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ABSTRACT
Background and Aim: Epilepsy is a major neurological challenge, especially for pediatric populations. It profoundly impacts

both developmental progress and quality of life in affected children. With the advent of artificial intelligence (AI), there's a

growing interest in leveraging its capabilities to improve the diagnosis and management of pediatric epilepsy. This review aims

to assess the effectiveness of AI in pediatric epilepsy detection while considering the ethical implications surrounding its

implementation.

Methodology: A comprehensive systematic review was conducted across multiple databases including PubMed, EMBASE,

Google Scholar, Scopus, and Medline. Search terms encompassed “pediatric epilepsy,” “artificial intelligence,” “machine

learning,” “ethical considerations,” and “data security.” Publications from the past decade were scrutinized for methodological

rigor, with a focus on studies evaluating AI's efficacy in pediatric epilepsy detection and management.

Results: AI systems have demonstrated strong potential in diagnosing and monitoring pediatric epilepsy, often matching

clinical accuracy. For example, AI‐driven decision support achieved 93.4% accuracy in diagnosis, closely aligning with expert

assessments. Specific methods, like EEG‐based AI for detecting interictal discharges, showed high specificity (93.33%–96.67%)
and sensitivity (76.67%–93.33%), while neuroimaging approaches using rs‐fMRI and DTI reached up to 97.5% accuracy in

identifying microstructural abnormalities. Deep learning models, such as CNN‐LSTM, have also enhanced seizure detection

from video by capturing subtle movement and expression cues. Non‐EEG sensor‐based methods effectively identified nocturnal

seizures, offering promising support for pediatric care. However, ethical considerations around privacy, data security, and

model bias remain crucial for responsible AI integration.

Conclusion:While AI holds immense potential to enhance pediatric epilepsy management, ethical considerations surrounding

transparency, fairness, and data security must be rigorously addressed. Collaborative efforts among stakeholders are imperative

to navigate these ethical challenges effectively, ensuring responsible AI integration and optimizing patient outcomes in

pediatric epilepsy care.
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1 | Introduction

Epilepsy is the second most common neurological disorder, fol-
lowing Alzheimer's disease [1]. This brain disorder causes recur-
rent seizures and is particularly hazardous in children due to its
potential to slow developmental progress and impair skill acqui-
sition. The link between epilepsy and personality changes was first
recognized by American and Canadian neurologists in the 1950s,
marking the beginning of modern epilepsy research [2]. Phenyt-
oin, the first antiepileptic drug introduced during this era, remains
in use today [2]. Early detection and understanding of epilepsy's
severity are crucial, with numerous studies, especially those em-
ploying machine learning (ML) techniques, showing promise in
improving early diagnosis [3]. Globally, epilepsy affects around 50
million people, or 1% of the population, with approximately
0.654% of the population in Saudi Arabia suffering from the
condition [4]. The manifestation of epilepsy varies with age;
newborns might experience symptoms due to oxygen deprivation
at birth or abnormal brain development, whereas infants could
show signs related to brain tumors or genetic conditions [5].
Accurate diagnosis is therefore vital. The use of ML in detecting
epilepsy in children brings up several ethical issues, such as data
protection, algorithm transparency, and accountability. These
factors are fundamental to maintaining the trust of both patients
and healthcare providers. The ethical challenges extend to
research design and the selection of algorithms to prevent harmful
outcomes that contravene ethical medical practice standards.
Since children, particularly those under 18, cannot consent inde-
pendently, it is crucial to establish a clear communication protocol
with parents or guardians. This protocol should explain how ML
tools will be used and how their children's data will be managed.
Additionally, the potential for biases in algorithms, which might
be trained predominantly on adult data, needs careful considera-
tion [6]. Such biases could lead to inaccurate diagnoses or
inappropriate treatment recommendations for children, high-
lighting the necessity of utilizing pediatric datasets in model
training and validation [7]. Moreover, while ML can enhance
clinical decision‐making, it should complement rather than
replace the expertize of medical professionals. This review dis-
cusses the necessary balance between the effectiveness of machine
learning applications in pediatric epilepsy detection and the ethical
considerations that safeguard child welfare.

