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Bilaterians usually possess a central nervous system, composed of neurons

and supportive cells called glial cells. Whereas neuronal cells are highly

comparable in all these animals, glial cells apparently differ, and in deuteros-

tomes, radial glial cells are found. These particular secretory glial cells may

represent the archetype of all (macro) glial cells and have not been reported

from protostomes so far. This has caused controversial discussions of

whether glial cells represent a homologous bilaterian characteristic or

whether they (and thus, centralized nervous systems) evolved convergently

in the two main clades of bilaterians. By using histology, transmission elec-

tron microscopy, immunolabelling and whole-mount in situ hybridization,

we show here that protostomes also possess radial glia-like cells, which are

very likely to be homologous to those of deuterostomes. Moreover, our anti-

body staining indicates that the secretory character of radial glial cells is

maintained throughout their various evolutionary adaptations. This implies

an early evolution of radial glial cells in the last common ancestor of Protos-

tomia and Deuterostomia. Furthermore, it suggests that an intraepidermal

nervous system—composed of sensory cells, neurons and radial glial

cells—was probably the plesiomorphic condition in the bilaterian ancestor.
1. Background
The origin and evolution of animal nervous systems is controversially discussed

[1–3]. In particular, it still remains an open question whether the complex

centralized nervous system (CNS) found in the different clades of bilateral-

symmetric animals (Bilateria) evolved independently out of a non-bilaterian

nerve-net, or if this highly specialized bilaterian tissue shares a common

origin [4–6]. The vast majority of species comprises two main clades within

Bilateria: the deuterostomes, including all vertebrates, echinoderms, hemichor-

dates, cephalochordates and tunicates; and the protostomes, including taxa

such as annelids, molluscs, insects and nematodes. Most of these taxa have

complex and CNS consisting of several neuron types with comparable mole-

cular pathways, function and morphology [7,8]. Whereas most comparative

neural investigations focus on different neuronal cell types supposed to be

involved into various ways of stimulus perception and signal transmission,

another important cell type also being part of bilaterian nervous systems is

often neglected in comparative studies: the glial cells.

Glial cells are known to represent a class of non-neuronal supportive cells,

constituting a common feature of the CNS in Bilateria. However, it still remains
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controversial whether glial cells are homologous across deu-

terostome and protostome animals or evolved convergently

in the bilaterian main clades [9]. Although supposed to be

involved in almost all neural functions [10,11], these cells

seem to be absent in several bilaterian taxa, as well as in

non-bilaterian animals [9]. In particular, the epithelial ner-

vous system of the Deuterostomia is occupied by a specific

bipolar type of glial cells that span the entire thickness of

the epidermis forming a regular ‘scaffold’, which are called

radial glia [12]. In chordates, radial glial cells arise from neu-

roepithelial stem cells in the neural plate early during

embryogenesis; they also represent neuronal stem cells that

give rise to various types of other glial and neuronal cell

types of the CNS [13–15]. Outside the Deuterostomia,

however, the presence of radial glial cells has not yet been

reported [16].

To examine the presence of radial glia-like cells also out-

side the Deuterostomia, we investigated taxa representing all

major branches of the bilaterian tree and especially focused

our study on non-deuterostomian groups possessing a

supposedly plesiomorphic intraepidermal nervous system.

By using an integrative approach including histology, trans-

mission electron microscopy (TEM), immunolabelling

and whole-mount in situ hybridization (WMISH), we show

here that protostomes also possess radial glia-like cells,

which are very likely to be homologous to those of deuteros-

tomes. This implies an early evolution of radial glial cells in

the last common ancestor of protostomes and deuterostomes

(Nephrozoa). Moreover, our antibody staining suggests that

the secretory character of radial glial cells is apparently main-

tained throughout their various evolutionary adaptations. So

far, neuro- and gliogenesis originating from radial glial cells

are only described for deuterostomes [13–15,17–19]. How-

ever, our results suggest that this cell type takes over

important roles in nervous systems throughout Nephrozoa.
2. Material and methods
(a) Collection and fixation of specimens
For details, refer to the electronic supplementary material,

table S1. Divergent collection and fixation details are specified

where required.

(b) Larval rearing and culturing of Owenia fusiformis
Different larval stages of Owenia fusiformis were cultured under

laboratory conditions and fixed as described previously [20].

