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Abstract
COVID-19 first spread fromWuhan, China inDecember 2019 but it has already created one of the greatest pandemic situations
ever witnessed. According to the current reports, a situation has arisen when people need to understand the importance of
social distancing and take enough precautionary measures more seriously. Maintaining social distancing and proper hygiene,
staying at isolation or adopting the self-quarantine strategy are some common habits which people should adopt to avoid
from being infected. And the growing information regarding COVID-19, its symptoms and prevention strategies help the
people to take proper precautions. In this present study, we have considered a SAIRS epidemiological model on COVID-19
transmission where people in the susceptible environment move into asymptotically exposed class after coming contact with
asymptotically exposed, symptomatically infected and even hospitalised people. The numerical study indicates that if more
people from asymptotically exposed class move into quarantine class to prevent further virus transmission, then the infected
population decreases significantly. The disease outbreak can be controlled only if a large proportion of individuals become
immune, either by natural immunity or by a proper vaccine. But for COVID-19, we have to wait until a proper vaccine
is developed and hence natural immunity and taking proper precautionary measures is very important to avoid from being
infected. In the latter part, a corresponding optimal control problem has been set up by implementing control strategies to
reduce the cost and count of overall infected individuals. Numerical figures show that the control strategy, which denotes the
social distancing to reduce disease transmission, works with a higher intensity almost after one month of implementation and
then decreases in the last few days. Further, the control strategy denoting the awareness of susceptible population regarding
precautionary measures first increases up to one month after implementation and then slowly decreases with time. Therefore,
implementing control policies may help to reduce the disease transmission at this current pandemic situation as these controls
reduce the overall infected population and increase the recovered population.
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1 Introduction

The very first case of novel Betacoronavirus was reported in
December 2019 in Wuhan which is capital of Hubei Chinese
province [1–3]. In the first few weeks, most of the cases
were reported around wholesale Huanan seafood market
of Wuhan where live animals are traded [4]. But surpris-
ingly within almost five to six weeks, COVID-19 spread to
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all over the Chinese province and even across the world.
World Health Organisation (WHO), observing the sever-
ity, declared COVID-19 as pandemic on March 17, 2020.
The novel Coronavirus is an RNA virus from Coronaviridae
family with order Nidovirales which is also known as SARS-
CoV-2 [5,6]. Viral pneumonia, fever, dry cough, aches and
pains, tiredness, breathing problems etc. are the main symp-
toms of the disease [1,7–9] though the recent report shows
that loss of smell is another symptom of this disease. The
estimated ‘case fatality ratio’ for the infection is of order
1% which makes it severe [10–13]. Hence, the virus has
become a matter of concern in terms of public health pri-
ority as the virus is completely unknown to the human body
and there is no pre-existing immunity present to resist the
infection. According to the data of the dashboard provided
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by the Center for Systems Science and Engineering (CSSE)
of John Hopkins University (JHU) and also from worldome-
ters, the number of confirmed infected cases, documented
death and recovery cases at June 15, 2020 have reached
almost 8,034,461; 436,901 and 3,857,339 respectively across
the world [14,15]. Among 188 countries, United States
(2,114,026 cases), Brazil (888,271 cases), Russia (536,484
cases), India (343,091 cases), UK (298,315 cases) are facing
worse epidemic situations as the confirmed infected cases
exceed 250,000 there. Particularly, the number of confirmed
Coronavirus cases in the United States is highest as the virus
spreads there at a very higher rate within a small time inter-
val. The number of reported infected cases there increases
from 15 to 2,114,026 till June 15, 2020. Also, US holds the
top position in terms of death cases with number 116,127 but
in case of recovery also, it has the highest number of cases
with 576,334 recoveries. Quarantine strategywas first imple-
mented in Wuhan, China on January 23, 2020 to control the
situation and disease prevalence. According to the reports
of June 15, 2020, China has 84,778 confirmed cases with
the number of documented death and recovery are 4638 and
79,491 respectively. Observing the severity in China, other
countries also call for complete or half national lockdown.
France announced a lockdown on March 17 while United
Kingdom announced on March 23 and even India called for
lockdown on March 25. Observing the data and strategies,
it looks like there is a large number of COVID-19 cases in
India which are not registered due to lack of test kits. More-
over, recent reports reveal that there are many people shown
positive result in COVID-19 test but they have not shown
any kind of symptoms. So, these exposed asymptomatically
infected individuals facilitate the spread of COVID-19 [2].
It is not the first time when zoonotic human Coronavirus
invade in the population; in 2002, severe acute respiratory
syndrome Coronavirus, known as SARS-CoV spread among
37 countries and in 2012, Middle East respiratory syndrome
Coronavirus, known as MERS-CoV, spread among 27 coun-
tries.

In India, first COVID-19 case was confirmed at Kerala
on January 30, 2020 when a student from Wuhan visited the
state. According to NIC, India, there are total 343, 091 con-
firmed cases among which 153, 178 active cases, 180, 013
recoveries and 9, 900 death cases are reported in the coun-
try till June 15, 2020 [16,17]. The Indian government has
announced some vital precaution measures such as to main-
tain social distance, adopt the self-quarantine strategy, use
a face mask, avoid touching faces frequently etc. so that
large-scale disease transmission among the population can be
avoided. In fact, when the number of affected cases crossed
500, the central government implemented a 14-hour long
“Janata curfew" onMarch 22, 2020. Moreover, onMarch 24,
the Government of India announced for a 21-days national
lockdown from March 25 to April 14 to reduce the spread

of COVID-19. But later, realizing the importance of the cur-
rent pandemic situation, the duration of lockdown has been
increased up to May 3, 2020 (Phase 2), then up to May 17,
2020 (Phase 3), then up toMay 31, 2020 (Phase 4) and finally
up to June 30, 2020 (Phase 5). With the fifth phase of lock-
down, the Government has announced unlockdown 1.0 in
some places where the contamination of the disease is below
the risk level. Though the unlockdown comes with a long
list of restrictions, reports of some sources reveal that daily
average of cases and death calculated on weekly basis has
been rising every single week for last 9-10 weeks. Accord-
ing to Worldometers and CSSE at JHU, India has come to
position 4 right below of US, Brazil and Russia in terms
of confirmed cases and even of recovery cases. On the very
first day of unlockdown (June 1, 2020) India reaches to the
peak till that date in terms of newly infected cases in a sin-
gle day which is approximately 8392. Till June 15, 2020,
India has a peak of 12,375 newly infected cases in a single
day (which is reported on June 10). And the second peak
was reported on June 13 with 12,023 newly infected cases
per day [14,15,17]. As there is no vaccine is discovered yet,
so, maintaining social distances or applying self-quarantine
etc. are considered as the most effective prevention strate-
gies [18]. People have been strictly instructed not to step
out from homes except emergency and even if they go out-
side, then they have to maintain a safe distance and always
have to carry face mask and hand sanitizer for hygiene pur-
pose. The rules in lockdown include the closure of all shops
except medical shops, hospitals, banks etc., suspension of all
educational institutions and offices (only work–from–home
and online classes are allowed), suspension of all medium of
transport and also the prohibition on all social activities and
gatherings. The lockdown strategy has helped to some extent
actually. We wish to make slow down the rate of disease pro-
gression through lockdown. It has no doubt that Coronavirus
pandemic has made a global impact in the past few months
and continues to hit most of the sectors. This current outbreak
has severely affected our day to day living both economically
and health-wise. Reports from theWorld Bank and RBI state
that this will be the first time after 1991 when the economic
growth rate in India will be decreased by more than 1.5%–
2.8% due to pandemic outbreak.

There are some literatures containing interesting statisti-
cal results about current COVID-19 outbreak [19–27]. Based
on the data from December 31, 2019 to January 28, 2020,
Wu et al. proposed an SEIR model for coronavirus trans-
mission on both national and global range [28]. Also, Tang
et al. [27] proposed a compartmental model for COVID-19
transmission with a combination of clinical development of
the disease, current status of infected patients and control
measures. According to their results, the control reproduc-
tion number may reach up to 6.47 and the implemented
control policies minimize overall confirmed cases. A report
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submitted by Cambridge University reveals that India’s strat-
egy of announcing 21–days lockdown may not be sufficient
enough to prevent this pandemic outbreak in large scale and
it can bounce back later that results in higher infection [29].
They suggested that the lockdown should be extended further
into two or three phases with five-days or seven-days breaks
in between or a single 49–days lockdown. Though India is
currently under its fifth stage lockdown period which will
continue up to 30th June.

In this manuscript, we have proposed a SAIRS epidemic
model to describe Coronavirus transmission where it is
considered that the susceptible population move into asymp-
tomatically exposed class only after they come in touch with
asymptomatically exposed, symptomatically infected and
even hospitalised people. Also, a portion of the susceptible
population may adopt precautionary measures from the very
beginning so that they can directly move to recovered class.
Population in India is almost 138 crores and so, it is hardly
possible to call for complete lockdown across the country.
Though a proportion of the susceptible population may take
the precautionary measures successfully, the rest of the peo-
ple is going to become infective (either asymptomatically
exposed or symptomatically). Again the recovered people
may move to susceptible class as permanent recovery is not
guaranteed. The following two sections consist of the pro-
posed epidemiological model for Coronavirus transmission
and the positivity and boundedness of the system variables
respectively. In Sect. 4, the basic reproduction number (Rc)

and equilibrium points of the proposed system are derived.
Sensitivity analysis for some vital system parameters and
stability analysis of the equilibria have been performed in
Sects. 5 and 6 respectively. Sect. 7 consists of a theorem stat-
ing that the proposed system undergoes a forward bifurcation
at Rc = 1 around the disease-free equilibrium. The conse-
quent section consists of the pictorial scenarios of the system
dynamics without applying any control interventions. Later,
a corresponding control problem has been set up to obtain
optimal control interventions. Section 10 contains the numer-
ical simulations of the system when the control strategies are
implemented and the last section includes a brief conclusion.

