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Identification and characterization of plant protein–protein interactions (PPIs) are critical in
elucidating the functions of proteins and molecular mechanisms in a plant cell. Although
experimentally validated plant PPIs data have become increasingly available in diverse
plant species, the high-throughput techniques are usually expensive and labor-intensive.
With the incredibly valuable plant PPIs data accumulating in public databases, it is
progressively important to propose computational approaches to facilitate the
identification of possible PPIs. In this article, we propose an effective framework for
predicting plant PPIs by combining the position-specific scoring matrix (PSSM), local
optimal-oriented pattern (LOOP), and ensemble rotation forest (ROF) model. Specifically,
the plant protein sequence is firstly transformed into the PSSM, in which the protein
evolutionary information is perfectly preserved. Then, the local textural descriptor LOOP is
employed to extract texture variation features from PSSM. Finally, the ROF classifier is
adopted to infer the potential plant PPIs. The performance of CPIELA is evaluated via
cross-validation on three plant PPIs datasets: Arabidopsis thaliana, Zea mays, and Oryza
sativa. The experimental results demonstrate that the CPIELA method achieved the high
average prediction accuracies of 98.63%, 98.09%, and 94.02%, respectively. To further
verify the high performance of CPIELA, we also compared it with the other state-of-the-art
methods on three gold standard datasets. The experimental results illustrate that CPIELA
is efficient and reliable for predicting plant PPIs. It is anticipated that the CPIELA approach
could become a useful tool for facilitating the identification of possible plant PPIs.
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INTRODUCTION

Plant protein–protein interactions (PPIs) participate in almost all aspects of cellular processes such as
homeostasis control, signal transduction, organ formation, and plant defense (Morsy et al., 2008;
Yuan et al., 2008; Fukao, 2012; Sheth and Thaker, 2014; Cheng et al., 2021). Thus, understanding
plant PPIs could provide important insights into the pathological processes and the regulation of
plant developmental processes. Consequently, constructing a PPI network at the system level is one

Edited by:
Pu-Feng Du,

Tianjin University, China

Reviewed by:
Tiantian He,

Agency for Science, Technology and
Research (ApSTAR), Singapore

Bin Liu,
Beijing Institute of Technology, China

*Correspondence:
Li-Ping Li

cs2bioinformatics@gmail.com
Bo Zhang

xjauzb@sina.com

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 19 January 2022
Accepted: 10 February 2022
Published: 11 March 2022

Citation:
Li L-P, Zhang B and Cheng L (2022)
CPIELA: Computational Prediction of
Plant Protein–Protein Interactions by
Ensemble Learning Approach From

Protein Sequences and
Evolutionary Information.
Front. Genet. 13:857839.

doi: 10.3389/fgene.2022.857839

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8578391

METHODS
published: 11 March 2022

doi: 10.3389/fgene.2022.857839

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.857839&domain=pdf&date_stamp=2022-03-11
https://www.frontiersin.org/articles/10.3389/fgene.2022.857839/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.857839/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.857839/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.857839/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.857839/full
http://creativecommons.org/licenses/by/4.0/
mailto:cs2bioinformatics@gmail.com
mailto:xjauzb@sina.com
https://doi.org/10.3389/fgene.2022.857839
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.857839


of the key tasks to elucidate molecular mechanisms. In the past
decades, several innovative high-throughput techniques, such as
the yeast two-hybrid (Y2H) (Causier and Davies, 2002),
bimolecular fluorescence complementation (BiFC) (Bracha-
Drori et al., 2010), affinity purification coupled to mass
spectrometry (AP-MS) (Puig et al., 2001), and protein
microarrays (Hultschig et al., 2006), have been designed to
detect plant PPIs. However, the aforementioned high
throughput biological experiments have some unavoidable
technical limitations (Yuan-Ke et al., 2019). For example, the
number of PPIs obtained by high-throughput biological
experiments is still much smaller than the number of expected
PPIs (Aloy and Russell, 2004). It is believed that, for the most
studied organisms (yeast), the number of PPIs is still
underestimated (Sambourg and Thierry-Mieg, 2010).
Furthermore, the techniques employed to detect plant PPIs are
expensive and time-consuming, limiting the wide application of
these approaches. In addition, most experimental techniques are
often associated with high levels of a false-positive rate.

