1 0.8952 1.0000

Fatty acid degradation 39 2 0.9051 1.0000

Tyrosine metabolism 42 2 0.9262 1.0000

Folate biosynthesis 27 1 0.9375 1.0000

Phosphatidylinositol signaling system 28 1 0.9437 1.0000

Fatty acid biosynthesis 47 2 0.9519 1.0000

Inositol phosphate metabolism 30 1 0.9542 1.0000

Glyoxylate and dicarboxylate metabolism 32 1 0.9628 1.0000

Amino sugar and nucleotide sugar metabolism 37 1 0.9779 1.0000

Fatty acid elongation 39 1 0.9821 1.0000

Valine, leucine, and isoleucine degradation 40 1 0.9839 1.0000

Primary bile acid biosynthesis 46 1 0.9914 1.0000

Steroid hormone biosynthesis 85 1 0.9999 1.0000

Note: FDR, false discovery rate.

of metabolic genes to investigate metabolism [23]. Some studies combined results of single-level omics with bioinfor-
matics data available from websites, such as the TCGA and GEO, to screen biomarkers or explore the pathogenesis
of cancer. The use of a combination of metabolomics and transcriptomics data from the TCGA or GEO is relatively
frequent. Purine metabolism and related genes AMPD1 and RRM2 were enriched by combining metabolomics and
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Table 3 Overlapped genes among metabolic pathways related genes and DEGs

Genes logFC P.value Genes logFC P.value

CERS3 −3.5985 6.90E-08 ENPP3 −3.1016 1.55E-40

ASAH2 −4.2801 4.32E-62 GPAT3 −2.8780 8.69E-22

ACER1 −6.3393 3.82E-20 DGKB −3.2171 1.49E-15

ENPP7 −3.1016 9.60E-59 PLA2G12B −2.0154 4.38E-06

PSAPL1 2.0386 4.23E-11 PLA2G2C −2.0147 1.31E-15

CKM −3.5381 7.80E-27 PLA2G4D −2.0143 5.44E-10

CKMT2 −3.5353 2.49E-25 ETNPPL −3.0742 1.54E-10

CKB −3.5423 1.22E-17 PAH −2.0414 5.25E-11

NOS1 −2.0788 6.66E-13 GPT −2.8628 1.87E-12

NT5C1A −2.0720 8.39E-15 RIMKLB 2.0639 2.57E-19

AMPD1 −4.8170 3.96E-17 ASPA −4.2283 2.50E-16

Note: FC, fold change.

Table 4 Signaling pathways focused by overlapped genes

ID Pathway description

Observed
gene
count FDR Matching proteins

hsa01100 Metabolic pathways 21 1.08E-22 CKM, NT5C1A, PLA2G2C, ASPA, CERS3,
PLA2G4D, ETNPPL, CKB, ACER1, ENPP7,
RIMKLB, PLA2G12B, GPT, ASAH2, DGKB,
CKMT2, ENPP3, AMPD1, PAH, NOS1, AGPAT9

hsa00564 Glycerophospholipid metabolism 6 3.23E-08 PLA2G2C, PLA2G4D, ETNPPL, PLA2G12B,
DGKB, AGPAT9

hsa00330 Arginine and proline metabolism 4 4.40E-06 CKM, CKB, CKMT2, NOS1

hsa00600 Sphingolipid metabolism 4 4.40E-06 CERS3, ACER1, ENPP7, ASAH2

hsa00592 Alpha-linolenic acid metabolism 3 4.27E-05 PLA2G2C, PLA2G4D, PLA2G12B

hsa00591 Linoleic acid metabolism 3 5.37E-05 PLA2G2C, PLA2G4D, PLA2G12B

hsa00250 Alanine, aspartate, and glutamate metabolism 3 7.80E-05 ASPA, RIMKLB, GPT

hsa00565 Ether lipid metabolism 3 0.00015 PLA2G2C, PLA2G4D, PLA2G12B

hsa00590 Arachidonic acid metabolism 3 0.00029 PLA2G2C, PLA2G4D, PLA2G12B

hsa00220 Arginine biosynthesis 2 0.0015 GPT, NOS1

hsa04071 Sphingolipid signaling pathway 3 0.0015 CERS3, ACER1, ASAH2

hsa04270 Vascular smooth muscle contraction 3 0.0015 PLA2G2C, PLA2G4D, PLA2G12B

hsa00760 Nicotinate and nicotinamide metabolism 2 0.0024 NT5C1A, ENPP3

hsa00230 Purine metabolism 3 0.0037 NT5C1A, ENPP3, AMPD1

hsa04975 Fat digestion and absorption 2 0.0037 PLA2G2C, PLA2G12B

hsa00561 Glycerolipid metabolism 2 0.0071 DGKB, AGPAT9

hsa04014 Ras signaling pathway 3 0.0071 PLA2G2C, PLA2G4D, PLA2G12B

hsa04730 Long-term depression 2 0.0071 PLA2G4D, NOS1

hsa01230 Biosynthesis of amino acids 2 0.0088 GPT, PAH

hsa04972 Pancreatic secretion 2 0.0142 PLA2G2C, PLA2G12B

hsa00240 Pyrimidine metabolism 2 0.0143 NT5C1A, ENPP3

hsa05231 Choline metabolism in cancer 2 0.0143 PLA2G4D, DGKB

hsa04072 Phospholipase D signaling pathway 2 0.0275 PLA2G4D, DGKB

Note: FDR, false discovery rate.