2 Mathematical model: basic equations

In this work, we have proposed a compartmental epidemic
model to analyse the effect of COVID-19 outbreak on the
population worldwide. The total population N (t) at time t
is divided into six subclasses such as susceptible population
(S), asymptomatic individuals who have been exposed to the
virus and have not yet been shown any clinical symptoms of
COVID-19 (A), quarantined individuals (Q), symptomati-
cally infected individuals (I ), hospitalized and even isolated
individuals (H) and recovered population (R). Individu-

als of the susceptible population become exposed when
they come in contact with asymptomatically exposed or
symptomatically infected people or even with hospitalised
individuals through the term (β1A + β2 I + β3H)S where
β1, β2, β3 are the rates of disease transmission per contact
by an asymptomatic exposed, symptomatic infected and hos-
pitalised people respectively. The constant recruitment rate
is denoted as� which is introduced in susceptible class. The
termd denotes the natural death rate in all populationwhereas
δ1, δ2, δ3 are disease-related death rates in asymptomatically
exposed people, symptomatically infected and hospitalised
individuals respectively. It is known that whether a person
is infected by the virus or not can be detected by RT-PCR
examination and according to some reports, a person with
negative results in the test may still be a COVID-19 positive
person as sometimes it takes about 7 to 14 days to develop
symptoms in a body. Sometimes a person’s report turns out
to be positive after two or three tests. Therefore, a portion of
class A is considered as infected which considers the posi-
tive COVID-19 people. The people in the asymptomatically
exposed class can move into either quarantine or symp-
tomatic stage with rates p and η respectively [30] depending
on whether the asymptomatic people become cautious and
take self-quarantine strategy or they develop symptoms at
a very early stage. A quarantined individual is transferred
into the hospitalised (including isolated) class at a rate of
α depending on the development of clinical symptoms. The
terms ω represents the progression rate from symptomatic to
hospitalised stage. Also, ξ andφ are per-capita recovery rates
for the quarantined and hospitalised individuals respectively.
The recovery from the disease does not guarantee permanent
recovery and so some of the recovered people move back
to susceptible class further with rate constant ψ [31]. To
control the current pandemic situation and to spread aware-
ness among individuals, the government have taken certain
protective measures such as announcing lockdown, “Janata
Curfew", spreading the information regarding social isolation
and personal hygiene, implementing work from home pol-
icy during the lockdown etc. Though the government tries
to spread necessary information, everyone does not become
careful enough all the time and insufficient resources, poor
financial condition, heedless nature etc. are some of the rea-
sons in this case. A proportion of susceptible maintains the
regulations and adopts behavioural changes seriously and
moves to the recovered class at a rate κ .

So, the proposed model with positive parametric values
takes the following form:

dS

dt
= � − (β1A + β2 I + β3H)S − dS + ψR − κS,

S(0) > 0,
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Fig. 1 Schematic diagram of system (1)

d A

dt
= C + (β1A + β2 I + β3H)S − pA − ηA − (d + δ1)A,

A(0) ≥ 0,

dQ

dt
= pA − αQ − ξQ − dQ, Q(0) ≥ 0,

d I

dt
= ηA − ωI − (d + δ2)I , I (0) ≥ 0,

dH

dt
= αQ + ωI − φH − (d + δ3)H , H(0) ≥ 0,

dR

dt
= κS + ξQ + φH − ψR − dR, R(0) ≥ 0,

(1)

Themodel considers an average inflowof asymptomatic indi-
viduals into the system with a rate of C per unit time which
includes immigration and emigration of individuals. There
is a continuous inflow of travellers into the region during the
COVID-19outbreaks andbecause of the insufficient effective
screening test, itmay be assumed that some of these travellers
are asymptomatically infected and enter into system at a rate
C per day. For the sake of simplicity, C is considered as zero
in thiswork.A schematic diagramhas been provided in Fig. 1
to get a better insight into the proposed system.

3 Positivity and boundedness

For system (1): the following two theorems prove that the
system variables are positive and bounded for all time. Proofs
of the following two theorems are given in the Appendix.

Theorem 3.1 Solutions of system (1) starting from R
6+ are

positive for all time.

Theorem 3.2 Solutions of system (1) which start fromR
6+ are

bounded for all t > 0.

4 Equilibrium analysis

Solving the isoclines of model (1), we get that the system has
(a) disease-free equilibrium point (DFE): E0(S0, 0, 0, 0, 0,

R0), where S0 = �(d + ψ)

d(κ + ψ + d)
and R0 = �κ

d(κ + ψ + d)
,

and (b) endemic equilibrium point: E∗(S∗, A∗, Q∗, I ∗, H∗,
R∗).

4.1 Basic reproduction number (Rc)

Basic reproduction number Rc is the average number of
newly infected individuals when they come in contact with
a single infected person in susceptible environment. The
method developed by van den Driessche andWatmough [32]
is used here to determine Rc. In system (1), people from sus-
ceptible class move to asymptomatic class which is exposed
to environment when they come in contact with asymp-
tomatically infected (A), symptomatically infected (I ) and
hospitalised people (H). Let us take x ≡ (A, Q, I , H). Let,
α0 = p+η+d + δ1, α1 = α + ξ +d, α2 = ω+d + δ2 and
α3 = φ + d + δ3. Second, third, fourth and fifth equations of
model (1) can be written as:

dx

dt
= F(x) − ν(x),

F(x) =

⎛
⎜⎜⎝

(β1A + β2 I + β3H)S
0
0
0

⎞
⎟⎟⎠ ,

ν(x) =

⎛
⎜⎜⎝

α0A
−pA + α1Q
−ηA + α2 I

−αQ − ωI + α3H

⎞
⎟⎟⎠ ,

where F(x) contains only the compartment containing new
infection term and ν(x) contains rest of the terms. So, corre-
sponding linearizedmatrices ofF(x) and ν(x) at disease-free
equilibrium E0 = (S0, 0, 0, 0, 0, R0) are respectively

F = (DF(x)) (E0) =

⎛
⎜⎜⎝

β1S0 0 β2S0 β3S0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ;
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V = (Dν(x)) (E0) =

⎛
⎜⎜⎝

α0 0 0 0
−p α1 0 0
−η 0 α2 0
0 −α −ω α3

⎞
⎟⎟⎠

The spectral radius of next generationmatrix FV−1, denoted
by Rc, is given by [32]:

Rc = S0
α0α1α2α3

[β1α1α2α3 + β2ηα1α3 + β3(pαα2 + ωηα1)]
(2)

Existence of endemic equilibrium point E∗(S∗, A∗, Q∗,
I ∗, H∗, R∗)
Consider, α0 = p + η + d + δ1, α1 = α + ξ + d, α2 =
ω + d + δ2 and α3 = φ + d + δ3. From system (1) we have

� − (β1A
∗ + β2 I

∗ + β3H
∗)S∗ − (d + κ)S∗ + ψR∗ = 0,

(β1A
∗ + β2 I

∗ + β3H
∗)S∗ − α0A

∗ = 0

pA∗ − α1Q
∗ = 0

ηA∗ − α2 I
∗ = 0

αQ + ωI − α3H
∗ = 0

κS∗ + ξQ∗ + φH∗ − (ψ + d)R∗ = 0.

(3)

Solving these equations, we get S∗ = S0
Rc

, I ∗

= �α1α3η(d + ψ)(1 − 1
Rc

)

(d + ψ)α0α1α2α3 − ψ{pα2(ξα3 + φα) + ωηφα1} ,

A∗ = α2 I ∗

η
, Q∗ = pα2 I ∗

ηα1
,

H∗ = (pαα2 + ωηα1)I ∗

ηα1α3
, R∗ = κS∗ + ξQ∗ + φH∗

d + ψ
.

Theorem 4.1 System (1) has a disease-free equilibrium
E0 (S0, 0, 0, 0, 0, R0) for any parametric values. Further,
for Rc > 1, the system possesses a unique endemic
equilibrium E∗(S∗, A∗, Q∗, I ∗, H∗, R∗) provided (d + ψ)

α0α1α2α3 > ψ{pα2(ξα3 + φα) + ωηφα1}.

5 Sensitivity analysis

For the proposed system, Rc depends on some parame-
ters like recruitment rate (�), disease transmission rates
(β1, β2, β3), disease related death rates (δ1, δ2, δ3), nat-
ural mortality rate (d), progression rate of asymptomatic
people into quarantine and infected classes (p, η), probabil-
ity at which recovered people move into susceptible classes

(ψ), progression rate of quarantined people and symptomatic
infected population into hospitalised class (α, ω), pro-
gression rate of susceptible, quarantined and hospitalised
population into recovered class (κ, ξ, φ). Among all these
parameters, we can control β1, β2, β3, p, ω.

Now, Rc = S0
α0α1α2α3

[β1α1α2α3+β2ηα1α3+β3(pαα2+

ωηα1)], where S0 = �(d + ψ)

d(κ + ψ + d)
, α0 = p + η + d +

δ1, α1 = α + ξ + d, α2 = ω + d + δ2 and α3 = φ + d + δ3.
From the expression of Rc:

∂Rc

∂β1
= S0

α0
> 0

∂Rc

∂β2
= ηS0

α0α2
> 0

∂Rc

∂β3
= S0(pαα2 + ωηα1)

α0α1α2α3
> 0

∂Rc

∂ p
= − S0[β1α1α2α3 + β2ηα1α3 + β3(pαα2 + ωηα1)]

α2
0α1α2α3

< 0

∂Rc

∂ω
= − S0η(β2α3 + β3ω)

α0α
2
2α3

< 0

Next we compute normalized forward sensitivity index with
respect to each of the parameters β1, β2, β3, p and ω to
analyse the sensitivity of Rc (to each of the parameters) by
the method of Arriola and Hyman [33]:

�β1 =
∣∣∣∣∣

∂Rc
Rc

∂β1
β1

∣∣∣∣∣ =
∣∣∣∣
β1

Rc

∂Rc

∂β1

∣∣∣∣

=
∣∣∣∣

β1α1α2α3

[β1α1α2α3 + β2ηα1α3 + β3(pαα2 + ωηα1)]
∣∣∣∣ < 1

�β2 =
∣∣∣∣∣

∂Rc
Rc

∂β2
β2

∣∣∣∣∣ =
∣∣∣∣
β2

Rc

∂Rc

∂β2

∣∣∣∣

=
∣∣∣∣

β2ηα1α3

[β1α1α2α3 + β2ηα1α3 + β3(pαα2 + ωηα1)]
∣∣∣∣ < 1

�β3 =
∣∣∣∣∣

∂Rc
Rc

∂β3
β3

∣∣∣∣∣ =
∣∣∣∣
β3

Rc

∂Rc

∂β3

∣∣∣∣

=
∣∣∣∣

β3(pαα2 + ωηα1)

[β1α1α2α3 + β2ηα1α3 + β3(pαα2 + ωηα1)]
∣∣∣∣ < 1

�p =
∣∣∣∣∣

∂Rc
Rc

∂ p
p

∣∣∣∣∣ =
∣∣∣∣
p

Rc

∂Rc

∂ p

∣∣∣∣ =
∣∣∣∣
p

α0

∣∣∣∣ < 1

�ω =
∣∣∣∣∣

∂Rc
Rc

∂ω
ω

∣∣∣∣∣ =
∣∣∣∣
ω

Rc

∂Rc

∂ω

∣∣∣∣

=
∣∣∣∣

ωηα1(β2α3 + β3ω)

α2[β1α1α2α3 + β2ηα1α3 + β3(pαα2 + ωηα1)]
∣∣∣∣
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From the calculation, it is observed that the disease trans-
mission rates β1, β2 and β3 are directly proportional with
basic reproduction number Rc. It is biologically acceptable
as higher disease transmission rates increase the disease fatal-
ity. On the other hand, p represents the rate of quarantining
of people who have been in contact with infected people. So,
if more people enter to quarantine class, then it can reduce
the probability of occurrence of a pandemic outbreak. More-
over, increasing ω reduce the disease prevalence and so, ω is
inversely proportional with Rc. The calculations and numer-
ical simulations reveal that Rc is more sensitive to changes
in βi for i = 1, 2, 3 than p and ω. So, if we try to reduce
the transmission rates by maintaining social distances and
taking proper precautions, then this epidemic situation may
be handled.