To conquer the disadvantages of previous biological approaches
in a rapid and convenient way, computational approaches have
become a hot research topic for predicting PPIs in proteomics
research (Xiaoli et al., 2018; Lenz et al., 2020; He et al., 2021a; Green
et al., 2021). In recent years, several public databases have been
constructed to store the plant PPIs detected by biological
experiments. For example, Dreze et al. constructed a proteome-
wide binary PPI network of Arabidopsis thaliana consisting of
more than 6,000 highly reliable PPIs among about 2,700 proteins
(Dreze et al., 2011). Over the past decades, several computational
methods that predict PPIs have been proposed by exploiting
features ranging from network topology, protein sequence,
phylogenetic profile, protein domain, and function annotation,
among others (You et al., 2016a; Yi et al., 2018; Liu et al., 2019; Li
et al., 2021). Min et al. generated a high-confident database of plant
PPIs derived from the published studies and several databases (Min
et al., 2010). Ding et al. used domain and ortholog identification
combination approach to infer the genome-wide protein–protein
interactions for Citrus sinensis (Ding et al., 2014). Geisler-Lee et al.
presented a PPI network for Arabidopsis thaliana, predicted from
interacting orthologs in Caenorhabditis elegans, Saccharomyces
cerevisiae, Homo sapiens, and Drosophila melanogaster (Geisler-
Lee et al., 2007). In another work by Brandao et al., a user-friendly
tool, AtPIN, aggregated information on PPIs of Arabidopsis
thaliana, sub-cellular localization, and ontology to map PPIs in
Arabidopsis thaliana (Brandão et al., 2009). Zhu et al. constructed a
genome-scale PPI network named PRIN in Oryza sativa by
employing the InParanoid method based on the interolog
approach. The PRIN approach integrated more than 533,000
PPIs among about 48,150 proteins from six organisms and
detected more than 76,500 predicted rice PPIs among about
5,050 proteins (Zhu et al., 2011).

This work introduces a novel sequence-based computational
approach, CPIELA, to predict potential plant protein–protein
interactions. More specifically, we first converted the plant
protein sequence into a position-specific scoring matrix
(PSSM). Then, to fully capture the evolutionary information of
the plant protein, we performed the local optimal-oriented

pattern (LOOP) on the PSSM to extract the local textural
descriptor. Although the LOOP algorithm is widely applied in
image processing, to the best of our knowledge, this is the first
work where LOOP is used in plant biology to predict PPIs.
Finally, an efficient and powerful classification model, rotation
forest (ROF), is used to identify the possible plant PPIs. The main
contributions of this methodology are as follows: 1) based on the
evolutionary history of proteins, the proposed method extracts
the evolutionary features from the PSSM of the protein with
known sequences, enabling our method to have more power for
predicting plant PPIs than other sequence-based algorithms; 2)
the proposed method does not depend on known PPIs samples
and does not bias toward specific subspaces in the examined
proteomic space because it directly captures features from the
PSSMs of the plant protein sequence; and 3) we applied the
ensemble ROF classifier to infer potential plant PPIs, which can
truly improve the predictive accuracy compared with existing
approaches. The proposed CPIELA method is well investigated
on three plant PPIs datasets (Arabidopsis thaliana, Zea mays, and
Oryza sativa) and yields high average accuracies of 98.63%,
98.09%, and 94.02%, respectively. In order to further verify the
predictive performance of CPIELA, we compare it with the
popular support vector machine (SVM) and random forest
(RF) classifier. The experimental results illustrated that the
CPIELA could be a complementary tool for plant PPIs prediction.

RESULTS AND DISCUSSIONS

Evaluation Measures
In the experiment, the fivefold cross-validation technique is used
to evaluate the predictive performance of the CPIELA model.
Cross-validation is a widely used approach to estimate the
generalization performance of the prediction model. The
k-fold cross-validation method usually randomly separates the
instances into k equal-sized disjoint groups. Then, the k-1 groups
are used as a training dataset, and the remaining group is retained
as the testing samples. This process is repeated k times. The
predictive results of the proposed method are evaluated using five
criteria, including precision (Prec.), accuracy (Acc.), sensitivity
(Sen.), specificity (Spec.), and Matthews correlation coefficient
(MCC). The calculation formulas are listed as follows:

Accu. � TN + TP

FP + FN + TP + TN
, (1)

Sen. � TP

FN + TP
, (2)

Prec. � TP

FP + TP
, (3)

Spec. � TN

FP + TN
, (4)