(c) RNA-Seq and transcriptome assembly
Total RNA was extracted from cryofixed larvae using the Agen-

court RNAdvance Tissue Kit (Beckman Coulter, Indianapolis,

IN, USA). Library preparation and sequencing was performed

by EMBL Genomics Core Facility (Heidelberg, Germany) using

cation-based chemical fragmentation of RNA, Illumina Truseq

RNA-Sample Preparation Kit and one lane of 100 bp paired-

end read sequencing on Illumina HiSeq 2000. Raw reads were

trimmed and error corrected with CUTADAPT 1.2.1 [21], the Error-

CorrectReads tool implemented in ALLPATHS-LG [22] and

assembled with TRINITY [23].

(d) Gene cloning and RNA probe preparation
Contig sequences for the investigated genes were identified in

the transcriptome dataset by bidirectional BLAST [24]. Whole
transcripts or fragments were amplified by PCR with specific

primers (Fw ¼ AGTTTGGGATGGTGGG, Rv ¼ TTCTGGGCTA

GCTGGT) from cDNA prepared with SuperScript III (Invitrogen,

Waltham, MA, USA), ligated into pgemT-easy vector (Promega,

Madison, WI, USA) and cloned into Top10 chemically competent

Escherichia coli (Invitrogen). Clone sequences were verified by

Sanger sequencing. DIG-labelled sense and antisense RNA

probes were generated from plasmid DNA with T7- and

SP6-RNA polymerases (Roche, Madison, WI, USA).

(e) Gene orthology
Reciprocal blast yielded unambiguous results for gene orthology

assignment of Ofu-subcommissural organ (SCO). Furthermore,

public databases (Genebank, JGI, Uniprot) and the transcriptome

were screened for homologues by text search and BLAST with

respective query sequences. For comparison with other members

of the Thrombospondin-family, protein domains were analysed

using SMART [25,26]. An overview is given in electronic

supplementary material, figure S2. Accession number: MF358540.

( f ) Immunohistochemistry, confocal laser scanning
microscopy and image processing

Whole-mount preparations and vibratome sections were ana-

lysed. Specimens were anaesthetized in 7% MgCl2 in saltwater.

For fixation, refer to electronic supplementary material, table

S1. After rinses in 0.1 M phosphate-buffered saline (PBS) for at

least 2 h, specimens were stored in PBS containing 0.05% NaN3

at 48C. For vibratome sectioning, specimens were rinsed in

0.1 M PBS and embedded in gelatin/albumin medium. The

blocks were cut with a VT1000S vibratome (Leica Microsystems,

Wetzlar, Germany) into 80–100 mm thin sections. The sections

were washed in PBS containing 0.1% Triton X-100 (PTA). Anti-

body staining was preceded by tissue permeabilization for 1 h

in 0.1 M PBS containing 0.1% NaN3 and 0.1% Triton X-100

(PTA), suited by incubation in block-PTA (6% normal goat

serum; Sigma-Aldrich, St Louis, MO, USA) overnight. For

Hemichordata and Priapulida, PTA contained 2% Triton X-100.