6 Stability analysis

We discuss the local and global stability conditions for the
disease-free equilibrium point as well as endemic equilib-
rium point in this section. Let, α0 = p + η + d + δ1, α1 =
α + ξ + d, α2 = ω + d + δ2 and α3 = φ + d + δ3.

6.1 Local stability

The Jacobian matrix of system (1) is given as:

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

−(β1A + β2 I + β3H) − (d + κ) −β1S 0 −β2S −β3S ψ

β1A + β2 I + β3H β1S − α0 0 β2S β3S 0
0 p −α1 0 0 0
0 η 0 −α2 0 0
0 0 α ω −α3 0
κ 0 ξ 0 φ −(d + ψ)

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

Theorem 6.1 DFE (E0) of system (1) is locally asymptomat-
ically stable (LAS) for Rc < 1 when M1, M2, M3 > 0.

Proof Proof is given in the Appendix. ��
Theorem 6.2 The endemic equilibrium point E∗ is LAS for
Rc > 1 when the conditions (i) Bi > 0 for i = 1, 6; and (ii)
�i > 0 for i = 2, 3, 4, 5 hold.

Proof Proof is given in the Appendix. ��

6.2 Global stability

To prove the global stability of DFE E0, we use the method
developed by Castillo-Chavéz and Song [34]. Suppose a sys-
tem is written as:

dX

dt
= F(X ,Y ),

dY

dt
= G(X ,Y ), G(X , O) = O,

(5)

where X ∈ R
m1 and Y ∈ R

m2 denote the uninfected and
infected individuals respectively (m1,m2 ∈ Z+). Consider
U0 = (X0, O) as the DFE of system (5). Let us take two
assumptions as:

(H1) X0 is globally asymptotically stable for
dX

dt
=

F(X , O).
(H2) G(X ,Y ) = DYG(X0, O)Y − G(X ,Y ), G(X , Y ) ≥

O for (X ,Y ) ∈ �, where � is a bounded invariant
region and DYG(X0, O) is a stable matrix with non-
negative off diagonal elements (i.e., an M-matrix).

If (H1) and (H2) hold for mentioned system (5), then the
following theorem holds.

Theorem 6.3 The disease free equilibrium U0 = (X0, O) of
the model system (5) is globally asymptotically stable (GAS)
for Rc < 1 if the conditions (H1) and (H2) hold.

Theorem 6.4 DFE E0 of system (1), if LAS, is globally
asymptotically stable (GAS) when S ≤ S0 for Rc < 1.

Proof Proof is given in the Appendix. ��

Theorem 6.5 Endemic equilibrium point E∗ of system (1)
is globally asymptomatically stable (GAS) when ψS∗R∗ <

2α0S∗A∗ and pm2α2 + ηm3α2 + β1α2S∗ < α0α2 hold in

� = {
(S, A, Q, I , H , R) ∈ R

6+ : 3α0A
∗ + m2α1Q

∗ + m3α2 I
∗

+m4α3H
∗ < β1A

∗S + (dR∗ − κS),

S < S∗, dR∗ < κS
}
.

where αi for i = 0, 1, 2, 3 and m j for j = 1, 2, 3, 4 are
mentioned in the proof.

Proof Proof is given in the Appendix.
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7 Bifurcation analysis at Rc = 1

In order to establish the direction of bifurcation at the crucial
threshold value Rc = 1, the centralmanifold theory is used as
discussed in Castillo-Chavéz and Song [34], and their result
is stated in the following theorem:

Theorem 7.1 Consider the following system of ODEs with a
parameter �:

dx

dt
= f (x, �), f : Rn ×R → R

n and f ∈ C2 (
R
n × R

)
.

For the system, O is taken as an equilibrium point and
f (O, �) = O for all �. Assume

(I) M = Dx f (O, 0) = (
∂ fi
∂x j

(O, 0)) is the linearization

matrix of the system around the equilibrium O with �

evaluated at 0. M has a zero eigenvalue and other eigen-
values of M have negative real parts.

(II) M has a non-negative right eigenvector w and a left
eigenvector v corresponding to the zero eigenvalue.
Let fk be the kth component of f and

a =
∑n

k,i, j=1
vkwiw j

∂2 fk
∂xi∂x j

(O, 0),

b =
∑n

k,i=1
vkwi

∂2 fk
∂xi∂�

(O, 0),

Sign of a and b determine the local dynamical behaviour
of a system around O.

1. a > 0, b > 0. If� < 0 and |�| 
 1, thenO is locally
asymptotically stable and there exists a positive unsta-
ble equilibrium; when 0 < � 
 1, O is unstable and
there exists a negative and locally asymptotically sta-
ble equilibrium.

2. a < 0, b < 0. If � < 0 and |�| 
 1, then O is
unstable; when 0 < � 
 1, O is locally asymp-
totically stable, and there exists a positive unstable
equilibrium.

3. a > 0, b < 0. If � < 0 and |�| 
 1, then O
is unstable, and there exists a locally asymptotically
stable negative equilibrium; when 0 < � 
 1, O is
stable, and a positive unstable equilibrium appears.

4. a < 0, b > 0. If � changes from negative to positive,
then O changes its stability from stable to unsta-
ble. Correspondingly a negative unstable equilibrium
becomes positive and locally asymptotically stable.

The non-negativity of components of the eigenvector w is
not necessary if corresponding component of equilibrium is
positive and has been mentioned as Remark 1 in [34].

The requirement thatw is non-negative in the previous the-
orem is not necessary. When some components inw are neg-
ative, we still can apply the theorem, but one has to compare
w with the equilibrium because the general parameterization
of the centermanifold before the coordinate change isWβ2 =
{x0 + β2(t)y + k(β2, �) : v · k(β2, �), |β2| ≤ β20 , β2(0)
= 0} provided that x0 is a non-negative equilibrium of sys-
tem (usually x0 is the DFE). Hence, x0 − 2 b�

a > 0 requires
that w( j) > 0 whenever x0( j) = 0. If x0( j) > 0, then w( j)
need not be positive.

Let us redefine S = x1, A = x2, Q = x3, I = x4, H =
x5 and R = x6, then the system (1) can be rewritten as:

dx1
dt

= � − (β1x2 + β2x4 + β3x5)x1 − (d + κ)x1 + ψx6 ≡ h1,

dx2
dt

= (β1x2 + β2x4 + β3x5)x1 − α0x2 ≡ h2,

dx3
dt

= px2 − α1x3 ≡ h3,

dx4
dt

= ηx2 − α2x4 ≡ h4,

dx5
dt

= αx3 + ωx4 − α3x5 ≡ h5,

dx6
dt

= κx1 + ξ x3 + φx5 − (d + ψ)x6 ≡ h6.

(6)

We have considered � = β2 as bifurcation parameter for
Rc = 1. Thus at � = �∗ = β∗

2 , Rc = 1 gives β∗
2 =

1

ηα1α3

[
α0α1α2α3

S0
− β1α1α2α3 − β3(pαα2 + ωηα1)

]
.

The linearized matrix of the model system (6) at E0(
�(d + ψ)

d(d + κ + ψ)
, 0, 0, 0, 0,

�κ

d(d + κ + ψ)

)
with bifurca-

tion parameter β2 = β∗
2 is given by

J |E0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−(d + κ) −β1S0 0 −β2S0 −β3S0 ψ

0 β1S0 − α0 0 β2S0 β3S0 0
0 p −α1 0 0 0
0 η 0 −α2 0 0
0 0 α ω −α3 0
κ 0 ξ 0 φ −(d + ψ)

⎞
⎟⎟⎟⎟⎟⎟⎠

Two eigenvalues are roots of the equation: λ2 + (2d + κ +
ψ)λ+d(κ +d +ψ) = 0 which imply that they are the roots
with negative real parts and other four eigenvalues are roots of
the following equation: λ4+M1λ

3+M2λ
2+M3λ+M4 = 0,

where M1 = α0 + α1 + α2 + α3 − β1S0, M2 = α0α2 +
α1α3 + (α0 + α2)(α1 + α3) − β1S0(α1 + α2 + α3) − β2S0η,
M3 = α0α2(α1 + α3) + α1α3(α0 + α2) − β1S0{α1α3 +
α2(α1+α3)}−β2S0η(α1+α3)−β3S0(pα+ωη) and M4 =
α0α1α2α3(1 − Rc). So, J |E0(β

∗
2 ) has a zero eigenvalue at

Rc = 1 as M4 = 0 at Rc = 1.
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The right eigenvector corresponding to the zero eigen-
value of J |E0(β

∗
2 ) is denotedbyw = (w1, w2, w3, w4, w5)

T ,
wherew1 = −[α0α1α2α3(d+ψ)+ pξψα2α3+ψφ(pαα2+
ωηα1)], w2 = α1α2α3{κψ + (d + κ)(d + ψ)}, w3 =
pα2α3{κψ + (d + κ)(d + ψ)}, w4 = ηα1α3{κψ + (d +
κ)(d+ψ)}, w5 = (pαα2+ωηα1){κψ+(d+κ)(d+ψ)} and
w6 = [(d + κ){(pαα2 + ωηα1) + pξα2α3} − κα0α1α2α3].
Also, the left eigenvector of J |E0(β

∗
2 ) corresponding to zero

eigenvalue is v = (v1, v2, v3, v4, v5)
T , where v1 = 0, v2 =

α1α2α3, v3 = αα2β3S0, v4 = α1S0(β2α3 + β3ω), v5 =
α1α2β3S0 and v6 = 0. Hence

a =
n∑

k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(E0)

= 2v2w1[β1w2 + β2w4 + β3w5] < 0,

b =
n∑

k,i=1

vkwi
∂2 fk

∂xi∂�
(E0) = v2w4S0 > 0

Now, applying the last condition of Theorem 7.1, it is
observed that the direction of bifurcation is forward.

Theorem 7.2 The DFE: E0 changes its stability from stable
to unstable at Rc = 1 and system (1) undergoes a trans-
critical bifurcation around E0 with bifurcation parameter
β2 = β∗

2 at Rc = 1.