transcriptomics data from the TCGA and GEO in breast cancer [24]. Differential metabolites in non-small cell lung
cancer (NSCLC) were identified that were further verified by transcriptomics analysis of TCGA data, and a fully con-
nected network of metabolites and genes in NSCLC was generated [25]. Sphingolipids were identified in breast cancer
patients, and genes related to metabolism, such as CERK, SPHK1, and SGMS1, were verified by a TCGA cohort [26].
We performed metabolic profiling of GC and several metabolic pathways, and related genes and metabolites were
identified with the help of TCGA transcriptomics data in our study.
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Figure 3. Regulatory pathway diagram of glycerophospholipid metabolism

The blue words represent down-regulation of genes or metabolites in GC.

Metabolomics research is committed to identifying and developing metabolically active targets in cancer therapeu-
tics and pharmacology [27]. Many studies have shown the tremendous potential of metabolomics in GC. The urinary
metabolomic profile of GC was explored and 77 metabolites were identified. A parsimonious biomarker profile of
GC was investigated, and model performance was assessed [15]. Serum metabolites in patients with GC and their
relationship with the prognosis of GC were investigated. Researchers found that three metabolites, 2,4-hexadienoic
acid, 4-methylphenyl dodecanoate, and glycerol tributanoate, were related to the prognosis of GC [28]. Differential
metabolites and metabolic pathways were identified in GC and its adjacent tissues in our study. GPL metabolism was
enriched, and two metabolites involved in GPL metabolism, acetylcholine and triethanolamine, were differently ex-
pressed between the GC and PC groups. Because GPL is the most abundant lipid, its metabolism is closely related to
oncogenesis and progression since the purpose of abnormal lipid metabolism is to synthesize more cell membranes
lipids to meet the needs of the rapid proliferation of cancer cells and their increased demand for energy [29,30]. GPL
metabolism has been reported to be dysregulated in many cancers, including NSCLC [31], melanoma [32], glioma
[33], prostate cancer [34], colorectal cancer [35], and oral squamous cell carcinoma [36]. Therefore, GPL metabolism
is likely associated with GC.

As one of the hallmarks of cancer [37], altered metabolism is regulated by genetic alterations to meet increased en-
ergy demands [38]. Changes in key genes had an impact on metabolic pathways to some extent [39]. A previous study
showed that fatty acid metabolism was enriched by PHTF2 in GC and lipid metabolism regulated by PHTF2 signifi-
cantly affected the tumorigenesis of GC cells [40]. Our study found that six genes (PLA2G2C, PLA2G4D, PLA2G12B,
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Figure 4. Immunohistochemistry of genes related to glycerophospholipid metabolism from the HPA database

(A) ETNPPL in GC (right) and normal tissues (left); (B) AGPAT9 in GC (right) and normal tissues (left).

ETNPPL, DGKB, and AGPAT9) were altered in the GPL metabolic pathway. Researchers suggested that AGPAT9 may
be correlated with cancer risk [41,42]. AGPAT9 is considered a hub gene that may exhibit significant prognostic poten-
tial for clear cell renal cell carcinoma because of its relation to immune infiltration [43]. A study found that AGPAT9
inhibited proliferation, migration, and invasion of breast cancer cell indicated that increasing AGPAT9 expression
may be a new approach for breast cancer treatment [44]. ETNPPL is underexpressed in primary glioblastoma (GBM)
and shows potential diagnostic implication for GBM [45]. Overexpression of ETNPPL reduced the growth of glioma
stem cells and ETNPPL expression was inversely correlated to glioma grade [46]. Summarily, AGPAT9 and ETNPPL
are anti-oncogenes of cancer. Our study showed that AGPAT9 and ETNPPL were down-regulated in patients with
GC and participated in the regulation of GPL metabolism, and the protein expression of AGPAT9 and ETNPPL was
lower in GC than in normal tissues, which is consistent with other studies.

There are some limitations of our study. First, the sample size was relatively small, although the GC and PC tissues
were matched. Second, all patients were recruited from a single center, which might limit their generalization. Third,
GC is very heterogenous due to anatomic location, molecular classification, and etiologies, but we failed to group
those factors when identifying metabolites. Stratified analysis based on anatomic location, molecular classification,
and etiologies is worth expecting to identify metabolites and metabolic pathways of GC. Our study may be regarded
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as a preliminary study exploring metabolic characteristics of GC and PC tissues, and further research with a larger
sample, multiple research centers, and verification using other omics technologies is necessary to confirm our results.
In conclusion, we investigated the tissue-based metabolomics profile of GC, and several differential metabolites were
identified. GPL metabolism may affect the progression of GC with the help of TCGA transcriptomics data.
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