The primary antibody polyclonal rabbit antiserum against

bovine RS (SCO-K10) (W. W Naumann, University of Leipzig,

dilution 1 : 1000) was applied for 24–72 h in block-PTA. After-

wards, specimens were rinsed in block-PTA and incubated

with secondary fluorochrome-conjugated antibodies (goat

anti-rabbit Alexa Fluor 488, Invitrogen, dilution 1 : 500) in

block-PTA for 24–48 h. Subsequently, samples were washed in

0.1 M PBS (without NaN3), stained with DAPI for 15–30 min

(5 mg ml21 stock solution, final concentration 10 mg ml21) and

washed for 2 � 5 min in 0.1 M PBS. For experiments including

larval and juvenile stages of O. fusiformis, specimens were

rinsed for 2 � 5 min in PTW (PBS with 0.1% Tween 20) at room

temperature (RT) and transferred into 10 mg proteinase K ml21

PTW for 2–3.5 min depending on the developmental stage

(24 hpf–3 dpf ¼ 90 s; 7 dpf ¼ 2 min; 14–21 dpf ¼ 2.5 min; after

metamorphosis ¼ 3.5 min). After two short rinses in glycine

(2 mg glycine ml21 PTW), and 3 � 5 min washes in PTW, the

specimens were refixed using 4% PFA in PBS containing 0.1%

Tween for 20 min at RT. Subsequently, the developmental

stages were rinsed for 2 � 5 min in PTW and 2 � 5 min in THT

(0.1 M Tris–Cl, 0.1% Tween), and blocked for 1–2 h in 5%

sheep serum in THT according to the protocol of Conzelmann

& Jékely [27]. The primary antibody polyclonal rabbit antiserum

against bovine RS (SCO-K10) (W. W Naumann, University of

Leipzig, dilution 1 : 1000) was applied for 24–72 h in THT con-

taining 5% sheep serum at 48C. Specimens were then rinsed for

2 � 10 min in 1 M NaCl in THT and 5 � 30 min in THT,

and incubated subsequently with secondary fluorochrome-

conjugated antibodies (goat anti-rabbit Alexa Fluor 488, Invitrogen
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dilution 1 : 500) in THT containing 5% sheep serum for 24 h at

48C. Subsequently, the samples were washed for 6 � 30 min in

THT, stained with DAPI for 10–15 min (5 mg ml21 stock sol-

ution, working solution: 2 ml in 1 ml THT—final concentration

10 mg ml21) and washed for 2 � 5 min in THT. Samples were

dehydrated in an ascending isopropanol series, treated in

Murray’s clearing solution (benzyl alcohol plus benzyl benzoate,

1 : 2) and mounted between two coverslips in DPX (Sigma-

Aldrich) or embedded in 90% glycerol/10% 10� PBS containing

DABCO. Standard negative staining controls were performed for

all antibodies, and in all cases, the omission of the primary and/

or secondary antibody resulted in no staining. Cross-reactivity

analyses and immunoprecipitation for antigen characterization

of the used SCO-K10 antibody were performed in earlier studies

[28,29]. Samples were analysed with Leica TCS STED and Leica

TCS SP5 microscopes (Leica Microsystems, Wetzlar, Germany).

Z-stacks were processed with Leica AS AF v. 2.3.5 (Leica

Microsystems) and IMARIS 8.2 (Bitplane AG, Zurich, Switzerland).

Final panels were designed using Adobe (San Jose, USA)

PHOTOSHOP CC and ILLUSTRATOR CC.
70743
(g) Whole-mount in situ hybridization
Larvae and juveniles of O. fusiformis were fixed for 2.5 h in 4%

PFA in phosphate buffer with Tween (PTW; pH 7.4) and stored

at 2208C in methanol until usage. The in situ hybridization

procedure was performed as described previously [30] with

some modifications: Proteinase K concentration was reduced to

5 ng ml21, Proteinase K treatment was 3.5 min for late larvae

and 5 min for juveniles, hybridization buffer contained 5%

dextran sulfate, the incubation time was 72 h and final staining

was done with Fast Blue (Sigma-Aldrich, MO, USA). To evalu-

ate staining, significance control experiments with sense probes

were made. Furthermore, we combined in situ hybridization

and antibody staining, by processing specimens after in situ
hybridization with the immunohistochemistry procedure

mentioned above.
(h) Ultrathin sections and transmission electron
microscopy

Embedding was performed using the automated tissue processor

(Leica Lynx Processor, Leica Microsystems GmbH, Saarland,

Germany). After rinses of 4 � 20 min in 0.1 M PBS at 48C,

samples were treated for 2 � 60 min with 1% osmium tetroxide

(Carl Roth, Karlsruhe, Germany) at 48C. Afterwards, samples

were rinsed for 20 min in 0.1 M PBS at 48C and 20 min at RT.

Subsequently, samples were dehydrated using an ascending

acetone series at RT. The 70% acetone solution contained 1%

phosphotungstic acid (Fluka, Sigma-Aldrich, Munich, Germany)

and 1% uranyl acetate (Serva, Heidelberg, Germany) for post-

contrasting. The samples were then gradually embedded at RT

in non-hardening epoxide resin (Durcupan ACM Fluka;

Sigma)-acetone mixtures (1 : 3, 1 : 1, 3 : 1; 60 min each), incubated

in pure Durcupan and successively replaced by hardening

Durcupan. After polymerization at 608C for 2 days, semi-thin

(500 nm) and ultrathin (60–65 nm) sections were cut with a

microtome (Leica Ultracut UCT, Leica Microsystems, Saarland,

Germany), employing a diamond knife. All sections were fron-

tally orientated; displayed electron micrographs of O. fusiformis
derived from the trunk of the worm, of Balanoglossus misakiensis
from the posterior proboscis and from Asterias rubens from the

isolated radial nerve.