8 Numerical simulation without any control
policy

Pictorial scenarios help us to understand system dynamics
more clearly. The human population in India in June, 2020 is
about 137.8 million, the annual birth rate is 18.2 births/1000
people and the annual death rate is 7.3 deaths/1000 people.
So, we are taking S(0) = 1.378 × 109 and � = 7 × 104

by applying unit conversion from year to day. And the death
rate per day (d) we get is near about 0.00002. From the
data provided in the dashboard by the centre for system sci-
ence and engineering (CSSE) at John Hopkins University
and also from the Worldometers database on 1st June 2020,
India has total 1, 98, 370 corona cases [14,15]. And till the
date, total activated cases, death cases and recovered cases are
97, 008; 5, 608 and 95, 754 respectively. Hence, unit conver-
sion frommonth to day gives δ3 as 3×10−3 and φ as 0.0052.
As total active cases till 1st is 97, 008 among 1, 98, 370
cases; so, we get (α + ω) as 0.0053 approximately [17].
So for the calculations, α and ω are taken as 0.0026 and
0.0027 respectively. According to the current epidemic sit-
uation of Coronavirus, the new human cases infected per
unit day is denoted by βSI ≡ (β1A + β2 I + β3H)S. In
April, total human cases infected by COVID-19 (I ) is about
34, 863, the population in India (S) in May is approximately

Table 1 Parameter values used for numerical simulation of system (1)

Parametric values

� 7 × 104 β1 4.5 × 10−8

β2 3.26995 × 10−8 β3 0.005 × 10−10

d 0.00002 κ 0.6

ψ 0.001 p 0.45

η 0.3 α 0.0026

δ1 0.5 δ2 0.006

δ3 0.0003 ω 0.0027

ξ 0.26 φ 0.0052

by 1.376 × 109, the new human cases (βSI ) in May is
about 1, 55, 673 (which results in total 1, 90, 536 COVID-19
cases in May) [16,17]. Hence, we have (β1 + β2 + β3) ≈
7.44 × 10−8 by doing the unit conversion from month to
day. As per the data of 1st June provided by Ministry of
Health and Family Welfare, Government of India and previ-
ously mentioned database, the infected cases by COVID-19
is about 1, 55, 673 in May [14,15,17], so, for sake of sim-
plicity I (0) is taken as approximately 5000, by doing the
unit conversion from month to day. All the assumed and
estimated parameters are listed in Table 1. Let us consider
A(0) = 500, Q(0) = 103, H(0) = 103 and R(0) = 4×108

to perform the numerical simulation in this section.
Figure 2 shows that for the parametric values in Table 1

and β2 = 3.26995×10−10, the trajectory starting frommen-
tioned initial point ultimately converges toDFE E0(5.9399×
106, 0, 0, 0, 0, 3.4941 × 109) and as we get the basic repro-
duction number Rc as 0.26733 here which lies below unity,
so, the disease cannot invade in the system in this case.

Now if we start to increase the value of β2, then for the
mentioned value of β2, i.e., for β2 = 3.26995 × 10−8 along
with parametric values in Table 1, the trajectory starting from
mentioned initial point approaches to unique endemic equi-
libriumpoint E∗(1.0684×106, 79366.72, 135995.06, 2.73×
106, 1.3996× 106, 6.7027× 108) with time (see Fig. 3). For
these parametric values, we get Rc = 5.55962 > 1 indicat-
ing the presence of infection in the system.

Now E0 changes its stability when β2 goes above a thresh-
old value β2[TC] and becomes unstable for β2 > β2[TC].
So, the system undergoes a transcritical bifurcation at β2 =
β2[TC] = 4.8087 × 10−9 around DFE (E0) (see Fig. 4).

Figure 5 demonstrates the sensibility of some of the vital
parameters of the system on virus transmission. The figure
shows that β2 is most sensitive than β1 and β3 to control the
disease transmission. A small increase of β2 can increase the
value of Rc significantly. On the other hand, increasing value
of p leads to a decrease in value of Rc, so if more people from
asymptotically exposed class are quarantined, then the risk
of contracting the disease decreases. Also,ω is inversely pro-
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Fig. 2 Stability of the
populations around disease-free
equilibrium E0

0 1 2 3

x 105

0

10

20
x 108

t

S

0 1 2 3

x 105

0

10

20
x 108

t

A

0 1 2 3

x 105

0

2

4

x 108

t

Q
0 1 2 3

x 105

0

2

4

x 108

t

I

0 1 2 3

x 105

0

2

4

x 107

t

H

0 1 2 3

x 105

0

2

4
x 109

t

R

Fig. 3 Stability of the
populations around endemic
equilibrium E∗
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portional with Rc, i.e., if more people admit to the hospitals
without ignoring the symptoms, then the prevalence of the
disease decreases with time.

Here, p denotes the rate at which asymptotically exposed
people move into quarantine class. People becomemore cau-
tious when the disease starts to outbreak at a higher rate and
if more people are quarantined, then the spread of the dis-
ease decreases. Figure 6 shows the impact of the seriousness
of being quarantined on the disease transmission especially

on the infected population. According to this picture, more
people moving into quarantine class can lower the count of
infected population with time as the chance of interaction
decreases for increasing p and people can successfully save
themselves from getting infected. Also, if the susceptible
individuals take the precautionary measures at a higher rate
along with the increasing rate of entering quarantine class
(from the class of asymptotically exposed people), then the
infected population in the system decreases more. Figure 7
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Fig. 4 Trancritical bifurcation around E0 taking β2 as bifurcation
parameter

depicts that symptomatically infected population decrease
significantly for increasing value of κ for increasing p.

9 Optimal control problem

We formulate the corresponding optimal control problem
here to observe how suitable control interventions reduce
the disease burden on the population. Maintaining social dis-
tancing to avoid the disease transmission at a higher rate and
the precautions taken by susceptible to move to recovered
class have been considered as the control policies. We have
analysed analytically and also numerically how these control
policies make their impact on disease transmission and try to
optimize the cost burden for their implementations.

Increase the awareness among population for main-
taining social distancing and proper hygiene: Population

Fig. 5 Relationship between
basic reproduction number Rc
with β1, β2, β3, p and ω
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Fig. 6 Trajectory profiles of symptomatically infected population (I )
for different values of p
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Fig. 7 Variation of symptomatically infected population (I ) due to
change in rate of people being quarantined, p for different values of
κ

become aware of the severity of a disease and also of its pre-
vention strategies frombeing infectedwhen they are provided
with sufficient information.The awareness programs and reg-
ular updates regarding COVID-19 act as important tools to
increase the sensibility among the individuals. These days
Government andmedia sources are spreading the news about
this disease fatality regularly. COVID-19 is not an airborne
disease and so people mainly become infected only when
they come in touch with infected people both asymptomati-
cally exposed and symptomatic individuals. So, maintaining
social distancing in this pandemic situation plays amajor role
to reduce the disease fatality as social distancing reduces
the average number of contacts. The virus of COVID-19
spread in a major portion of susceptible when they come into
contact with an asymptotically exposed person and symp-
tomatically infected person. It is assumed that u1 portion of
the susceptible population would maintain proper precau-
tionary measures by using the face masks, keeping social
distancing and implementing enough hygiene. Therefore, the
disease can only be transmitted among (1−u1)S susceptible

individuals due to the contact. In system (8), u1 represents the
intensity of maintaining social distancing in order to reduce
the disease transmission with the restriction 0 ≤ u1 ≤ 1.
Here, u1 = 0 represents a full violation of social distancing
and u1 = 1 indicates full maintenance of social distanc-
ing. So, u1(t) changes according to the seriousness of the
population regarding social distancing, we have taken this
response intensity as one of the control variables. Incurred
cost is involved as a non-linear function of u1 to stimulate
the response of individuals and regarding maintaining social
distancing and applying home-quarantine strategy.

Due to the regular broadcast, a part of susceptible takes
precautionary measures at a higher rate from the very begin-
ning by maintaining proper hygiene, staying at isolation and
even adopting the self-quarantine strategy. Thus this policy
may be considered as one of the effective control tools and
mainly the susceptible population of COVID-19 cases would
be benefited by this policy. So, we are taking u2(t) as a con-
trol policy which denotes the intensity at which susceptible
people move to recovered class directly by taking protective
measures from beginning satisfying 0 ≤ u2(t) ≤ 1.

The main work is to determine optimal response intensity
and optimal treatment with minimum cost by the help of pro-
vided information. So, the region for the control interventions
u1(t) and u2(t) is given as:

� = {
(u1(t), u2(t)) | (u1(t), u2(t)) ∈ [0, 1] × [0, 1], t ∈ [0, T f ]

}
,

where T f is the final time upto which the control policies
are executed, and also ui (t) for i = 1, 2 are measurable and
bounded functions.

9.1 Determination of total cost

We determine the incurred cost which needs to be minimized
in order to apply control interventions.
Cost incurred inmaintaining social distancingandproper
hygiene: The total cost incurred due to maintaining social
distancing and proper hygiene is given as:

∫ T f

0

[
w1A(t) + w2 I (t) + w3u

2
1(t) + w4u

2
2(t)

]
dt

The cost for spreading awareness regarding precautions
and prevention measures among population by maintaining
social distance, home-quarantine and hygiene via social cam-
paigns,media etc. is denoted byw1A(t)+w2 I (t)+w3u21(t)+
w4u22(t). The term considers the cost of associated efforts to
convince the individuals about the importance of maintain-
ing social distances and proper hygiene (by using face masks
and sanitizer etc.) and it is observed that this cost is high
enough. Also, the term considers the productivity loss due to
home quarantine or isolation and also due to illness. There
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are some literatures that reveal the impact of the cost associ-
ated with awareness programs, screening and self-protective
measures and non-linearity up to order two have been rec-
ommended [35–37]. We, in this work, now emphasize on the
fact how social distancing and maintaining hygiene reduce
the disease burden at the time of this pandemic outbreak.

The following control problem is considered based on
previous discussions along with the cost functional J to be
minimized:

J [u1(t), u2(t)]

=
∫ T f

0

[
w1A(t) + w2 I (t) + w3u

2
1(t) + w4u

2
2(t)

]
dt

(7)

subject to the model system:

dS

dt
= � − (1 − u1(t))(β1A + β2 I )S

− β3HS − dS + ψR − u2(t)S,

d A

dt
= (1 − u1(t))(β1A + β2 I )S + β3HS − α0A,

dQ

dt
= pA − α1Q,

d I

dt
= ηA − α2 I ,

dH

dt
= αQ + ωI − α3H ,

dR

dt
= u2(t)S + ξQ + φH − (d + ψ)R

(8)

with initial conditions S(0) > 0, A(0) ≥ 0, Q(0) ≥
0, I (0) ≥ 0, H(0) ≥ 0 and R(0) ≥ 0. Here α0 =
(p + η + d + δ1), α1 = α + ξ + d, α2 = ω + d + δ2
and α3 = φ + d + δ3. The functional J denotes the total
incurred cost as stated and the integrand:

L(S, A, Q, I , H , R, u1(t), u2(t))

= w1A(t) + w2 I (t) + w3u
2
1(t) + w4u

2
2(t)

denotes the cost at time t . Positive parametersw1, w2, w3 andw4

are weight constants balancing the units of the integrand [36,
38]. The optimal control interventions u∗

1 and u
∗
2, exist in �,

mainly minimize the cost functional J .