2 | Methodology

The literature for this review was obtained through an electronic
search of databases including PubMed, EMBASE, Google
Scholar, Scopus, and Medline, using search terms such as

“artificial intelligence,” “ethical considerations,” “effectiveness,”
“epilepsy,” “children,” “pediatric epilepsy,” “machine learning,”
“deep learning,” “neural networks,” “ethics,” “morality,” “pri-
vacy,” “data security,” “patient rights,” “healthcare technology,”
and “medical ethics.” The search was limited to publications
within the past 10 years. Manual searches were also conducted.
Full‐text publications were assessed for potential inclusion.
Publications lacking detailed methods or containing redundant
content were excluded from the review.

3 | Findings

3.1 | Effectiveness of AI in Pediatric Epilepsy
Detection in Children

Artificial Intelligence (AI) has shown promising success in
diagnosing epilepsy in children, often rivalling traditional
methods. For instance, an AI‐driven decision support system for
diagnosing epilepsies in children matched the diagnoses of an
experienced doctor in 85.2% of cases, and closely matched in
another 8.2%, achieving an overall success rate of 93.4% [8].
Another study utilized a hybrid approach where human raters
used operational criteria for interictal epileptiform discharge
(IED) on AI‐detected events, achieving high specificity
(93.33%–96.67%) and good sensitivity (93.33%–76.67%), with the
accuracy comparable to conventional EEG readings while sig-
nificantly reducing the time burden [9]. AI's efficacy, however,
varies across different types or forms of epilepsy. In temporal
lobe epilepsy (TLE), AI classification models using MRI data
have demonstrated moderate accuracy in identifying patients
with hippocampal sclerosis, achieving accuracies between 68%
and 76%. However, these models show reduced accuracy,
ranging from 53% to 62%, when classifying patients without
detectable lesions [10]. AI has also successfully classified epi-
lepsy types using ontology‐based and genetics‐based machine
learning methods and has predicted therapeutic responses to
valproic acid in childhood absence epilepsy through EEG
analysis. Future AI developments may focus on refining models
to accurately identify specific electrographic biomarkers of
epilepsy, such as spikes, high‐frequency oscillations, and sei-
zure patterns. Integrating AI to analyse EEG alongside clinical
and behavioral data could optimize epilepsy therapy [11]. Ad-
vances might also include developing multimodal AI systems
that combine EEG and ECG data for improved seizure identi-
fication across different settings [12].

Additionally, deep learning (DL) could become crucial in neuro-
imaging, particularly in the presurgical evaluation of drug‐
refractory epilepsy, aiding in the detection of subtle abnormalities
that are not obvious through visual inspection. The outcomes of
machine learning diagnoses and their communication with chil-
dren and their families can greatly influence their confidence in
future medical interventions. According to a study by Wong et al.
medical professionals involved in epilepsy management are
receptive to adopting ML seizure detection tools and are willing to
undergo training [13]. This indicates that when effectively com-
municated by well‐informed healthcare professionals, families and
children may develop a positive outlook towards these interven-
tions. Furthermore, Monfort et al. underscored the importance of
considering patient and caregiver acceptability when designing

Summary

• Epilepsy is hazardous in children due to its potential to
slow developmental progress and impair skill acquisition.

• Artificial intelligence has shown promising success in
diagnosing epilepsy in children, often rivaling tradi-
tional methods.

• Accurate algorithms can facilitate early and precise
diagnoses of epilepsy in children.
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technological devices for seizure detection, noting varying levels of
support that could affect the confidence placed in these technolo-
gies and their outcomes [14].

DL systems for seizure video analysis have shown substantial
promise in enhancing the detection, classification, and analysis of
seizures, particularly in challenging cases such as pediatric epilepsy,
where signs are often more subtle. Aristizabal et al. comprehen-
sively evaluated the range of deep learning systems in detecting,
classifying, and analyzing seizure events [15]. Key technologies
include convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs), as well as hybrid architectures like CNN‐
LSTM models that combine both spatial and temporal data to
improve the accuracy of seizure detection and progression analysis
[16, 17]. Notably, human pose estimation (HPE) methods, both 2D
and 3D, have also proven effective in tracking body positions and
joint movements, which are critical for distinguishing between
seizure‐related activity and normal movement [18]. Additionally,
advanced techniques such as Optical Flow can capture minute
motion details that signal the onset of seizures [19]. Models focused
on face and hand detection, including Faster R‐CNN, Mask R‐CNN,
and SSD, have also been employed to detect subtle facial expres-
sions and hand movements that can provide early indications of
seizure activity [20]. Furthermore, multi‐layered frameworks like
the Nelli hybrid system integrate various AI techniques, including
2D and 3D pose estimation, optical flow, and support vector
machines (SVMs), to offer enhanced diagnostic accuracy and clas-
sification of seizure types. These hybrid systems excel by combining
different models to improve detection performance [21].