MCC � TP × TN − FP × FN�������������������������������������(TP + FP)(TN + FP)(TP + FN)(TN + FN)√ , (5)

where TP, FP, TN, and FN represent the number of true-positive,
false-positive, true-negative, and false-negative samples,
respectively. Furthermore, the Receiver Operating
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Characteristic (ROC) curve is employed to describe and compare
the performance of a prediction model (Broadhurst and Kell,
2006). The y-axis and x-axis of the ROC curve are the sensitivity
(the true positive rate, TPR) and 1 − specificity (the false positive
rate, FPR), respectively. The area under the ROC curve (AUC) is a
frequently used measure of performance for classification. An
AUC of 0.5 means a random classifier, while the ideal value of
AUC would be 1.0. For the convenience of presentation, the
specific steps of the CPIELAmethod for identifying plant PPIs are
shown in Figure 1.

Evaluation of Model Predictive Ability
To verify the high predictive performance of the CPIELA model,
we performed it on three plant PPIs datasets: Arabidopsis
thaliana, Oryza sativa, and Zea mays. To guarantee the
stability of the predictive results, the fivefold cross-validation
technique is used to estimate the generalization capacity of the
proposed learning model. Because the predictive performance of
a rotation forest (ROF) ensemble is highly associated with the
number L of decision trees (DT) and the number K of feature
subset, a grid search method is conducted for tuning multiple
parameters of the RFmodel. Considering the tradeoff between the

computational complexity and accuracy rate, we set the number
of decision trees to 3 and the number of feature subsets to 10 for
all experiments.

The experimental results on the Arabidopsis thaliana dataset
are outlined in Table 1. It can be seen from Table 1 that the
average accuracy of the proposed method is as high as 98.63%. In
order to further quantify the prediction performance of the
proposed method, some other evaluation measures are
calculated. From Table 1, we can observe that the overall
sensitivity, precision, specificity, MCC, and AUC are 97.56%,
99.69%, 99.70%, 97.30%, and 0.9954, respectively. The standard
deviations of them are 0.43%, 0.10%, 0.09%, 0.42%, and 0.0009,
respectively.

For the Zea mays dataset, it can be observed from Table 2 that
the proposed CPIELA achieved good performance of accuracy
98.09%, precision 99.03%, sensitivity 97.13%, specificity 99.05%,
MCC 96.25%, and AUC 0.9912, respectively. We also tested the
CPIELA method on the Oryza sativa dataset. Table 3 lists the
predictive results of fivefold cross-validation. We achieved the
high accuracy of 94.02%, the precision value of 94.39%, the
sensitivity value of 93.63%, the specificity value of 94.43%, the
MCC value of 88.79%, and the AUC value of 0.9581 on the Oryza

FIGURE 1 | The flowchart of the proposed CPIELA method.

TABLE 1 | The fivefold cross-validation results achieved on the A. thaliana dataset using the proposed CPIELA method.

Testing set Accu. (%) Sen. (%) Prec. (%) Spec. (%) MCC (%) AUC

1 98.43 97.23 99.56 99.58 96.90 0.9957
2 98.78 97.99 99.61 99.60 97.59 0.9961
3 98.39 97.04 99.76 99.77 96.83 0.9936
4 98.89 97.98 99.76 99.77 97.80 0.9957
5 98.67 97.58 99.76 99.77 97.37 0.9956
Average 98.63 ± 0.22 97.56 ± 0.43 99.69 ± 0.10 99.70 ± 0.09 97.30 ± 0.42 0.9954

The bold values in these Tables mean the highest value in every column.
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sativa dataset. Furthermore, fromTable 3, we can also see that the
standard deviations of accuracy, precision, sensitivity, specificity,
MCC, and AUC are 1.45%, 2.20%, 1.08%, 2.19%, 2.61%, and
0.014, respectively.

Figures 2A–C plot the ROC curves generated by the CPIELA
method on the Arabidopsis thaliana, Zea mays, and Oryza sativa
datasets. It can be seen from the above experimental results that
the CPIELA method is effective for predicting plant PPIs. The
better prediction performance mainly comes from the
discriminative LOOP descriptors and the powerful ROF
classifier. More specifically, the PSSM not only encodes the
sequence into the matrix but also obtains sufficient
evolutionary information on plant proteins, which can
significantly improve the prediction accuracy. As a popular
ensemble classifier, the ROF model has a considerably high
predictive capability for identifying potential PPIs, making us
more convinced that the proposed CPIELA can be a useful tool
for predicting plant PPIs.