Theorem 9.1 The optimal control interventions u∗
1 and u

∗
2 in

� of the control system (7)-(8) exist such that J (u∗
1, u

∗
2) =

min[J (u1, u2)].
Proof Proof is done in Appendix. ��
Pontryagin’s Maximum Principle helps to obtain optimal
controls u∗

1 and u∗
2 of system (7)-(8).

Table 2 Parametric values used in model system (8)

Parametric values

� 7 × 104 β1 4.5 × 10−8

β2 3.26995 × 10−8 β3 0.005 × 10−10

d 0.00002 ψ 0.65

φ 0.07 p 0.45

η 0.02 α 0.0026

δ1 0.5 δ2 0.006

δ3 0.0003 ξ 0.045

Theorem 9.2 If u∗
1 and u∗

2 are the optimal controls and
S∗, A∗, Q∗, I ∗, H∗, R∗ are corresponding optimal states of
the control system (7)-(8), then there exist adjoint variables
λ = (λ1, λ2, . . . , λ6) ∈ R

6 satisfying the canonical equa-
tions:

dλ1

dt
= λ1[(β1A + β2 I )(1 − u1) + β3H + u2 + d]

− λ2[(β1A + β2 I )(1 − u1) + β3H ] − λ6(u2)

dλ2

dt
= −w1 + λ1[(1 − u1)β1S] − λ2[(1 − u1)β1S

− α0] − λ3(p) − λ4(η)

dλ3

dt
= λ3(α1) − λ5(α) − λ6(ξ)

dλ4

dt
= −w2 + λ1[(1 − u1)β2S] − λ2[(1 − u1)β2S]

+ λ4(α2) − λ5(ω)

dλ5

dt
= λ1(β3S) − λ2(β3S) + λ5(α3) − λ6(φ)

dλ6

dt
= −λ1(ψ) + λ6(d + ψ)

(9)

with transversality conditionsλi (T f ) = 0 for i = 1, 2, . . . , 6.
The corresponding optimal controls u∗

1 and u
∗
2 are given as:

u∗
1 = min

{
max

{
0,

(
(β1A∗ + β2 I ∗)S∗

2w3
(λ2 − λ1)

)}
, 1

}
,

u∗
2 = min

{
max

{
0,

(
S∗

2w4
(λ1 − λ6)

)}
, 1

}
.

(10)

Proof Proof is given in Appendix. ��

10 Numerical results with control policies

In system (8), different control strategies have been imple-
mented to reduce the disease burden and to minimize the
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Fig. 8 Profiles of populations in
absence of control policies
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Fig. 9 Profiles of populations
with applied optimal control u∗

1
only and u2 = 0
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total cost by finding the optimal control paths. Social distanc-
ing and maintaining proper hygiene vary with time because
it depends on disease prevalence and also disease fatality.
So, u1 and u2 are taken as a control variables. The positive
weights are taken as w1 = 1.5, w2 = 2, w3 = 10 and
w4 = 50 [36,38]. In this section, we have slightly changed
someof the parameterswhich are listed inTable 2. The effects
of the implementation of one or both control policies to find
the minimal cost have been analysed one by one here.

Corresponding control system in equations (7)-(8) is
solved here with the initial population size: S(0) = 1.378×
104, A(0) = 600, Q(0) = 100, I (0) = 40, H(0) = 15
and R(0) = 5. First, we have considered the cases when only
u1 or only u2 is implemented and then we have considered
the case of implementation of both u1 and u2. The numerical
simulations for all the cases are obtained by MATLAB. The
optimal control variables are found by forward-backward
sweepmethod where the optimal state system and the adjoint
state system are solved by forward and backward in time
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Fig. 10 Profiles of populations with applied optimal control u∗
1 only

and u2 = 0

respectively. In the next step, the steepest descent method is
used to update the optimal controls by Hamiltonian for the
optimality of the system [39] and the process continues until
the convergence. It is assumed that the control policies are
implemented for approximately T f = 90 days, i.e., around
three months.

Figure 8 shows the trajectory profiles of populations in
absence of both the controls, i.e., when u1 = 0 and u2 = 0.
Let us consider, κ = 5 × 10(−5) and ω = 2 × 10(−4). At
T f = 90, the population becomes (6307658.1, 11.13, 78.69,
37.88, 5.68, 482.87). The growth of the quarantined popula-
tion first increases and reaches its maximum within almost a
week and then slowly decreases before settling after around
one and a half month. Moreover, there is a high number of
symptomatically infective individuals present in the system
for more than 30 days resulting in economic burden because

of productivity loss, death and in procuring precautionary
measures.

Next, we consider the case when people only maintain
social distances to reduce the transmission as the people
become infected only after coming in contactwith asymptoti-
cally exposed and symptomatically infected people. Figure 9
depicts the population profiles when u1 = u∗

1 and u2 = 0.
Let us consider, κ = 5 × 10(−5) and ω = 2 × 10(−4). At
T f = 90, the population becomes (6307909.2, 5.42, 21.61,
31.98, 2.09, 478.60). The susceptible population increases
with time in this case. As more people maintaining social
distancing, so, the count of asymptotically exposed people
is reduced significantly than the case when no control policy
is implemented. Also, the quarantined people are becoming
lesser than the previous case. It is observed that the social dis-
tancing works well in reducing the count of symptomatically
infective individuals too but the infective population remains
at a higher level for almost a month. The corresponding path
of the optimal intensity of social distancing is depicted in
Fig. 10. The intensity of the control variable first increases
with time and works with higher intensity after a month.
Though in the last week of the period of time the intensity of
u1 decreases and it may happen due to peoples ignorance.

Next, we consider the situation when only the precaution-
ary measures of susceptible (u2) acts as a control. Figure 11
shows the population trajectories when u2 = u∗

2 but u1 = 0.
Let us consider, ω = 2×10(−4). At T f = 90, the population
becomes (1962233.8, 2.23, 18.61, 31.91, 2.07, 572.08). The
count of asymptotically exposed individuals decreases in this
case than the case when no control is applied. This happens
because people already take precautionary measures at the

Fig. 11 Profiles of populations
with applied optimal controls u∗
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Fig. 12 Optimal controls u∗
2 when u1 = 0

susceptible stage to move into recovered class directly and
so a higher number of people is achieved in the recovered
class in this situation. Also, this control strategy significantly
reduces the count of quarantined individuals throughout the
period. Moreover, the symptomatically infected population
decreases due to the implementation of u2. Figure 12 depicts
the optimal control path of u2 in absence of u1. From this
figure, it is observed that u2 workswith higher intensity at the
earlier time but slowly decreases after one and a half month
and then decreases suddenly in the last few days.

Implementation of both the control policies is beneficial
for the proposed optimal system (8). So, we consider the
combination of both control policies in the system, i.e., a
system where people are maintaining social distancing with
time to reduce the virus transmission and they are also taking
proper precautionary measures with proper hygiene to stay
safe and thereby to move into recovered class directly. Let

us consider, ω = 2 × 10(−4). Figure 13 depict the popula-
tion trajectories in presence of both the control policies and
at T f = 90, population becomes (6307329.3, 5.41, 22.49,
32.09, 2.17, 1054.08). The count of recovered individuals
reaches its highest level in this case. Also, both the asymp-
totically exposed and quarantined population decreases than
the case when no control is applied. Figure 14 show the paths
of optimal control strategies u∗

1 and u∗
2. The control policy

on social distancing works with higher intensity through-
out the time period and it is true because if people keep
maintaining the social distancing, then the virus cannot be
transmitted that much. Also, if the susceptible people main-
tain proper hygiene by using face masks, not touching faces
with hands frequently, adopting self-quarantine etc., then also
the transmissionwill be lower.Maintenance of precautionary
measures, as denoted by u2, also works its higher intensity
for a quite a long time but this intensity is lower than u1.

In Fig. 15, cost design analysis has been performed in
absence and presence of u1 and u2. There is one case when
both control policies are applied and the other case contains
when there is no control policies is implemented. Optimal
cost profiles are shown in figure (15.a) for the cases and
trajectory profiles for symptomatically infected individuals
are depicted in figure (15.b). In absence of control interven-
tions, cost occurs due to productivity loss by infected only.
So, the opportunity loss is higher due to an epidemic out-
break and overall infected population increases in this case.
On the other hand, the optimal cost is lower when both con-
trol interventions are applied. And as the infected population
is lower in this case, it reduces the cost incurred because of
opportunity loss.

Fig. 13 Profiles of populations
with both optimal control
policies u∗
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Fig. 14 Profiles of optimal
controls u∗
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Fig. 15 a Cost distribution in presence and absence of control policies. b Profiles of symptomatic infected population under different control
policies

10.1 Effect of weight constantw3 on optimal control
policies

Selection of weight constant on certain control is important.
Here we are varying the particular weight constantw3, keep-
ing all other parameters fixed as before, to analyse its impact
on the control strategies. It is observed from Fig. 16 and
Fig. 17 that if the weight on social distancing increases,
then the corresponding associated cost and even the count
of symptomatically infected individuals increase.

Figure 18 depict that for a smaller value ofweight constant
w3, the intensity of u1 (which represents social distancing)
becomes higher and even works at its highest value but the
intensity of u2 (precautionary measures of susceptible indi-

viduals) becomes lower with time. So, it is concluded that
higher effort for taking precautionary measures and a com-
paratively lower effort for maintaining social distancing are
required to reduce the cost and corresponding count of symp-
tomatically infective individuals when the social distancing
has a higherweight. In fact, fromFig. 18a and b, it is observed
that when the control intervention denoting social distancing
works with the highest intensity, the control policy repre-
senting other precautionary measures hardly works. So, we
can conclude that if all people maintain the self-isolation,
home quarantine strategy or even social distancing properly
and strictly, then even a little relaxation in maintaining other
precautionary measures can decrease the count of infected
individuals and this count is smaller than the rest of the cases.
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Fig. 16 Profiles of cost for various values of w3 along with w1 = 1.5, w2 = 2 and w4 = 50. The figure on right side is zoomed portion of the left
figure. Other parameters are as in Table 2
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Fig. 17 Profiles of symptomatically infective population for various
values of w3 along with w1 = 1.5, w2 = 2 and w4 = 50. Other
parameters are as in Table 2

11 Conclusion

Coronavirus or COVID-19 first appeared in China in Decem-
ber 2019, but today it has spread all over theworld in the form
of a pandemic. Reports of the current situation reveal that
above 80 lakhs people are infected with the virus worldwide.
Though the Governments and medical persons of almost
every country are trying to provide protective measures to
people, the infection rate is still high enough as the proper
antidote for this virus is still unknown. According to the data
till 15th June 2020, provided by the dashboard of CSSE
at John Hopkins University, United States has the highest
confirmed cases with the number 2, 114, 026 [14]. Though
according to the official reports, almost 116, 127 people have
died in US which is the highest in number among 188 coun-

tries or regions. If we consider the current situation in India,
then from the reports ofCSSE,Worldometers andNIC, India,
there are total 343, 091 confirmed Coronavirus cases among
which 153, 178 active cases, 9, 900 death cases and 180, 013
recovered cases as reported till 15th June [14–17].