While Optical Flow identifies minute changes in movement, pose
estimation helps track body posture, and SVMs contribute to
distinguishing between different seizure types. Despite the sig-
nificant potential of these AI‐driven tools, the implementation of
such systems introduces important ethical and privacy concerns.
Seizure detection systems often rely on sensitive personal data,
such as video footage or biometric information, which raises
privacy risks, especially when applied to vulnerable populations
like children [22]. Ensuring robust data security, and privacy
protection, and obtaining informed consent for data use are es-
sential to address these concerns. Additionally, the potential for
model bias, which could lead to inaccuracies across diverse
patient groups, must be considered to ensure the generalizability
and fairness of these AI systems in clinical settings. Thus, while
these advancements hold promise, balancing technological
innovation with ethical considerations remains crucial for the
successful adoption of AI in healthcare [15].

Karácsony et al. explored deep learning models for pediatric
epilepsy detection through in‐bed movement monitoring in
clinical settings. The study examined RGB‐based and skeleton‐
based models, each with specific advantages. RGB‐based mod-
els, using CNNs, RNNs, and Transformers, capture detailed
appearance information but are sensitive to noise, occlusions,
and lighting changes, limiting real‐time applicability in clinical
environments. In contrast, skeleton‐based models focus on es-
sential body key points (e.g., joint positions), making them
more robust against occlusions and background interference.
Graph convolutional networks (GCNs) such as MS‐G3D and ST‐
GCN++ analyze body movements as connected points,
allowing spatiotemporal analysis that generalizes well across

patients. The study suggests a two‐stage model: first, capturing
movement patterns via skeleton/3D pose models, using transfer
learning from general datasets; second, classifying seizure‐
specific activity. This setup enhances system efficiency and
explainability, enabling clinicians to interpret quantified
movement features, and making it suitable for diagnostic sup-
port with minimal seizure‐specific data [23]. Looking forward,
advancing pediatric epilepsy detection will require robust
models that can manage partial occlusions from blankets and
medical personnel and cope with the low‐resolution video
quality commonly found in overnight monitoring. Synthetic
data augmentation, especially occlusion‐aware training, is ex-
pected to play a significant role in overcoming these challenges
by simulating realistic clinical scenarios, making it feasible to
generate extensive datasets for training.

3.2 | Ethical Considerations of AI for the
Management of Epilepsy in Children

Ethical considerations surrounding the implementation of AI in
pediatric epilepsy management encompass a variety of domains,
including autonomy, fairness, bias mitigation, data security, and
transparency. Concerns related to autonomy stem from the
inherent complexity and opacity of AI systems, which could
diminish transparency and reduce clinician oversight, thereby
potentially diminishing patient involvement in decision‐making
processes [24]. To ensure fairness, it is critical to undertake rig-
orous evaluations and adjustments of AI algorithms to effectively
mitigate biases that may disproportionately influence treatment
outcomes across diverse patient demographics [24]. In ensuring
the ethical deployment of AI in pediatric epilepsy diagnosis and
management, it is crucial to prioritize areas such as data security
and privacy, algorithmic transparency, data standardization, and
interoperability across different platforms. These measures are
essential to maintain patient confidentiality and uphold data
integrity throughout the lifecycle of AI applications, thereby
guiding the ethical design, implementation, and usage of AI sys-
tems. Moreover, the establishment of transparent decision‐making
processes in the use of AI for pediatric epilepsy is vital to cultivate
trust and comprehension among all stakeholders involved.

Healthcare professionals should focus on enhancing transparency
in the mechanisms of AI algorithms and their decision‐making
processes to promote collaboration and augment patient outcomes
[25]. Adherence to established guidelines for conducting ethical AI
research in neurology is imperative to navigate the complexities
associated with AI implementations, while ensuring that ethical
standards are maintained and transparency in decision‐making is
achieved [25]. Collaboration with healthcare professionals is par-
amount for the successful integration of AI into pediatric epilepsy
care. By fostering collaborative opportunities, promoting research
excellence, and spearheading educational initiatives, the under-
standing and acceptance of AI technologies among healthcare
professionals can be significantly enhanced, thereby facilitating
their effective utilization in clinical practice [26]. Engaging
healthcare professionals in the development and implementation
of AI tools is crucial to align these innovations with clinical needs,
ethical standards, and professional workflows, promoting a col-
laborative and patient‐centered approach to care. This type of
collaboration not only fosters the adoption of AI but also
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encourages interdisciplinary teamwork and knowledge exchange,
which are instrumental in improving patient outcomes and
maintaining ethical practices.

