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Abstract

Background: Classic spectral analysis of heart rate variability (HRV) in pediatric sleep apnea-

hypopnea syndrome (SAHS) traditionally evaluates the very low frequency (VLF: 0–0.04 Hz), low 

frequency (LF: 0.04–0.15 Hz), and high frequency (HF: 0.15–0.40 Hz) bands. However, specific 

SAHS-related frequency bands have not been explored.

Methods: 1,738 HRV overnight recordings from two pediatric databases (0–13 years) were 

evaluated. The first one (981 children) served as training set to define new HRV pediatric SAHS-

related frequency bands. The associated relative power (RP) were computed in the test set, the 

Childhood Adenotonsillectomy Trial database (CHAT, 757 children). Their relationships with 

polysomnographic variables and diagnostic ability were assessed.

Results: Two new specific spectral bands of pediatric SAHS within 0–0.15 Hz were related to 

duration of apneic events, number of awakenings, and wakefulness after sleep onset (WASO), 
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while an adaptive individual-specific new band from HF was related to oxyhemoglobin 

desaturations, arousals, and WASO. Furthermore, these new spectral bands showed improved 

diagnostic ability than classic HRV.

Conclusions: Novel spectral bands provide improved characterization of pediatric SAHS. These 

findings may pioneer a better understanding of the effects of SAHS on cardiac function and 

potentially serve as detection biomarkers.

1. INTRODUCTION

Pediatric sleep apnea-hypopnea syndrome (SAHS) is a respiratory disturbance defined by 

periods of total airflow interruption (apnea) and/or significant airflow decrease (hypopnea) 

(1,2). It is highly prevalent, with up to 5% of the general pediatric population being affected 

(2), and has been related to increased risk for several cardiovascular morbidities, such as left 

and right ventricular hypertrophy, increases in systemic and pulmonary vascular blood 

pressure, alterations in autonomic regulation, and cerebral blood flow and perfusion (2).

Pediatric SAHS is traditionally diagnosed using overnight polysomnography (PSG) (3,4). To 

this effect, children will spend a night in a laboratory, while up to 32 biomedical signals are 

registered, including the electrocardiogram (ECG) (4). These signals are then evaluated and 

scored by medical experts using well defined criteria, and several indices of respiratory 

disturbance are extracted, among which the apnea-hypopnea index (AHI) is the most 

frequently used. AHI consists in the total of apneic and hypopneic events per hour of sleep 

(e/h) and defines both SAHS presence and severity (4). Although the PSG is accepted as the 

reference diagnostic method for SAHS, it is time-consuming, expensive and potentially 

distressing for pediatric subjects (5,6). In the search for alternatives that can address these 

issues while also evaluating cardiovascular morbidity risks, various studies have focused on 

the analysis of an abbreviated set of the signals containing cardiac information to gain 

insights into the cardiac dynamics in children with SAHS (5,6).

Heart Rate Variability (HRV), a signal derived from the ECG, is a measure of the fluctuation 

over time of the period between successive heartbeats (7). HRV assesses cardiac health, and 

provides a better understanding of autonomic nervous system (ANS) homeostasis, which 

regulates cardiac activity (7). The ANS controls the response of the heart to respiratory 

events, with a recurrent pattern of progressive-bradycardia/abrupt-tachycardia reflecting 

activation and deactivation of two of the ANS branches, namely the parasympathetic and the 

sympathetic nervous systems (PNS and SNS, respectively) (8,9). This periodic behavior has 

motivated previous spectral analyses of HRV, both in adults (10–13) and children (14–25).