For electron microscopy, ultrathin sections were transferred

onto formvar-resin-laminated slot grids (Plano, Wetzlar,

Germany) and post-contrasted with 3% uranyl acetate and 3%

lead citrate. Sections were examined with a Sigma-0231 scanning
electron microscope (27 kV; Zeiss), employing a STEM detector

and ATLAS software (Zeiss).

(i) Histology and semi-thin sections
Balanoglossus misakiensis (Hemichordata) specimens were relaxed

in 7% MgCl2 in seawater for 5–10 min and fixed in ice-cold 2.5%

glutaraldehyde in 0.05 M phosphate bufferþ0.3 M sodium chlor-

ide (pH 7.4). Primary fixation was stopped after 45 min with

three rinses in buffer. Post-fixation with 2% OsO4 was carried

out for 30 min and stopped with three buffer rinses (15, 30,

30 min) followed by two rinses with ddH2O (15, 30 min). After

a graded series of ethanol specimens were embedded in Epon

resin. Semi-thin sections (0.5 mm) of B. misakiensis (3 days post

settlement) were carried out using a Leica Ultracut S. Sections

were stained with toluidin blue and imaged with an Olympus

BX-UCB mounted on an Olympus BX51 compound microscope.

Owenia fusiformis and Asterina gibbosa (collected in 2009 in

Concarneau, France) were relaxed in a 7% MgCl2 solution and

fixed in Bouin’s fluid (modified after Dubosq-Basil) overnight.

Adult specimens of Priapulus caudatus originated from a stock

at the Natural History Museum of Denmark (ZMUC PRI-

00119; collected in 1927 in Agparmiut, Greenland) and were

fixed in Bouin’s fluid. All animals were dehydrated in an ascend-

ing ethanol series, incubated in methyl benzoate and butanol,

preincubated in Histoplast (Thermo Scientific, Dreieich,

Germany) at 608C for 3 days with medium changes and

embedded in Paraplast (McCormick Scientific, Richmond, VA,

USA). Sections (5 mm) were made using a Reichert-Jung Autocut

2050 microtome (Leica, Wetzlar) and put on albumen–glycerol-

coated glass slides. According to a modified Azan staining

method, sections were stained with Carmalaun, differentiated

with sodium phosphotungstate (5%), washed in dH2O, stained

with aniline blue orange G and embedded with Malinol

(Waldeck, Münster, Germany). In this staining, nervous system

appears grey/reddish, nuclei of neuronal somata red and extra-

cellular matrix blue. Musculature stains orange. Slices were

analysed with an Olympus microscope (BX-51) and images

taken with an Olympus ccl2 camera equipped with the dot

slide system (Olympus, Hamburg). Slices were aligned with

imod and imod align (http://www.q-terra.de/biowelt/3drekon/

guides/imod_first_aid.pdf).
3. Results and discussion
We used histological staining, TEM investigations of ultrathin

sections, immunolabelling and WMISH to analyse the intra-

epidermal nervous system of several taxa. Our antibody

staining is based on the immunolabelling of SCO-spondin,

using a polyclonal antibody (SCO-K10) derived from

bovine Reissner’s substance and directed against bovine

SCO-spondin [28,29]. This extracellular matrix glycoprotein

is known to be expressed and secreted by the vertebrate

SCO [31] and deuterostomian radial glial cells in general

[32]. SCO-spondin is involved in early cell migration and

axonal guidance, and seems to play important roles in

vertebrate neurogenesis [33]. For our comparative investi-

gations, we focused on taxa that represent the main

branches of Nephrozoa [34] and exhibit an intraepidermal

nervous system. In contrast with an intraepidermal plexus,

an intraepidermal nervous system consists of one or several

nerve cords that locally replace the epidermis [35]. This

type of nervous system organization is presumably plesio-

morphic for Bilateria [36]. Thus, we investigated the annelid

O. fusiformis (Protostomia, Lophotrochozoa), the priapulid

P. caudatus (Protostomia, Ecdysozoa) and the enteropneust

http://www.q-terra.de/biowelt/3drekon/guides/imod_first_aid.pdf
http://www.q-terra.de/biowelt/3drekon/guides/imod_first_aid.pdf
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B. misakiensis (Deuterostomia, Hemichordata) (figure 1). For

comparisons, we re-examined the sea star A. rubens (Deuter-

ostomia, Echinodermata) (figure 1), where the here-applied

antibody had already been tested successfully [29].