3.3 | Striking a Balance

Pediatric epilepsy is a complex neurological condition charac-
terized by recurrent seizures, impacting cognitive development,
emotional well‐being, and overall quality of life in affected
children [27]. Timely detection and intervention are paramount
for improving outcomes in pediatric epilepsy [28]. The inte-
gration of AI and ML technologies in epilepsy diagnosis and
management has emerged as a promising avenue to enhance
diagnostic accuracy and optimize treatment strategies. How-
ever, this technological advancement necessitates careful con-
sideration of ethical implications to ensure patient safety and
well‐being [29]. AI applications in pediatric epilepsy leverage
diverse datasets, including electroencephalogram (EEG) re-
cordings, magnetic resonance imaging (MRI) scans, and elec-
tronic health records (EHRs), to classify seizure types, identify
focal lesions, predict treatment responses, and optimize patient
care pathways [30].

For instance, researchers have successfully utilized AI algo-
rithms to detect and characterize focal lesions in medication‐
resistant epilepsy cases, guiding treatment decisions, including
the consideration of surgical interventions based on lesion
localization. Shuang et al. utilized AI‐driven deep‐learning
models to detect epileptic seizures using wrist‐ or ankle‐worn
wearable devices. They collected electrodermal activity, accel-
erometry (ACC), and photoplethysmography data from patients
in an epilepsy monitoring unit. The AI models applied to this
data achieved a sensitivity of 83.9% and a false positive rate of
35.3% with ACC and BVP data fusion [31]. This study under-
scores the potential of AI‐enabled noninvasive seizure detection
using wearables and personalized approaches in epilepsy care.

Focal cortical dysplasia (FCD) is a frequent cause of drug‐
resistant focal epilepsy [32]. Nevertheless, FCDs are frequently
not visible on standard MRI scans, and the pre‐surgical diagnosis
relies significantly on the examiner's expertize. Hannah et al.
used AI to develop a neural network for detecting focal cortical
dysplasia (FCD) using MRI data. They trained the model on a
cohort of 1015 participants with FCD‐related epilepsy and con-
trols from 22 centers worldwide. The AI algorithm achieved a
sensitivity of 67% and specificity of 54% on a test cohort, with
higher sensitivity (85%) in seizure‐free patients with FCD type
IIB [33]. Individual reports from the AI system highlighted lesion
locations and imaging features, showcasing AI's potential for
FCD detection in epilepsy patients. The perspectives of youths on
the ethical use of AI in healthcare underscore the importance of
patient engagement and shared decision‐making. A study by
Kelly et al. showed that children and adolescents exhibit a pos-
itive attitude towards AI applications intended to benefit others,
emphasizing the significance of respecting patient preferences
and maintaining the patient‐physician relationship [34].

Avani et al. conducted a randomized controlled trial involving
30 children with new‐onset epilepsy and their caregivers. They
aimed to assess a family‐tailored adherence intervention (AI) to

improve adherence to antiepileptic drugs. Participants used
electronic monitors to track adherence for 1 month. Those with
less than 90% adherence were randomized into either the AI
group (receiving four intervention sessions over 2 months) or a
treatment‐as‐usual group. Preliminary findings demonstrated
that the AI intervention was feasible and acceptable, with the
AI group showing enhanced adherence [35].