Keeping this pandemic situation in mind, in this work, we
have formulated a compartmental SAIRS model of COVID-
19. A portion of the susceptible individuals moves into
asymptomatically exposed class after getting in touch asymp-
tomatically exposed, symptomatically infected and even
hospitalised people. Positivity and boundedness of the sys-
tem variables prove that the proposed system is well-posed.
Feasibility conditions of equilibrium points show that DFE
exists for any parametric values whereas the unique endemic
equilibrium point exists only when the basic reproduction
number Rc lies above unity. Stability analysis of the equi-
libria has been performed in Sect. 6. Existence of unique
endemic equilibrium point for Rc > 1 concludes that the sys-
tem undergoes a forward (transcritical) bifurcation around
the DFE. If more people move into quarantined class to
reduce the virus transmission, then it is obvious that over-
all infected population decreases with time which is shown
in Fig. 6. Also, symptomatically infected population, for
increasing quarantine rate of asymptotically exposed people,
decreases for increasing value of κ (rate of entering of the
susceptible individuals to the recovered class). Behavioural
changes have been imposed among the susceptible people by
keeping social distancing, maintaining proper hygiene, stay-
ing at isolation and adopting the self-quarantine method. So,
if they take precautions at a higher rate and also more people
move into quarantine class due to awareness, then the count
of symptomatically infected individuals are reduced signifi-
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Fig. 18 Plots of control a u∗
1 and b u∗

2 for different values of w3 along with w1 = 1.5, w2 = 2 and w4 = 50. Other parameters are as in Table 2

cantly. As a conclusion, it can be stated that these precautions
can be useful to prevent virus transmission at a higher rate.

The corresponding optimal control problem is formu-
lated in the latter part of the work. Control interventions
are implemented to reduce the disease burden. Social dis-
tancing is one of the prevention strategies that people can
adopt to reduce disease transmission. So, we have consid-
ered the social distancing of the population as one of the
control interventions as it changes with time. Therefore,
in the optimal system (8), the disease can be transmitted
to (1 − u1)S portion of the susceptible individuals after
getting contact with asymptomatically exposed and symp-
tomatically infected individuals. Moreover, the susceptible
individuals take different precautionary measures like main-
taining proper hygiene, adopting self-quarantine or isolation
etc. to prevent the disease transmission. These precautions
can be taken as a control policy as it changes with time
according to the necessity and disease prevalence. Numeri-
cal figures show that the control presenting social distancing
(u1) works with a higher intensity almost after three to four
weeks of implementation and continue the intensity level
almost throughout the time period. On the other hand, the
intensity level of u2 is lesser than u1. The intensity level
of u2 first increases within two weeks of implementation
and then works with its higher intensity for some time and
then decreases. Implementation of either u1 or u2 is useful
but applying both u1 and u2 together can reduce asymp-
tomatically exposed people as well as infected population
significantly and increase the overall recovered population
at a higher rate. Therefore, implementing both the control
policies reduce disease transmission in this current pandemic
situation.
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Appendix

Proof of Theorem 3.1 Right hand side of system (1) is con-
tinuous and locally Lipschitzian functions on C and so there
exists anunique solution (S(t), A(t), Q(t), I (t), H(t), R(t))
on [0, τ ), where 0 < τ ≤ +∞ [40]. First we prove that,
S(t) > 0, ∀ t ∈ [0, τ ). If it does not hold, then ∃ t1 ∈ (0, τ )

such that S(t1) = 0, Ṡ(t1) ≤ 0 and S(t) > 0, ∀ t ∈ [0, t1).
Hence we must have A(t) ≥ 0, ∀ t ∈ [0, t1). If it is not
true, then ∃ t2 ∈ (0, t1) such that A(t2) = 0, Ȧ(t2) < 0 and
A(t) ≥ 0, ∀ t ∈ [0, t2). Next we claim Q(t) ≥ 0, ∀ t ∈
[0, t2). Suppose it is not true. Then ∃ t3 ∈ (0, t2) such that
Q(t3) = 0, Q̇(t3) < 0 and Q(t) ≥ 0, ∀ t ∈ [0, t3). From
third equation of (1), we have

dQ

dt

∣∣∣∣
t=t3

= pA(t3) − (α + ξ + d)Q(t3) = pA(t3) ≥ 0,
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which is a contradiction to Q̇(t3) < 0. So, Q(t) ≥ 0, ∀ t ∈
[0, t2).

Similarly, I (t) ≥ 0, ∀ t ∈ [0, t2).
Our next claim is H(t) ≥ 0, ∀ t ∈ [0, t2). Suppose

this does not hold, then ∃ t4 ∈ (0, t2) such that H(t4) =
0, Ḣ(t4) < 0 and H(t) ≥ 0, ∀ t ∈ [0, t4). Now, from the
fifth equation of (1):

dH

dt

∣∣∣∣
t=t4

= αQ(t4) + ωI (t4) − (φ + d + δ3)H(t4)

= αQ(t4) + ωI (t4) ≥ 0,

which is a contradiction to Ḣ(t4) < 0. Hence, H(t) ≥
0, ∀ t ∈ [0, t2).

From the second equation of (1), we have

d A

dt

∣∣∣∣
t=t2

= (β1A(t2) + β2 I (t2) + β3H(t2))S(t2)

− (p + η + d + δ1)A(t2)

= (β2 I (t2) + β3H(t2))S(t2) ≥ 0

It is a contradiction to Ȧ(t2) < 0. So, A(t) ≥ 0, ∀ t ∈ [0, t1).
Hence Q(t) ≥ 0, I (t) ≥ 0, H(t) ≥ 0, ∀ t ∈ [0, t1).

Let us claim R(t) ≥ 0, ∀ t ∈ [0, t1). Suppose this does
not hold, then ∃ t5 ∈ (0, t1) such that R(t5) = 0, Ṙ(t5) < 0
and R(t) ≥ 0, ∀ t ∈ [0, t5). From the last equation of (1),
we have:

dR

dt

∣∣∣∣
t=t5

= κS(t5) + ξQ(t5) + φH(t5) − (d + ψ)R(t5)

= κS(t5) + ξQ(t5) + φH(t5) > 0,

which is a contradiction to Ṙ(t5) < 0. Hence, R(t) ≥
0, ∀ t ∈ [0, t1).
From the first equation of (1), we have

dS

dt

∣∣∣∣
t=t1

= � − (β1A(t1) + β2 I (t1) + β3H(t1))S(t1)

− (d + κ)S(t1) + ψR(t1)

= � + ψR(t1) > 0,

which is a contradiction to Ṡ(t1) ≤ 0. So, S(t) > 0, ∀ t ∈
[0, τ ), where 0 < τ ≤ +∞. Also, by the previous steps
we have A(t) ≥ 0, Q(t) ≥ 0, I (t) ≥ 0, H(t) ≥ 0 and
R(t) ≥ 0, ∀ t ∈ [0, τ ), where 0 < τ ≤ +∞. Hence it is
proved. ��

Proof of Theorem 3.2

Let, N (t) = S(t) + A(t) + Q(t) + I (t) + H(t) + R(t)

∴ dN

dt
= � − d(S + A + Q + I + H + R)

− δ1A − δ2 I − δ3H

= � − dN − (δ1A + δ2 I + δ3H)

≤ � − dN

⇒ 0 < N (t) ≤ N (0)e−dt + �

d

(
1 − e−dt

)
,

where N (0) = S(0) + A(0) + Q(0) + I (0)

+ H(0) + R(0).

As t → ∞, 0 < N (t) ≤ �

d
. Therefore, all solutions of sys-

tem (1) enter into the region: �

=
{
(S, A, Q, I , H , R) ∈ R

6+ : 0 < N (t) ≤ �

d

}
. ��

Proof of Theorem 6.1 Jacobian matrix corresponding to DFE

E0 =
(

�(d + ψ)

d(d + ψ + κ)
, 0, 0, 0, 0,

�κ

d(d + ψ + κ)

)
is

given as follows:

J
∣∣
E0

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−(d + κ) −β1S0 0 −β2S0 −β3S0 ψ

0 β1S0 − α0 0 β2S0 β3S0 0
0 p −α1 0 0 0
0 η 0 −α2 0 0
0 0 α ω −α3 0
κ 0 ξ 0 φ −(d + ψ)

⎞
⎟⎟⎟⎟⎟⎟⎠

Two eigenvalues of J
∣∣
E0

are roots of the equation: λ2+(2d+
κ + ψ)λ + d(κ + d + ψ) = 0 which imply that they are
the roots with negative real parts and other four eigenvalues
are roots of the following equation: λ4 + M1λ

3 + M2λ
2 +

M3λ + M4 = 0, where M1 = α0 + α1 + α2 + α3 − β1S0,
M2 = α0α2 + α1α3 + (α0 + α2)(α1 + α3) − β1S0(α1 +
α2 +α3)−β2S0η, M3 = α0α2(α1 +α3)+α1α3(α0 +α2)−
β1S0{α1α3+α2(α1+α3)}−β2S0η(α1+α3)−β3S0(pα+ωη)

and M4 = α0α1α2α3(1 − Rc). So, M4 > 0 for Rc < 1.
Therefore the characteristic equation has roots with negative
real parts only when M1, M2, M3 > 0 when Rc < 1. ��
Proof of Theorem 6.2 The Jacobian matrix at endemic equi-
librium point E∗ is given as:

J
∣∣
E∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 a12 0 a14 a15 a16
a21 a22 0 a24 a25 0
0 a32 a33 0 0 0
0 a42 0 a44 0 0
0 0 a53 a54 a55 0
a61 0 a63 0 a65 a66

⎞
⎟⎟⎟⎟⎟⎟⎠

where a11 = −(β1A∗ + β2 I ∗ + β3H∗) − (d + κ), a12 =
−β1S∗, a14 = −β2S∗, a15 = −β3S∗, a16 = ψ, a21 =
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β1A∗+β2 I ∗+β3H∗, a22 = β1S∗−α0, a24 = β2S∗, a25 =
β3S∗, a32 = p, a33 = −α1, a42 = η, a44 = −α2, a53 =
α, a54 = ω, a55 = −α3, a61 = κ, a63 = ξ, a65 =
φ, a66 = −(d + ψ).