Comparison of the Proposed Model With
Different Classifiers and Descriptors
In this section, we conduct an experiment to compare the
prediction performance of the state-of-the-art SVM classifier
(Chih-Chung and Chih-Jen, 2011), the standard random forest
(RF), and the rotation forest (ROF). The experimental results of
the above-mentioned classifiers combined with the LOOP
descriptor are listed in Table 4. It can be seen from Table 4
that the average accuracies of SVM, RF, and ROF classifier on
the Arabidopsis thaliana dataset are 89.37%, 97.21%, and
98.63%, respectively. To demonstrate the predictive ability of
the proposed CPIELA more comprehensively, we also
computed the values of sensitivity, precision, MCC, and
AUC. As observed from Table 4, the proposed CPIELA
model achieved the highest performance on the Arabidopsis

thaliana dataset with the sensitivity value of 97.56%, precision
value of 99.69%, MCC value of 97.30%, and AUC value of
0.9954. In addition, we could observe in detail from Table 4 that
the corresponding standard deviation of accuracy, precision,
sensitivity, MCC, and AUC is 0.22%, 0.10%, 0.43%, 0.42%, and
0.0009, respectively.

The precision, sensitivity, MCC, and AUC of the SVM
classifier are 94.16%, 83.95%, 80.89%, and 0.9495, respectively.
The precision, sensitivity, MCC, and AUC of the RF model are
98.22%, 96.15%, 94.58%, and 0.9720, respectively. It is evident
that the SVM model achieved poor accuracy compared to the RF
and ROF classifiers. It is specifically notable in the case of MCC.
The proposed CPIELA method is the model with the best
predictive results in terms of MCC for Arabidopsis thaliana
PPIs datasets.

We also pay attention to the other two plant PPIs datasets.
Table 4 shows the experimental results obtain on the Zea mays
dataset, from which we can observe that the average accuracies of
SVM, RF, and ROF classifiers are 84.46%, 94.65%, and 98.09%,
respectively. Here, it could also be observed that the average
accuracies obtained by the SVM, RF, and ROF models on the
Oryza sativa dataset are 88.95%, 90.90%, and 94.02%,
respectively.

Figures 3A–C show the ROC curve generated by different
classifiers with the LOOP descriptor on the Arabidopsis thaliana,
Zea mays, and Oryza sativa PPIs datasets, respectively.

In order to further evaluate the predictive performance of
CPIELA, we also compared it with several other protein
descriptors. In the experiment, local phase quantization (LPQ),
first proposed by Ojansivu et al. (2008), Heikkilä et al. (2014), is
employed to evaluate the performance of predicting plant PPIs on
Arabidopsis thaliana, Zea mays, and Oryza sativa datasets,
respectively. The fivefold cross-validation results of the LOOP
and LPQ descriptor combined with ROF classifier on three plant
PPIs datasets are summarized in Table 5. It can be observed that

TABLE 2 | The fivefold cross-validation results achieved on the Zea mays dataset using the proposed CPIELA method.

Testing set Accu. (%) Sen. (%) Prec. (%) Spec. (%) MCC (%) AUC

1 97.82 96.59 99.07 99.08 95.74 0.9914
2 98.28 97.34 99.22 99.22 96.62 0.992
3 97.98 97.05 98.89 98.91 96.04 0.9902
4 98.00 97.00 98.91 98.96 96.07 0.9893
5 98.37 97.65 99.07 99.09 96.79 0.9931
Average 98.09 ± 0.23 97.13 ± 0.40 99.03 ± 0.14 99.05 ± 0.12 96.25 ± 0.44 0.9912

The bold values in these Tables mean the highest value in every column.

TABLE 3 | The fivefold cross-validation results achieved on the Oryza sativa dataset using the proposed CPIELA method.