The application of AI in non‐EEG‐based modalities for pediatric
epilepsy detection has also gained significant attention in
recent years. Various machine learning techniques have been
employed to analyze neuroimaging data, including resting‐state
functional MRI (rs‐fMRI), diffusion tensor imaging (DTI), and
wearable or sensor‐based technologies such as accelerometry,
heart rate, and electrodermal activity. These AI‐driven ap-
proaches aim to improve seizure detection, enhance diagnostic
accuracy, and provide real‐time monitoring, particularly in cases
of nocturnal seizures or in children who may not exhibit obvious
seizure activity during routine clinical assessments. For example,
rs‐fMRI has been utilized to identify functional connectivity
patterns associated with seizure onset zones (SOZ) and epi-
leptogenic zones (EZ) in patients with temporal lobe epilepsy
(TLE). Machine learning algorithms applied to rs‐fMRI data can
achieve classification accuracies up to 97.5% [36], though the
variability in hemodynamic responses and the complexity of
interpreting the data remain challenges. Similarly, DTI, which
assesses the integrity of white matter tracts in the brain, has been
combined with machine learning models to detect micro-
structural changes indicative of epilepsy. Studies have shown
that DTI‐derived metrics, such as fractional anisotropy (FA) and
mean diffusivity (MD), can help differentiate between healthy
controls and children with epilepsy, although interpreting dif-
fusion metrics is complex and sensitive to motion artefacts [37].

In addition to neuroimaging, sensor‐based modalities like ac-
celerometry and heart rate monitoring have been explored for
nocturnal seizure detection. A study combined accelerometry
and heart rate data using the Night Watch system to detect
nocturnal motor seizures in children, achieving excellent sen-
sitivity [38]. Similarly, a heart rate and positional adjustment
algorithm based on accelerometry was employed to detect
nocturnal seizures, yielding high sensitivity both before and
after adjustments [39]. Additionally, audio‐video monitoring
systems were used to automatically detect and classify various
types of nocturnal seizures with notable accuracy. These sys-
tems, however, may be less sensitive to seizures involving low
motion or subtle manifestations [21, 40]. These AI‐based non‐
EEG approaches highlight the potential of combining neuro-
imaging and sensor technologies to enhance the detection and
monitoring of epilepsy, particularly in challenging scenarios
such as nocturnal seizures or in pediatric populations. How-
ever, challenges remain regarding the integration of multimodal
data, the need for large, diverse datasets to train robust models,
and the variability in individual responses to seizures, which
can impact the sensitivity and reliability of these systems.

A detailed overview of both EEG‐based [29, 41–49] and non‐
EEG based studies [21, 36–40, 50–54] and their corresponding
accuracy is presented in Table 1: A detailed overview of both
EEG based and Non‐EEG based studies and their corresponding
accuracy in detecting Epilepsy and seizures.
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TABLE 1 | A detailed overview of both EEG‐based and non‐EEG based studies and their corresponding accuracy in detecting Epilepsy and

seizures.

EEG‐based studies

Study Type of data Algorithms Accuracy

Tiwari et al. 2016 [41] EEG record Utilized Local Binary Pattern (LBP) and Support
Vector Machine (SVM) for seizure detection based

on EEG data.

98.80%

Kabir and Siuly,
2016 [42]

EEG record Combined Logistic Model Trees (LMT),
Multinomial Logistic Regression (MLR), and

Support Vector Machine (SVM) for classification
of EEG data.

LMT: 95.33%

Tharayil et al.
2017 [43]

EEG record (adults
and children)

Applied Linear Mixed Model to EEG data from
adults and children for seizure analysis.

Adults: 82%,
Children: 76%

Usman and Usman,
2017 [44]

EEG record Used Support Vector Machine (SVM) for seizure
detection based on EEG signals.

92.23%

Jaiswal and Banka,
2018 [45]

EEG record Combined Sub‐pattern and Cross‐sub‐pattern
Correlation‐based PCA (SpPCA and SubXPCA)
with Support Vector Machine (SVM) for EEG

signal classification.

100%

Subasi, 2019 [46] EEG record Employed Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) in conjunction with
Support Vector Machine (SVM) for seizure

detection.

99.38%

Ilakiyaselvan et al.
2020 [47]

Recurrence plot of
EEG record

Applied Deep Learning (DL) algorithms to
recurrence plots of EEG data for binary and tertiary

classification.

Binary: 98.5%,
Tertiary: 95%

Brari and Belghith,
2021 [48]

EEG record Implemented Machine Learning with
Correlation Dimension (CD) for seizure detection

from EEG signals.

100%

Nair et al. 2021 [29] EEG record Employed k‐Nearest Neighbors (kNN) and a
variety of AI and ML algorithms for EEG data

analysis.

—

Natu et al. 2022 [49] EEG record Applied a combination of Artificial Intelligence
(AI), Machine Learning (ML), and Deep

Learning (DL) algorithms for EEG signal analysis.