Characteristic equation of J
∣∣
E∗ is λ6 + B1λ

5 + B2λ
4 +

B3λ
3 + B4λ

2 + B5λ + B6 = 0, where

B1 = −(a11 + a22 + a33 + a44 + a55 + a66)

= (α0α2R2
c − β1ηS20 )

ηS0Rc
I ∗ + α0 + α1

+ α2 + α3 + (2d + κ + ψ),

B2 = a11(a22 + a33 + a44 + a55 + a66) − a12a21

− a16a61 + a22(a33 + a44 + a55 + a66)

− a24a42 + a33(a44 + a55 + a66)

+ a44(a55 + a66) + a55a66,

B3 = − a11a22(a33 + a44 + a55 + a66) + a24a42a11

− a11a33(a44 + a55 + a66) − a11a44(a55 + a66)

− a11a55a66 + a12a21(a33 + a44 + a55 + a66)

− a14a42a21 + a16a61(a22 + a33 + a44 + a55)

− a22a33(a44 + a55 + a66) − a22a44(a55 + a66)

− a22a55a66 + a24a42(a33 + a55 + a66) − a53a32a25

a54a42a25 − a33a44(a55 + a66) − (a33 + a44)a55a66,

B4 =a11a22a33(a44 + a55 + a66) + a11a22a44(a55 + a66)

+ a11a22a55a66 − a11a24a42(a33 + a55 + a66)

a11a25(a32a53 + a42a54) + a11a33a44(a55 + a66)

+ a11(a33 + a44)a55a66 − a12a21a33(a44 + a55 + a66)

− a12a21a44(a55 + a66) − a12a21a55a66

+ a14a21a42(a33 + a55 + a66) − a15a21(a33a53 + a42a54)

− a16a21a32a63 − a16a22a61(a33 + a44 + a55)

+ a16a24a42a61 − a16a61a33(a44 + a55) − a16a61a44a55

+ a22a33a44(a55 + a66) + a22a55a66(a33 + a44)

− a24a42a33(a55 + a66) − a24a42a55a66

+ a25a32a53(a44 + a66) + a25a42a54(a33 + a66)

+ a33a44a55a66,

B5 = −a11a22a33a44(a55 + a66) − a11a22(a33 + a44)a55a66

+ a11a33a24a42(a55 + a66) + a11a24a42a55a66

− a11a25a32a53(a44 + a66) − a11a25a42a54(a33

+ a66) − a11a33a44a55a66 + a12a21a33a44(a55 + a66)

+ a12a21a55a66(a33 + a44) − a14a21a33a42(a55

+ a66) − a14a21a42a55a66 + a15a21a32a53(a44 + a66)

+ a15a21a42a54(a33 + a66) + a16a21a32a63(a44

+ a55) − a16a21a65(a32a53 + a42a54)

+ a16a22a33a61(a44 + a55) + a16a22a44a55a61

− a16a24a42a61(a33 + a55) + a16a25a61(a32a53 + a42a54)

+ a16a33a44a55a61 − a22a33a44a55a66

+ a24a33a42a55a66 − a25a32a44a53a66 − a25a33a42a54a66,

B6 = (β1A
∗ + β2 I

∗ + β3H
∗)[(d + ψ)α0α1α2α3

+ pψα2(αφ + ξα3) + κωφηα1]
> 0, for I ∗ > 0.

Let us consider

�1 = B1, �2 =
∣∣∣∣
B1 1
B3 B2

∣∣∣∣ ,

�3 =
∣∣∣∣∣∣
B1 1 0
B3 B2 B1

B5 B4 B3

∣∣∣∣∣∣
,

�4 =

∣∣∣∣∣∣∣∣

B1 1 0 0
B3 B2 B1 1
B5 B4 B3 B2

0 B6 B5 B4

∣∣∣∣∣∣∣∣
,

�5 =

∣∣∣∣∣∣∣∣∣∣

B1 1 0 0 0
B3 B2 B1 1 0
B5 B4 B3 B2 B1

0 B6 B5 B4 B3

0 0 0 B6 B5

∣∣∣∣∣∣∣∣∣∣
, �6 = Det(J

∣∣
E∗) = B6.

By Routh-Hurwitz criterion, E∗ is locally asymptomatically
stable (LAS) if and only if �i > 0 for i = 1, 2, 3, 4, 5, 6,
i.e., equivalently

(i) Bi > 0 for i = 1, 6;
(ii) �i > 0 for i = 2, 3, 4, 5.

��

Proof of Theorem 6.4 Followig Theorem (6.3), we can write
system (1) as:

dX

dt
= F(X , Y ),

dY

dt
= G(X , Y ), G(X , O) = O,

where F(X , Y ) =
(

� − (β1A + β2 I + β3H)S + ψR − (d + κ)S
κS + ξQ + φH − (d + ψ)R

)

and G(X , Y ) =

⎛
⎜⎜⎝

(β1A + β2 I + β3H)S − α0A
pA − α1Q
ηA − α2 I

αQ + ωI − α3H

⎞
⎟⎟⎠

Here G(X , O) = O taking X = (S, R)T and Y = (A, Q,

I , H)T . The DFE of system (1) is U0 = E0 = (X0, O)T

with X0 ≡ (S0, R0) =
(

�(d + ψ)

d(d + ψ + κ)
,

�κ

d(d + ψ + κ)

)
.

Clearly X0 is globally asymptotically stable for
dX

dt
=

F(X , O) as X → (S0, R0)
T whenever t → ∞. Further
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we have

G(X ,Y ) = DYG(X0, O)Y − G(X ,Y )

=

⎛
⎜⎜⎝

β1S0 − α0 0 β2S0 β3S0
p −α1 0 0
η 0 −α2 0
0 α ω −α3

⎞
⎟⎟⎠ .

⎛
⎜⎜⎝

A
Q
I
H

⎞
⎟⎟⎠

−

⎛
⎜⎜⎝

(S0 − S)(β1A + β2 I + β3H)

0
0
0

⎞
⎟⎟⎠

Here B(X ,Y ) = DYG(X0, O) is a stable matrix when local
stability criterion of E0 holds along with Rc < 1 and the off-
diagonal elements are non-negative also implying B(X ,Y )

is a M-matrix. Moreover, G(X ,Y ) ≥ O when S ≤ S0 ≤ �
d .

Hence the assumptions (H1) and (H2) are satisfied and by
Theorem (6.3), DFE E0 of system (1) is globally asymptoti-
cally stable when S ≤ S0 for Rc < 1. ��

Proof of Theorem 6.5 Consider a Lyapunov function V (t) as:

V (t) =
(
S − S∗ − S∗ln S

S∗

)
+ m1

(
A − A∗ − A∗ln A

A∗

)

+ m2

(
Q − Q∗ − Q∗ln Q

Q∗

)

+ m3

(
I − I ∗ − I ∗ln I

I ∗

)
+ m4

(
H − H∗ − H∗ln H

H∗

)

+ m5

(
R − R∗ − R∗ln R

R∗

)

Time derivative of V along the solutions of system (1) is
given by

dV

dt
=

(
1 − S∗

S

)
[� − (β1A + β2 I + β3H)S

+ ψR − (d + κ)S]
+ m1

(
1 − A∗

A

)
[(β1A + β2 I + β3H)S − α0A]

+ m2

(
1 − Q∗

Q

)
[pA − α1Q]

+ m3

(
1 − I ∗

I

)
[ηA − α2 I ]

+ m4

(
1 − H∗

H

)
[αQ + ωI − α3H ]

+ m5

(
1 − R∗

R

)
[κS + ξQ + φH − (d + ψ)R]

=
(
1 − S∗

S

)
[β1(A

∗S∗ − SA) + β2(I
∗S∗ − SI )

+ β3(H
∗S∗ − SH) + ψ(R − R∗)

− (d + κ)(S − S∗)] + m1

(
1 − A∗

A

)

[−β1(A
∗S∗ − SA)

− β2(I
∗S∗ − SI ) − β3(H

∗S∗ − SH)

− α0(A − A∗)] + m2

(
1 − Q∗

Q

)

[p(A − A∗) − α1(Q − Q∗)]
+ m3

(
1 − I ∗

I

)
[η(A − A∗)

− α2(I − I ∗)] + m4

(
1 − H∗

H

)
[α(Q − Q∗)

+ ω(I − I ∗) − α3(H − H∗)]
+ m5

(
1 − R∗

R

)
[κ(S − S∗)

+ ξ(Q − Q∗) + φ(H − H∗) − (d + ψ)(R − R∗)]

Let, S
S∗ = x, A

A∗ = y, Q
Q∗ = z, I

I ∗ = u, H
H∗ = v and

R
R∗ = l. So, we have

dV

dt
=

(
1 − 1

x

)
[−S∗(β1A

∗ + β2 I
∗ + β3H

∗ + d + κ)(x − 1)

− β1SA
∗(y − 1) − β2SI

∗(u − 1)

− β3SH
∗(v − 1) + ψR∗(l − 1)] + m1

(
1 − 1

y

)

[S∗(β1A
∗ + β2 I

∗ + β3H
∗)(x − 1) + β1SA

∗(y − 1)

+ β2SI
∗(u − 1) + β3SH

∗(v − 1) − α0A
∗(y − 1)]

+ m2

(
1 − 1

z

)
[pA∗(y − 1) − α1Q

∗(z − 1)]

+ m3

(
1 − 1

u

)
[ηA∗(y − 1) − α2 I∗(u − 1)]

+ m4

(
1 − 1

v

)
[αQ∗(z − 1) + ωI ∗(u − 1)

− α3H
∗(v − 1)] + m5

(
1 − 1

l

)
[κS∗(x − 1)

+ ξQ∗(z − 1) + φH∗(v − 1) − (d + ψ)R∗(l − 1)]

Now steady state of system (1) at E∗ gives � − (β1A
∗ +

β2 I
∗ + β3H

∗)S∗ + ψR∗ = (d + κ)S∗, (β1A
∗ + β2 I

∗ +
β3H

∗)S = α0A
∗, pA∗ = α1Q

∗, ηA∗ = α2 I
∗, αQ∗ +

ωI ∗ = α3H
∗, κS∗ + ξQ∗ + φH∗ = (d + ψ)R∗. Also, we

take m1, m5 = 1. So, we have

dV

dt
=S∗(β1A

∗ + β2 I
∗ + β3H

∗ + d + κ)

(
2 − x − 1

x

)

+ α0A
∗
(
2 − y − 1

y

)

+ m2α1Q
∗
(
2 − z − 1

z

)
+ m3α2 I

∗
(
2 − u − 1

u

)
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+ m4α3H
∗
(
2 − v − 1

v

)

+ m5(d + ψ)R∗
(
2 − l − 1

l

)

− β1SA
∗
(
1 − y

x
+ 1

x
− 1

y

)
− β2SI

∗
(
u

y
− u

x
+ 1

x
− 1

y

)

− β3SH
∗
(

v

y
− v

x
+ 1

x
− 1

y

)
+ ψR∗

(
l − 1 − l

x
+ 1

x

)

+ m2 pA
∗
(
y − 1 − y

z
+ 1

z

)