Testing set Accu. (%) Sen. (%) Prec. (%) Spec. (%) MCC (%) AUC

1 93.70 93.74 93.45 93.65 88.19 0.9558
2 93.59 92.17 95.17 95.09 88.00 0.9516
3 93.33 93.54 93.15 93.13 87.56 0.952
4 96.56 95.21 97.86 97.91 93.36 0.9826
5 92.92 93.49 92.32 92.36 86.84 0.9484
Average 94.02 ± 1.45 93.63 ± 1.08 94.39 ± 2.20 94.43 ± 2.19 88.79 ± 2.61 0.9581

The bold values in these Tables mean the highest value in every column.
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the LPQ descriptor achieved 73.17% average accuracy, 72.55%
average sensitivity, 73.46% average precision, 73.79% average
specificity, 60.74% average MCC, and 0.7873 average AUC on
the Arabidopsis thaliana dataset. Meanwhile, the LOOP
descriptor achieved 98.63% average accuracy, 97.56% average
sensitivity, 99.69% average precision, 99.70% average specificity,

97.30% average MCC, and 0.9954 average AUC on the
Arabidopsis thaliana dataset.

As we can see in Figure 3D, for Arabidopsis thaliana, the area
under the ROC curve corresponding to LOOP is significantly
larger than that of the LPQ descriptor. In terms of the indicator
AUC, the AUC value of LOOP reaches 0.9957, which is 26.42%

FIGURE 2 | The predictive performance of the proposed CPIELAmethod via fivefold cross-validation. (A–C) The Receiver Operating Characteristic (ROC) curves of
Arabidopsis thaliana, Zea mays, and Oryza sativa datasets. (D) The ROC curves performed by the CPIELA method on three plant PPIs datasets.

TABLE 4 | The fivefold cross-validation results achieved by different classifiers on the three plant datasets.

Dataset Classifier Acc. (%) Sen. (%) Prec. (%) MCC (%) AUC

A. thaliana SVM 89.37 ± 0.25 83.95 ± 0.51 94.16 ± 0.41 80.89 ± 0.39 0.9495 ± 0.0038
RF 97.21 ± 0.12 96.15 ± 0.19 98.22 ± 0.33 94.58 ± 0.22 0.9720 ± 0.0011
Our method 98.63 ± 0.22 97.56 ± 0.43 99.69 ± 0.10 97.30 ± 0.42 0.9954 ± 0.0009

Zea mays SVM 84.46 ± 0.20 77.55 ± 0.94 89.98 ± 0.47 73.5 ± 0.34 0.9179 ± 0.0048
RF 94.65 ± 0.60 94.28 ± 0.66 94.98 ± 0.81 89.87 ± 1.07 0.9472 ± 0.0060
Our method 98.09 ± 0.23 97.13 ± 0.40 99.03 ± 0.14 96.25 ± 0.44 0.9912 ± 0.0015

Oryza sativa SVM 88.95 ± 1.44 83.23 ± 2.52 94.00 ± 0.72 80.24 ± 2.28 0.9445 ± 0.0068
RF 90.90 ± 1.30 90.45 ± 1.58 91.29 ± 2.10 83.47 ± 2.11 0.9113 ± 0.0122
Our method 94.02 ± 1.45 93.63 ± 1.08 94.39 ± 2.20 88.79 ± 2.61 0.9581 ± 0.0140

The bold values in these Tables mean the highest value in every column.
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higher than that of the LPQ method. The experimental results
also demonstrate that the LOOP descriptor exhibited significantly
better performance than the LPQ descriptor on the other two
plant PPIs datasets. Furthermore, the higher prediction

accuracies and lower standard deviations indicate that the
LOOP descriptor can effectively extract the features from
protein sequence and significantly improve the predictive
performance in plant PPIs prediction.

FIGURE 3 | Prediction performance comparison of different classifiers using ROC curves in predicting plant protein–protein interactions. Shown in the plot are the
ROC curves for (A) Arabidopsis thaliana, (B) Zea mays, (C) Oryza sativa datasets using RF (blue line), ROF (green line), SVM (red line), respectively. (D) ROC curves of
different descriptors on three plant PPIs datasets.

TABLE 5 | The fivefold cross-validation results achieved on the three plant PPIs dataset among different descriptors using the proposed method.