—

Non‐EEG‐based studies

Study Type of data Algorithms Accuracy

van Westrhenen
et al. 2023 [38]

Multimodal (accelerometry
and heart rate)

Used a multimodal approach
combining accelerometry and heart

rate for nocturnal motor seizure
detection in children using NightWatch

system.

Sensitivity: 100% (median
per participant)

Armand Larsen
et al. 2022 [40]

Audio‐video system Applied automated audio‐video
analysis for detecting nocturnal motor
seizures, distinguishing between Tonic‐
Clonic Seizures (TCS), Hyperkinetic

Motor Seizures (HMS), and Myoclonic
Motor Seizures (MMS).

Sensitivity: 100% for TCS,
80% for HMS, 8.3% for MMS

Lazeron et al.
2022 [39]

Accelerometry and
heart rate

Used a heart rate and positional
adjustment algorithm for detecting
nocturnal motor seizures based on

accelerometry and heart rate.

Sensitivity: 79.9% before
adjustment, 79.4% after

adjustment

(Continues)
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3.4 | Challenges and Recommendations

The effectiveness of machine learning in diagnosing epilepsy
can have profound effects on a child's psychological health and
social dynamics. Accurate algorithms can facilitate early and
precise diagnoses, potentially improving the management of
epilepsy and reducing the psychological stress associated with
the unpredictability of seizures [55]. This improved manage-
ment can boost a child's self‐esteem and social life by enhancing
seizure control and mitigating the stigma and social challenges
linked to visible seizure episodes. In contrast, inaccuracies in
machine learning algorithms can lead to misdiagnosis or
delayed diagnosis, adversely impacting the child's psychological
well‐being [56, 57]. False positives may provoke unnecessary
anxiety and social isolation, fearing non‐existent seizures, while
false negatives might result in inadequate medical interven-
tions, exposing the child to preventable seizure‐related injuries
or psychosocial difficulties due to uncontrolled epilepsy [30].
Additionally, self‐esteem is known to mediate the relationship
between epilepsy‐related and environmental factors and mental
health outcomes in youths with epilepsy, suggesting that sup-
porting self‐esteem might buffer against the negative mental

health impacts of resistant epilepsy or poor peer support [58].
The reliability of machine learning tools also significantly af-
fects a child's trust in medical professionals and the healthcare
system overall. When these tools provide accurate, reliable
diagnoses, they can strengthen trust by ensuring timely and
precise identification of epilepsy, leading to effective treatment
strategies. While AI systems show significant promise in the
detection and management of pediatric epilepsy, a more bal-
anced view is necessary to fully understand both the potential
benefits and risks associated with their use. While the ad-
vantages of AI, including enhanced diagnostic accuracy and the
ability to process complex data efficiently, are evident, it is
equally important to assess the limitations and risks these sys-
tems pose critically.

One primary concern is the over‐reliance on AI systems in
clinical practice. While AI can assist in the analysis of vast
amounts of data, there is a risk that clinicians may defer too
heavily to AI models, potentially diminishing clinical judgment.
This could result in an overdependence on automated outputs
without sufficient oversight from healthcare professionals,
leading to misdiagnoses or delayed diagnoses [59].

TABLE 1 | (Continued)

Non‐EEG‐based studies

Study Type of data Algorithms Accuracy

Onorati et al.
2021 [50]

Multimodal (accelerometry
and electrodermal activity)

Combined accelerometry and
electrodermal activity to detect tonic‐
clonic seizures in both children and

adults.

Sensitivity: 92% (children),
94% (adults)

Japaridze et al.
2022 [51]

Wearable EEG‐headband Developed a specialized EEG‐based
algorithm for detecting absence
seizures using a wearable EEG‐

headband.

Sensitivity: Average 78.8%,
Median 92.9%

Basnyat et al. 2022
(Nelli) [21]

Audio‐video system Semi‐automated hybrid video/audio
monitoring system used in a home
setting for detecting epileptic and

nonepileptic events.

Clinical Utility: 80%
recognition of clinically
relevant events; 65% for

epileptic seizures

Li Kang et al.
2021 [37]

Diffusion Kurtosis
Imaging (DKI)

Used Diffusion Kurtosis Imaging (DKI)
to analyze hippocampal data, followed
by a Support Vector Machine (SVM) for
classification of epilepsy versus controls.

95.24% (patient vs. normal
controls)

Rose Dawn
Bharath, 2019 [36]

Resting‐state fMRI (rsfMRI) Applied Probabilistic Independent
Component Analysis (PICA), Elastic

Net for feature selection, and
Support Vector Machine (SVM) to
classify epilepsy networks in TLE

patients using rsfMRI data.