The oweniid O. fusiformis is part of the earliest-branching

split of annelids [39]. We found that the ventral nerve cord of

this species is situated intraepidermally (figure 2a,b), thereby

confirming results of an anatomical study on another oweniid

species [40]. A higher magnification reveals the presence of

distinct, regularly arranged structures traversing the entire

epidermis from the basal lamina towards the epithelial

surface. Examination of the same region using an antibody

directed against SCO-spondin reveals prominent SCO-K10-

like immunoreactivity (-LIR) in these cells (figure 1a). In

fact, the ventral cord and brain of O. fusiformis exhibit radially

arranged SCO-K10-LIR and distinct gene expression of Ofu-
SCO-spondin, crossing epidermis and intraepidermal nervous

system (figures 1c and 3a– f,j–n). Notably, a spatial separ-

ation of the SCO-protein in the apical cell area and of the

Ofu-SCO mRNA in basal parts of the cell is observable

(figure 3g– i). Alignment of immunohistochemical, histologi-

cal and ultrastructural investigations (figure 3j–n) confirms

the exclusive presence of radially arranged cells traversing

the intraepidermal nerve cord and the adjacent epidermis,

featuring SCO-K10-LIR, exhibiting prominent intermediate

filaments (figures 4b and 5c) and flanking neuronal cells

with synaptic vesicles (figure 5c). These cells possess

funnel-shaped endfeet terminating at the basal lamina

(figure 4a) and microvilli penetrating the cuticle at the oppo-

site surface (figure 4c,e). The apical end of the cells contains
secretory vesicles (figure 4d ) and cilia (figure 5d,e). Somata

of glial and neuronal cells are located in the apical zone of

the epidermis (figure 5c).

A comparable situation is found in the enteropneust

B. misakiensis. This species also exhibits an intraepidermal

nervous system (figure 2e,f ). Antibody staining of SCO-

spondin reveals numerous radially arranged structures in

the posterior end of the proboscis in early juveniles. These

structures span the entire epidermis in the baso-apical direc-

tion (figure 1a). Notably, the SCO-K10-LIR is restricted to

the posteriodorsal part of the proboscis, where the intraepi-

dermal proboscis plexus is located. Observations using

TEM show that the somata of the cells mostly reside in the

apical section of the epidermis (figure 5g,h). The cells also

contain prominent intermediate filaments and funnel-

shaped endfeet abutting the basal lamina at the inner surface,

as well as distinct apical microvilli and cilia at the apical cell

surface (figures 4f,g and 5h,i). This result reveals, for the first

time, the existence of radial glial cells—and glial cells in

general—in Hemichordata [9]. The intraepidermal nervous

system of the echinoderm A. gibbosa is also characterized by

prominent radially arranged cells traversing the entire intra-

epidermal nerve cord and the adjacent epidermis in adult

specimens (figure 2c,d ). In agreement with a previous

study [29], immunohistochemical analysis unveils distinct

SCO-K10-LIR displayed by these cells in A. rubens
(figure 1b). Ultrastructural investigation of the nerve cord in

both asteroidean echinoderm species shows the presence of

dense bundles of intermediate filaments within these cells

(figures 4i and 5k,l ). Further on, these cells traverse the
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entire epithelium with their somata mostly located in the

apical neuroepithelium (figure 5k,l ), and bear prominent

funnel-shaped basal endfeet at the basal lamina (figure 4i),
as well as apical microvilli and cilia at the apical cell surface

(figures 4j and 5m,n). This is in accordance with earlier find-

ings [41]. Using the same antibody, evidence for the presence

of radial glial cells has also been reported for the nervous

system of holothurian echinoderms [32,42].

Literature screening furthermore revealed the presence of

cells (called ‘tanycytes’) with radial glia-like alignment and

ultrastructure in the ecdysozoan Scalidophora (Priapulida,

Loricifera, Kinorhyncha; see also [43] and figs 1 and 3b in

[44] for further ultrastructural details). This prompted us to

study the intraepidermal nervous system of P. caudatus
(Priapulida) (figure 2g,h). Indeed, we found radially aligned

SCO-K10-LIR in cells that span the thickness of the
intraepidermal nerve cord and the adjacent epidermis in

larvae of P. caudatus (figure 1d ).