Dataset Methods Acc. (%) Sen. (%) Prec. (%) Spec. (%) MCC (%) AUC

A. thaliana LPQ + RoF 73.17 ± 0.72 72.55 ± 0.86 73.46 ± 0.84 73.79 ± 0.64 60.74 ± 0.69 0.7873 ± 0.0090
LOOP + RoF 98.63 ± 0.22 97.56 ± 0.43 99.69 ± 0.10 99.70 ± 0.09 97.30 ± 0.42 0.9954 ± 0.0009

Zea mays LPQ + RoF 94.17 ± 0.40 93.4 ± 0.64 94.86 ± 0.53 94.93 ± 0.50 89.02 ± 0.72 0.9639 ± 0.0031
LOOP + RoF 98.09 ± 0.23 97.13 ± 0.40 99.03 ± 0.14 99.05 ± 0.12 96.25 ± 0.44 0.9912 ± 0.0015

Oryza sativa LPQ + RoF 91.89 ± 0.64 92.14 ± 1.57 91.70 ± 0.87 91.65 ± 1.01 85.09 ± 1.07 0.9474 ± 0.0041
LOOP + RoF 94.02 ± 1.45 93.63 ± 1.08 94.39 ± 2.20 94.43 ± 2.19 88.79 ± 2.61 0.9581 ± 0.0140

The bold values in these Tables mean the highest value in every column.
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Comparison With Existing Method
In the previous works, some researchers have put forward
several computational approaches to solve the problem of
plant PPIs prediction (Pan et al., 2021a; Pan et al., 2021b).
Therefore, we compare the predictive performance of CPIELA
against the recently proposed approaches. Experimental
results of predictive performance comparison on Oryza
sativa dataset between CPIELA and several related models
are demonstrated in Table 6. It can be clearly observed from
this table that the range of AUC generated by other approaches
is from 0.7931 to 0.9440, the range of MCC obtained is from
37.39% to 78.26%, the range of accuracy generated by other
models is from 66.63% to 82.60%, and the corresponding
values obtained by CPIELA are 0.9581, 88.79%, and 94.02%.
It shows that the predictive performance (AUC, MCC,
accuracy) of CPIELA is better than that of existing models.
We can see from Table 6 that the CPIELA model also gives

better performance than the above-mentioned models for
sensitivity, precision, and specificity metrics. Overall, the
proposed CPIELA model shows better predictive
performance than the previous prediction model on the
Oryza sativa dataset.

CONCLUSION

Protein–protein interactions are involved in almost all aspects of
plant cellular processes. Thus, identifying plant PPIs is an
important step toward understanding the molecular
mechanisms and biological systems. This article developed a
novel computational approach called CPIELA for predicting
plant PPIs using the specifically designed protein
representation method LOOP and ROF-based framework. The
local optimal-oriented pattern (LOOP) descriptor is proposed to

TABLE 6 | The predictive performance comparison of different methods on the Oryza sativa dataset.

Methods Accu. (%) Sen. (%) Prec. (%) Spec. (%) MCC (%) AUC

DHT + KNN N/A 89.28 ± 0.78 76.41 ± 1.55 72.44 ± 1.58 68.59 ± 1.17 0.8680 ± 0.8900
DHT + RF N/A 88.00 ± 1.34 87.30 ± 1.35 87.22 ± 1.16 78.26 ± 1.28 0.9199 ± 0.5800
DHT + DNN 82.60 ± 1.79 95.89 ± 0.91 75.79 ± 2.43 69.31 ± 3.53 67.65 ± 2.98 0.9440 ± 0.5800
FFT + DNN 75.31 ± 1.37 93.34 ± 1.59 68.61 ± 1.03 57.23 ± 2.90 54.26 ± 2.81 0.8760 ± 0.0096
DWT + DNN 81.54 ± 3.05 94.81 ± 0.65 75.10 ± 3.84 68.26 ± 6.61 65.50 ± 4.99 0.9309 ± 0.0052
AC + DNN 66.63 ± 4.48 88.42 ± 4.77 62.02 ± 4.91 45.02 ± 12.49 37.39 ± 5.39 0.7931 ± 0.0126
DCT + DNN 80.95 ± 1.10 96.12 ± 1.15 73.70 ± 1.41 65.64 ± 2.40 64.99 ± 1.97 0.9360 ± 0.0017
Our method 94.02 ± 1.45 93.63 ± 1.08 94.39 ± 2.20 94.43 ± 2.19 88.79 ± 2.61 0.9581 ± 0.0140

DHT: discrete Hilbert transform (Cizek, 1970); KNN: k-nearest neighbors; RF: random forest; FFT: fast Fourier transform; DWT: discrete wavelet transform; AC: auto covariance; DCT:
discrete cosine transform.
The bold values in these Tables mean the highest value in every column.

TABLE 7 | Summary of plant PPIs and proteins in different species.