97.5% (Sensitivity: 100%,
specificity: 94.4%)

Beniczky et al.
2018 [52]

Surface
electromyography (EMG)

Employed a real‐time EMG‐based
detection algorithm for identifying

tonic‐clonic seizures.

Sensitivity: 94%

Arends et al.
2018 [53]

Accelerometry and
heart Rate

Used a multimodal algorithm
combining heart rate and motion
data to detect tonic‐clonic seizures.

Sensitivity: 81%

Beniczky et al.
2013 [54]

Accelerometry Applied accelerometry‐based
detection for identifying tonic‐clonic

seizures.

Sensitivity: 90%
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In addition to the risks of over‐reliance on AI systems, there are
concerns about the quality and methodological rigor of the
studies reviewed. Although many report positive results, the
variability in study design, sample sizes, and clinical protocols
raises questions about the robustness and generalizability of
their findings. AI performance also varies across different epi-
lepsy types, highlighting a key area for further research. This
variability affects the accuracy of AI models, particularly for
epilepsy types without clear biomarkers. Additionally, factors
like seizure frequency, manifestation, and individual patient
characteristics can significantly impact the effectiveness of AI‐
driven diagnostic tools. Finally, the challenges of translating AI
models from controlled research settings to real‐world clinical
practice must not be overlooked. While studies demonstrate
promising results in AI‐driven pediatric epilepsy detection, the
practical application of these systems in diverse clinical en-
vironments introduces numerous hurdles. Variations in patient
demographics, data quality, and clinical expertize can all impact
the performance of AI models [60]. Additionally, the integration
of AI into existing healthcare systems requires addressing issues
such as data standardization, interoperability, and the potential
for biases across different patient groups. AI systems need to be
adaptable to these diverse conditions in order to be reliable and
effective in real‐world clinical settings. The figure below pres-
ents key challenges in AI integration for epilepsy detection.
Figure 1: Key Challenges in Integrating AI for Epilepsy
Detection.

4 | Conclusion

The application of AI and ML technologies in pediatric epilepsy
can be transformational in terms of improving the diagnostic
approach, therapeutic strategies, and psychosocial challenges of
young patients with epilepsy. AI can help improve the diag-
nostic approach by enhancing seizure categorization, aiding
prognostication and contributing to further analysis of long‐
term outcomes. Additionally, AI and ML technologies can

optimize therapeutic strategies by making test development
more efficient, streamlining treatment by assisting neurologists,
as well as enhancing patient adherence therapeutically. Addi-
tionally, AI interfaces can be developed to optimize the iden-
tification and prevention of treatment‐related adverse events for
young patients with this complex condition. These strategies
can improve the overall health of young epilepsy patients and
their caregivers. The ethical considerations regarding the
introduction of AI in pediatric epilepsy are manifold but can be
distilled into several key themes. These include transparency,
fairness, bias minimization, data security, data protection and
patient autonomy. It is important to evaluate and adjust AI to
balance the underlying data and address any potential biases
that might lead to inequitable treatment outcomes between
demographic groups. Given the importance of patient confi-
dentiality, data security, algorithmic transparency and adher-
ence to ethical guidelines remain paramount.

By involving both patients and caregivers in AI development,
stakeholders can ensure that these healthcare interventions are
accepted and inspire confidence. By learning about patients'
experiences with technology, we can adjust how we commu-
nicate and guide decision‐making to fit their expectations and
concerns. Patients should be incorporated into these ongoing
efforts to ensure that AI is seamlessly incorporated into pedi-
atric epilepsy care. A forward‐looking approach can emphasize
exceptional clinical outcomes while adhering to ethical princi-
ples and keeping the needs and desires of the patient at the
forefront of the healthcare experience. Going forward, investi-
gations should focus on refining AI models to accurately detect
distinct electrographic markers of epilepsy, incorporating AI
with clinical and behavioral data to optimize therapy, and
developing multimodal AI systems to improve seizure detec-
tion. AI technologies show promise in revolutionizing the care
of pediatric epilepsy and, with careful consideration of ethical
questions and collaborative partnerships, can improve patient
outcomes, enable overall well‐being and maintain integrity in
the eyes of patients.

FIGURE 1 | Key challenges in integrating AI for epilepsy detection.
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