The ultrastructures of the intraepidermal nervous system

of all studied protostomes and echinoderms resemble

each other in detail. As the central nervous system of ver-

tebrates ontogenetically originates from epithelia [45], the

resemblance of the intraepidermal nervous systems of echino-

derms, hemichordates and protostomes provides further

support for the homology of epithelial nervous systems in

Bilateria, which probably represents the plesiomorphic con-

dition. Within this intraepidermal nervous system, radial

glia represent an important non-excitable structural and func-

tional component, and are therefore proposed to be a key

feature of all epithelial nervous systems.

Combining all evidence, including the shared topologi-

cal position and similar ultrastructural composition, the
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SCO-spondin -LIR, the expression of the Ofu-SCO mRNA and

the early developmental occurrence, all data strongly support

the conclusion that the cells we located in oweniid annelids, as

well as in enteropneusts, echinoderms and priapulids, are hom-

ologous to the radial glial cells described in chordates. This

hypothesis of homology is based on positional and structural
homology criteria [46]. Using a comparative approach [36],

this implies the evolution of this cell type in the last common

ancestor of Nephrozoa (Protostomia and Deuterostomia).

Noteworthily, radial glial cells are absent in the subepi-

dermal ganglia (sensu Richter et al. [35]) of the protostomian

CNS. Although this difference might suggest a convergent



Annelida

bl bl bl

Hemichordata Echinodermata

mv

mv

mv

cu

mv

(k)

(a)

(c)

(d )

(b)

(e)

( f )

(g)

(h)

(i)

( j)

Figure 4. Ultrastructure of glial components in the neuroepithelium of (a – e) O. fusiformis, ( f – h) B. misakiensis and (i – k) A. rubens. (a,f,i) Funnel-shaped basal
processes (including endfeet) of radial glial cells (arrowheads) terminate at inner epithelial surface (bl, basal lamina). (b,g,j ) Inner cell processes of radial glial cells
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evolution of glial cell types, from different origins, in the Pro-

tostomia and Deuterostomia, one should keep in mind that

radial glia are missing in the ganglia of the peripheral ner-

vous system of vertebrates as well. This is simply because

their existence requires both a basal and an apical cell surface,

which are present only in an epithelium [12].

Several studies across all major chordate and echinoderm

taxa showed that radial glia are secretory [32,38,42,47,48].

In our study, we provided evidence for a secretory protein

(SCO-spondin) expressed in all species studied. So far,

secretion of SCO-spondin, which is the main component of

the so-called Reissner’s substance, is best characterized in the

vertebrate cerebrospinal fluid. Here, it condenses and forms

the main component of a structure termed Reissner’s fibre

[49], which is present in the central canal of the chordate
dorsal nerve cord [50]. Notably, Reissner’s fibre is secreted

only by a specialized type of glial cells, the radial glia

[29,47]. The function of Reissner’s fibre has been suggested

to participate in the regulation, circulation and production of

cerebral spinal fluid of vertebrates [51–53]. Reissner’s fibre is

also known from tunicates and cephalochordates [54], and it

has recently been shown that vertebrate SCO-spondins have

indeed orthologues in invertebrate taxa [55]. However, no

Reissner’s fibre-like structure has been reported outside Chor-

data. Interestingly, Arendt et al. [56] recently hypothesized two

major morphological innovations that contributed to set the

stage for the evolution of the animal nervous systems: (i) the

establishment of a mucociliary sole enabling extracellular

digestion in gastric cavities followed by the evolution of a

nerve-net, and (ii) folding of the inner surface of these animals
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into metameric series of gastric pouches, which optimized

nutrient provision, thereby allowing larger body plans, sub-

sequent evolution of bilateral symmetry and the evolution of

specialized nervous subsystems. Strikingly, in this context,

Reissner’s fibre is interpreted as a possible remnant of a

mucociliary sole. Our investigations support a secretion of

the Reissner’s fibre component SCO-spondin in several non-

chordate taxa. Thus, the secretory character of radial glial

cells appears to be maintained throughout their various

evolutionary adaptations, providing a mucociliary sole,

components of the cuticle or Reissner’s fibre.

In vertebrates, it is well known that radial glial cells have

a major impact on early neuronal development. So far,

neuro- and gliogenesis originating from radial glial cells are

only described for chordates and, partially, for echinoderms

[13–15,17–19,57]. However, as our comparative investigation
suggests the presence of radial glial cells in the last common

ancestor of Nephrozoa, it is tempting to speculate about a

possible homology of a neuronal stem cell system across

nephrozoan taxa in general. Future studies focusing on

neuro- and gliogenesis in protostomes with secretory radial

glial cells will help to elucidate this hypothesis.
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