Past studies analyzed the classical HRV spectral bands: very low frequency (VLF), low 

frequency (LF), and high frequency (HF) bands, which have fixed boundaries (0–0.04 Hz, 

0.04–0.15 Hz and 0.15–0.40 Hz, respectively) (26). Nevertheless, some recent work in 

adults indicates that SAHS modifies the HRV spectrum in a frequency range comprising 

portions of the VLF and LF bands (10), suggesting that specific SAHS-related frequency 

bands may also be present in children with SAHS. Furthermore, previous studies have 

reported that HF, which is known as a respiratory-modulated band (7), is strongly influenced 

by age, regardless of health condition (27). Likewise, it has been shown that cardio-
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respiratory coordination increases during apneic events (28), which underlines the influence 

of the respiration on heart rate. Age-related alterations are reflected in the frequency at 

which respiratory peak within HF occurs (29–32), suggesting that a subject-adaptive 

analysis is more accurate for this frequency range. Notwithstanding, all previous HRV 

analyses in pediatric SAHS neglected to incorporate the changes in respiration related to age 

(33).

Based on these considerations, we hypothesized that pediatric SAHS-specific frequency 

bands of interest are present and embedded in the ECG, and consequently, our main 

objective was to evaluate and characterize the HRV spectrum in a broad population of 

children with SAHS. To this effect, we delineated two specific objectives for this study: (i) 

identification of putative novel frequency bands, taking into account SAHS severity groups 

and subject-specific considerations, and (ii) comparison of their diagnostic ability against the 

classic HRV spectral bands.

2. METHODS

2.1. Subjects and signals under study

This work involved 1,738 pediatric subjects aged between 0–13 years. Two large cohorts 

were included: a database from the University of Chicago (UofC) (34,35), which includes 

981 children referred to the Pediatric Sleep Unit at Comer Children’s Hospital of the UofC 

(Chicago, IL, USA) suspected of suffering from SAHS; and a second cohort composed of 

757 children from the dataset of the multicenter Childhood Adenotonsillectomy Trial 

(CHAT) database (36,37). UofC database was established as the training set, while the 

CHAT database served as the test set.

The informed consent of all children caretakers from the UofC sample were obtained, and 

the Ethics Committee of the Comer Children’s Hospital of the University of Chicago 

approved the protocol (#11–0268-AM017, # 09–115-B-AM031, and # IRB14–1241). 

Diagnosis was reached using a digital polysomnography system (Polysmith, Nihon Kohden 

America INC., Irvine, CA, USA). ECG was recorded at sample frequencies of 200 or 500 

Hz.

For the CHAT sample, details corresponding to entire protocol are available in the 

supplementary material of (37). Specifically, a total of 779 nocturnal PSGs of children aged 

between 5–10 years were included. ECG signals were acquired at sampling frequencies of 

50, 200, 250, 256 or 512 Hz. Finally, 757 subjects were used from this dataset since 22 were 

excluded after applying the signal pre-processing protocol explained below.

All the subjects included in this study were diagnosed by pediatric sleep specialists from the 

different centers and their sleep studies were scored in accordance with the American 

Academy of Sleep Medicine (AASM) rules (38). The AHI was extracted from the nocturnal 

PSGs and used to establish SAHS severity. Based on previous studies (35,39–42), three 

typical AHI thresholds were selected (1, 5 and 10 e/h) for the division into four severity 

groups: the groups no-SAHS (AHI<1 e/h), mild SAHS (1≤ AHI<5 e/h), moderate SAHS 
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(5≤AHI<10 e/h) and severe SAHS (AHI≥10 e/h). Table 1 shows the clinical and 

demographic data of the population considered.

The ECG signals from both databases were equally pre-processed. First, the 15 initial and 

final minutes from every signal were removed to avoid early and late artifact periods. Then, 

all recordings lasting less than 3 hours were excluded. Afterwards, the HRV was extracted 

following an algorithm based on the Hilbert transform proposed by Benítez et al. (43). The 

first stage of this algorithm consists in computing the first order derivative after baseline 

correction of the ECG (43). The Hilbert transform is subsequently computed for this 

derivative to locate regions of high probability of containing R peaks around true R peaks. 