Species name Common name Number of proteins Number of PPIs

Arabidopsis thaliana Thale cress 7, 437 56, 220
Zea mays Maize 4, 841 28, 460
Oryza sativa Rice 1, 834 9, 600

FIGURE 4 | The masks of Kirsch’s edge detector which is used for calculating responses in eight possible directions.
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conquer some of the disadvantages in the previous feature
descriptor, local directional pattern (LDP), and local binary
pattern (LBP), by integrating the strength of these two
descriptors. Thus, the LOOP-based features from PSSM are
useful for predictive accuracy improvement. A highly accurate
rotation forest algorithm is used to predict the potential plant
PPIs. Experimental results on three plant PPIs datasets showed
that the proposed CPIELA method outperforms all existing
methods, demonstrating the feasibility and effectiveness of the
proposed protein representation LOOP and the ROF-based
classifier for predicting plant PPIs. The proposed sequence-
based prediction method enables the systematic identification
of possible PPIs in plants.

MATERIALS AND METHODOLOGY

Golden Standard Datasets
With the rapid advances of high-throughput biological
technologies, many resources currently provide plant PPIs for
different species. To construct a plant PPIs prediction model and
compare it with existing prediction approaches, three plant PPIs
datasets (Zea mays, Oryza sativa, and Arabidopsis thaliana) are
employed in this work. For the interactome of Zea mays, 14,230
experimentally verified PPIs are downloaded from the Protein-
Protein Interaction Database for Maize (PPIM) (Zhu et al., 2017)
and agriGO (Tian et al., 2017). Because there is no available
confirmed non-interacting plant PPIs, constructing negative PPIs
dataset remains a challenging task in PPIs prediction. In order to
build the negative dataset, 14,230 maize protein pairs located in
different subcellular localization are randomly chose in this study.
Consequently, the whole Zea mays dataset consists of 28,460
protein pairs.

A total of 4,800 non-redundant Oryza sativa protein
interaction pairs among 1,834 rice proteins are downloaded
from the PRIN database (http://bis.zju.edu.cn/prin) (Gu et al.,
2011). The Arabidopsis thaliana PPIs dataset is collected from the
public databases of BioGrid (Rose et al., 2018), TAIR (Yon et al.,
2003), and IntAct (Kerrien et al., 2011). Meanwhile, the protein
pairs containing a protein with fewer than fifty amino acids or
having ≤40% sequence identity are removed. Finally, the 28,110
protein pairs from 7,437 Arabidopsis thaliana proteins comprise
the positive dataset. The 28,110 protein pairs occurring in two
different subcellular localizations are generated as a negative PPIs
dataset. In this way, the whole Arabidopsis thaliana dataset is
constructed by more than 56,220 protein pairs. The summary of
plant PPIs used in this study is shown in Table 7.

Position-Specific Scoring Matrix
The position-specific scoring matrix (PSSM) was first proposed
by Gribskov et al. to detect distantly related proteins and is now
widely applied for the representation and prediction of PPIs
(Gribskov et al., 1987; You et al., 2014; Wong et al., 2015; You
et al., 2016b). A PSSM for a given protein is a 20×M matrix
P � {Pij: i � 1, 2, . . . , 20 and j � 1, 2, . . . ,M}, where M is the
length of the target protein sequence. The PSSM matrix p can
be represented as follows:

P �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1,1 P1,2 / P1,M

P2,1 P2,2 / P2,M

..

. ..
. ..

. ..
.

P20,1 P20,2 / P20,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (6)

where each element denotes the log-likelihood of the particular
amino acid substitution at that position in the template. For
example, it assigns a value Pi,j for the ith residue in the jth
position of the query protein sequence with a small score
representing a weekly conserved position and a large score
indicating a highly conserved position.

In the experiment, we employed the position-specific iterated
BLAST (PSI-BLAST) tool and SwissProt database to build the
PSSM for each protein amino acid sequence (Altschul et al., 1997;
Altschul and Koonin, 1998; Amos and Rolf, 1999). The PSI-
BLAST approach is highly sensitive in discovering similar
proteins in distantly related species and new members of the
protein family. To obtain high homologous sequences, we set the
number of iterations to three, the e-value to 0.001, and the default
value to the other parameters. The PSI-BLAST tool was
downloaded from http://blast.ncbi.nlm.nih.gov/Blast.cgi.