+ (β1A
∗ + β2 I

∗ + β3H
∗)S∗

(
x − 1 − x

y
+ 1

y

)

+ m3ηA
∗
(
y − 1 − y

u
+ 1

u

)

+ m4αQ
∗
(
z − 1 − z

v
+ 1

v

)

+ m4ωI ∗
(
u − 1 − u

v
+ 1

v

)

+ m5ξQ
∗
(
z − 1 − z

l
+ 1

l

)

+ m5κS
∗
(
x − 1 − x

l
+ 1

l

)
+ m5φH

∗
(

v − 1 − v

l
+ 1

l

)

= α0A
∗
(
3 − 1

x
− x

y
− y

)
+ (d + κ)

(
2 − x − 1

x

)

+ m2α1Q
∗
(
1 + y − z − y

z

)

+ m3α2 I
∗ (

1 + y − u − y

u

)
+ m4αQ

∗ (
1 + z − v − z

v

)

+ m4ωI ∗ (
1 + u − v − u

v

)

+ dR∗
(
2 − l − 1

l

)
+ β1SA

∗

(
1

y
+ y

x
− 1 − 1

x

)

+ β2SI
∗
(
1

y
+ u

x
− 1

x
− u

y

)

+ β3SH
∗
(
1

y
+ v

x
− 1

x
− v

y

)
+ ψR∗

(
1 + 1

x
− l

x
− 1

l

)

+ ξQ∗
(
z − 1 − z

l
+ 1

l

)

+ κS∗
(
x − 1 − x

l
+ 1

l

)
+ φH∗

(
v − 1 − v

l
+ 1

l

)

Let us consider m4 = φ+β3S∗
α3 ,m2 = ξ+m4α

α1
and m3 =

β2S∗+m4ω
α2

. So,
dV

dt
≤ 0 in the region � provided following

conditions are satisfied,
(i) ψS∗R∗ < 2α0S

∗A∗ and (i i) pm2α2 + ηm3α2 +
β1α2S

∗ < α0α2.

Moreover,
dV

dt

∣∣∣∣
E∗

= 0. So, by Lyapunov LaSalle’s theo-

rem [41], E∗ is GAS in the interior of � subject to the stated
parametric conditions. ��

Existence of optimal control functions

Nowwederive the conditions for existence of optimal control
interventions which also minimize the cost function J in a
finite time period.

Proof of Theorem 9.1 The optimal control variables, when
exist, satisfy the following conditions:

(i) Solutions of system (8) with control variables u1 and u2
in � �= φ.

(ii) The mentioned set � is closed, convex and the state
system is represented with linear function of control vari-
ables where coefficients depend on time and also on state
variables.

(iii) Integrand of (7): L is convex on � and L(S, A, Q, I ,
H , R, u1, u2) ≥ h(u1, u2)whereh(u1, u2) is continuous
and ||(u1, u2)||−1h(u1, u2) → ∞ when ||(u1, u2)|| →
∞; ||.|| represents the L2(0, T f ) norm.
From (8), the total population N = S+A+Q+I+H+R.

So,
dN

dt
= � − dN − δ1A − δ2 I − δ3H ≤ � − dN

⇒ 0 < N (t) ≤ N (0)e−dt + �

d

(
1 − e−dt

)
,

where N (0) = S(0)+A(0)+Q(0)+ I (0)+H(0)+R(0).

As t → ∞, 0 < N (t) ≤ �

d
.

For each of the control variable in �, solution of (8) is
bounded and right hand side functions are locally Lip-
schitzian too. Picard − Lindelö f theorem shows that
condition (i) is satisfied [42].
The control set � is closed and convex by definition.
Again all the equations of system (8) are written as
linear equations in u1 and u2 where state variables
depend on coefficients and hence condition (ii) is satis-
fied also. Moreover, the quadratic nature of all control
variables guarantee the convex property of integrand
L(S, A, Q, I , H , R, u1, u2).

Also, L(S, A, Q, I , H , R, u1, u2)

= w1A + w2 I + w3u
2
1 + w4u

2
2

≥ w3u
2
1 + w4u

2
2

Let,w = min(w3, w4) > 0 and k(u1, u2) = w(u21+u22).
Then L(S, A, Q, I , H , R, u1, u2) ≥ k(u1, u2).
Here k is continuous and ||(u1, u2)||−1k(u1, u2) → ∞
whenever ||(u1, u2)|| → ∞. Hence, condition (iii) is
also satisfied. So, it is concluded that there exist con-
trol variables u∗

1 and u∗
2 with the condition J [u∗

1, u
∗
2] =

min[J [u1, u2]] [38,43].
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Characterization of optimal control functions

By Pontryagin’s Maximum Principle, we have derived here
the necessary conditions for optimal control functions for
system (7)-(8) [43–47]. Let us define the Hamiltonian func-
tion as:

H (S, A, Q, I , H , R, u1, u2, λ)

= L(S, A, Q, I , H , R, u1, u2) + λ1
dS

dt
+ λ2

d A

dt
+ λ3

dQ

dt

+ λ4
d I

dt
+ λ5

dH

dt
+ λ6

dR

dt
So, H

= w1A + w2 I + w3u
2
1 + w4u

2
2 + λ1[� − (1 − u1(t))(β1A

+ β2 I )S − β3HS − dS + ψR

− u2(t)S] + λ2[(1 − u1(t))(β1A + β2 I )S + β3HS − α0A]
+ λ3[pA − α1Q] + λ4[ηA − α2 I ]
+ λ5[αQ + ωI − α3H ] + λ6[ξQ + u2(t)S

+ φH − (d + ψ)R]
(11)

Here λ = (λ1, λ2, λ3, λ4, λ5, λ6) are the adjoint variables.
We get minimized Hamiltonian by Pontryagin’s Maximum
Principle to minimize the cost functional. Pontryagin’s Max-
imum Principle mainly adjoin the cost functional with the
state equations by introducing adjoint variables.

Proof of Theorem 9.2 Let u∗
1 and u∗

2 be optimal control vari-
ables and S∗, A∗, Q∗, I ∗, H∗, R∗ are corresponding optimal
state variables of the control system (8) which minimize the
cost functional (7). So, by Pontryagin’s Maximum Principle,
there exist adjoint variables λ1, λ2, λ3, λ4, λ5, λ6 which
satisfy the following canonical equations:

dλ1

dt
= −∂H

∂S
,

dλ2

dt
= −∂H

∂A
,

dλ3

dt
= −∂H

∂Q
,

dλ4

dt
= −∂H

∂ I
,

dλ5

dt
= −∂H

∂H
,

dλ6

dt
= −∂H

∂R
.

So, we have

dλ1

dt
= λ1[(β1A + β2 I )(1 − u1) + β3H + u2 + d]
− λ2[(β1A + β2 I )(1 − u1) + β3H ] − λ6(u2)

dλ2

dt
= −w1 + λ1[(1 − u1)β1S]

− λ2[(1 − u1)β1S − α0] − λ3(p) − λ4(η)

dλ3

dt
= λ3(α1) − λ5(α) − λ6(ξ)

dλ4

dt
= −w2 + λ1[(1 − u1)β2S] − λ2[(1 − u1)β2S]

+ λ4(α2) − λ5(ω)

dλ5

dt
= λ1(β3S) − λ2(β3S) + λ5(α3) − λ6(φ)

dλ6

dt
= −λ1(ψ) + λ6(d + ψ) (12)

with the transversality conditions λi (T f ) = 0, for i =
1, 2, 3, 4, 5, 6.

From optimality conditions : ∂H

∂u1

∣∣∣∣
u1=u∗

1

= 0 and
∂H

∂u2

∣∣∣∣
u2=u∗

2

= 0.

So,u∗
1 = S∗(β1A∗ + β2 I ∗)

2w3
(λ2 − λ1) , u∗

2 = S∗

2w4
(λ1 − λ6).

Now from these findings along with the characteristics of
control set �, we have

u∗
1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if S∗(β1A∗+β2 I ∗)
2w3

(λ2 − λ1) < 0

S∗(β1A∗+β2 I ∗)
2w3

(λ2 − λ1) , if 0 ≤ S∗(β1A∗+β2 I ∗)
2w3

(λ2 − λ1) ≤ 1

1, if S∗(β1A∗+β2 I ∗)
2w3

(λ2 − λ1) > 1

u∗
2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if S∗
2w4

(λ1 − λ6) < 0

S∗
2w4

(λ1 − λ6) , if 0 ≤ S∗
2w4

(λ1 − λ6) ≤ 1

1, if S∗
2w4

(λ1 − λ6) > 1

which is equivalent as (10). ��

Optimal system

Westate the optimal systemwith optimal control variables u∗
1

and u∗
2 below. The optimal system with minimized Hamilto-

nian H
∗
at (S∗, A∗, Q∗, I ∗, H∗, R∗, λ1, λ2, λ3, λ4, λ5, λ6)

is as follows:

dS∗

dt
= � − (1 − u∗

1)(β1A
∗ + β2 I

∗)S∗

− β3H
∗S∗ − dS∗ + ψR∗ − u∗

2S
∗,

d A∗

dt
= (1 − u∗

1)(β1A
∗ + β2 I

∗)S∗ + β3H
∗S∗ − α0A

∗,

dQ∗

dt
= pA∗ − α1Q

∗,

d I ∗

dt
= ηA∗ − α2 I

∗,
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dH∗

dt
= αQ∗ + ωI ∗ − α3H

∗,

dR∗

dt
= u∗

2S
∗ + ξQ∗ + φH∗ − (d + ψ)R∗, (13)

with initial conditions: S∗(0) > 0, A∗(0) ≥ 0, Q∗(0) ≥
0, I ∗(0) ≥ 0, H∗ ≥ 0 and R∗ ≥ 0. The corresponding
adjoint system is given as:

dλ1

dt
= λ1[(β1A

∗ + β2 I
∗)(1 − u∗

1) + β3H
∗ + u∗

2 + d]
− λ2[(β1A

∗ + β2 I
∗)(1 − u∗

1) + β3H
∗] − λ6(u

∗
2)

dλ2

dt
= −w1 + λ1[(1 − u∗

1)β1S
∗]

− λ2[(1 − u∗
1)β1S

∗ − α0] − λ3(p) − λ4(η)

dλ3

dt
= λ3(α1) − λ5(α) − λ6(ξ)

dλ4

dt
= −w2 + λ1[(1 − u∗

1)β2S
∗] − λ2[(1 − u∗

1)β2S
∗]

+ λ4(α2) − λ5(ω)

dλ5

dt
= λ1(β3S

∗) − λ2(β3S
∗) + λ5(α3) − λ6(φ)

dλ6

dt
= −λ1(ψ) + λ6(d + ψ),

(14)

with transversality conditions λi (T f ) = 0, for i =
1, 2, . . . , 6 and u∗

1 and u∗
2 are same as in (10).
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