Local Optimal-Oriented Pattern
Tapabrata et al. presented the local optimal-oriented pattern
(LOOP) as a novel binary local pattern descriptor that encodes
rotation invariance into the main formulation of the local binary
descriptor (Chakraborti et al., 2018). The LOOP descriptor is an
improvement designed on local binary pattern (LBP) (Ojala et al.,
1994) and local directional pattern (LDP) (Jabid et al., 2010).

Given an image I, let ic be the intensity at pixel (xc, yc).
Suppose in (n � 0, 1, . . . , 7) represents the intensity of a pixel in
the 3 × 3 neighborhood of (xc, yc) keeping out the pixel ic.
Figure 4 shows the Kirsch edge detectors centered at (xc, yc)
in eight directions. Let mn (n � 0, 1, . . . , 7) be the eight
responses of the Kirsch masks, corresponding to pixels with
intensity in (n � 0, 1, . . . , 7). Suppose mk is the kth highest
Kirsch activation. An exponential ωn for each of these pixels is
assigned based on the rank of the magnitude of mn amongst the
eight Kirsch mask outputs. Finally, the value of LOOP for the
pixel (xc, yc) is calculated as follows:

LOOP(xc, yc) � ∑7

n�0s(in − ic).2ωn , (7)
where

s(x) � { 1 if x≥ 0
0 otherwise

. (8)

where ic denotes the intensity of the center pixel (x, y). In our
study, the input PSSM is a 20×M matrix. Thus, each protein
sequence is represented by a 256-dimensional feature vector after
employing the LOOP descriptor.

Rotation Forest
Rotation forest (ROF) is a popular ensemble classifier firstly
proposed by Rodriguez et al. (2006). Compared with other
classifiers, the ROF model is successfully used in dealing with
many computational biology problems (He et al., 2021b). The
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basic idea of the rotation forest model is to simultaneously improve
both individual accuracy and member diversity within an ensemble
classifier. The success of the ROF method is attributed to the base
classifier and rotation matrix created by the transformation
algorithms, including principal component analysis (PCA)
(Jolliffe, 2002), local fisher discriminant analysis (LFDA)
(Masashi et al., 2010), maximum noise fraction (MNF) (Gordon,
2000), and independent component analysis (ICA) (Prasad, 2001).
The framework of the ROF model is described as follows.

Let X be the training samples in the form of anN × nmatrix,
where N represents the number of samples and n denotes the
number of features, respectively. Let a vector Y � [y1, . . . , yN]T
be the corresponding class label, where yj ∈ {ω1, . . . ,ωc}. Let F be
the feature set, and F is randomly split into K equal subset.
Suppose L is the number of base decision trees in the ensemble
model, which could be represented as Γ1, Γ2, . . . , ΓL, respectively.
It should be noticed that the number of base classifiers (L) and the
number of feature subsets (K) are the two important tuning
parameters for the ROF classifier. The training dataset for a single
classifier Γi is preprocessed as follows:

1) Randomly divide F into K disjointed feature sets, each subset
containing M � n/K features.

2) Let Fi,j be the jth (j � 1, 2, . . . , K) feature subset for the
training dataset of classifier Γi, and a new matrix Xi,j is
built by selecting the corresponding column of the features
in the subset Fi,j from the training dataset X. Then, a
bootstrap subset of objects is selected with the size of 75
percent of the dataset Xi,j to form a new training dataset X’

i,j.
3) The principal component analysis (PCA) technique is used on

X’
i,j to obtain the coefficients in a matrix Ci,j.

4) A sparse rotation matrix Ri is constructed using the
coefficients obtained in the matrix Ci,j, which is expressed
as follows:

Ri �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a(1)i,1 , . . . , a

(M1)
i,1 0 . . . 0

0 a(1)i,2 , . . . , a
(M2)
i,2 . . . 0

..

.

0

..

.

0

1
. . .

..

.

a(1)i,K , . . . , a
(MK)
i,K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(9)

The columns of Ri should be rearranged to Ra
i according to the

original feature set. Then, the transformed training dataset for
classifier Γi will becomeXRa

i . In this way, all classifiers are trained
in parallel.

In the prediction phase, provided a testing sample x, let
di,k(xRa

i ) be the probability generated by the classifier Γi to the
hypothesis that x belongs to class ωk. Then, the confidence of each
class is calculated by means of the average combination as follows:

μk(x) �
1
L
∑L

i�1di,k(xRa
i ), k � 1, . . . , c. (10)

Finally, the testing sample x is assigned to the class with the
largest confidence.
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