Later, a search for actual R peaks positions is conducted by establishing a threshold derived 

from the root mean square of the Hilbert transform for each region (43). Once the R peaks 

are detected, the R-R intervals conforming HRV signals are easily calculated (7). Those 

beats that did not meet the following criteria were considered as physiologically impossible, 

and removed (11): (i) 0.33 s < R-R interval < 1.5 s and (ii) difference to the previous R-R 

interval > 0.66 s. Finally, the HRV signals were resampled to a constant rate in order to 

obtain equally spaced time samples and allow their analysis in the frequency domain. This 

rate of 3.41 Hz (10,11) was chosen to evaluate 5-min epochs as a trade-off between using a 

power of two window-length (210 samples) with fast Fourier transform (FFT) and not adding 

unnecessary estimated data. 5-min epochs were chosen as it is the maximum length where 

stationarity can be assumed, in order to compute spectral analysis (11).

2.2. Determination of spectral bands of interest

Welch’s periodogram was applied to estimate the power spectral density (PSD) of the HRV 

(44). A Hamming Window of 210 (50% overlap) and a FFT of 211 points were used. Then, a 

normalization was applied to PSDs (PSDn) by dividing the amplitude values at each 

frequency by the corresponding total spectral power. This normalization is intended to 

minimize the differences due to individual conditions other than SAHS (45). The bands of 

interest were defined based on the PSDns from the training group.

Due to the considerations mentioned in the first section, we defined the spectral bands of 

interest by combining two different analyses depending on the frequency range: in 0–0.15 

Hz, which should not be influenced by age, and in 0.15–0.4 Hz, where an adaptive analysis 

was adopted.

The adaptive analysis in the HF range was based on previous studies of Milagro et al. 
(31,32). Similar to those studies, we chose a 0.15 Hz adaptive range centered in the 

individual respiratory peak frequency. However, rather than obtaining this central frequency 

from the impedance pneumography signal, we approximated the individual peak position as 

the frequency where the highest PSD value is found into the HF range. As it was previously 

reported, this approximation is an accurate estimation of the respiratory peak (30). Thereby, 

we obtained an adaptive bandwidth of 0.15 Hz for each subject, formed by 91 samples 

extracted from the PSD of HF.

Once we defined the adaptive band for each individual, the selection of bands of interest in 

both the range 0–0.15 Hz and the adaptive range was based on statistical differences 
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between PSDns from the training set severity groups. We computed the non-parametric 

Mann-Whitney U test for each two severity groups comparing frequency by frequency (in 

the band of 0–0.15 Hz), or sample by sample (in the adaptive one), the amplitude values 

from the PSDns. Therefore, six statistical tests were computed. After applying the 

Bonferroni correction, we selected p-value < 0.01 as the significance level and established as 

bands of interest those ranges where at least two of the tests yielded statistical differences.

Figures 1A and 2A show the averaged PSDns of the four SAHS groups into the 0–0.15 Hz 

and the adaptive band, respectively. Some differences between groups can be appreciated, 

with shaded areas as the ranges where statistical differences were found. Figures 1B and 2B 

show the p-values reached. According to this methodology, the bands of interest selected in 

the range 0–0.15 Hz were BW1 [0.001 – 0.005] Hz and BW2 [0.028 – 0.074] Hz. 

Correspondingly, the adaptive bands selected in the adaptive range were ABW1 [samples 

10–18], ABW2 [samples 24–26] and ABW3 [samples 34–55].

2.3. Feature extraction: relative power

The sum of PSDn values into a given frequency range is known as relative power (RP). In 

HRV signals, spectral powers from VLF, LF, and HF bands have been commonly assessed 

(7,26). LF band has been related to both sympathetic and parasympathetic tone (7). The HF 

band is strongly related to the respiratory rhythm, as well as with the parasympathetic tone 

(7,31,32). Physiological interpretation of VLF band is unclear, and it has been associated to 

sympathetic tone and thermoregulatory effects in long-term recordings (7,26). The LF/HF 
ratio is another common explored measure, and used as a reflection of the balance between 

sympathetic and parasympathetic tones (7,26). Because these parameters have been widely 

assessed in the pediatric SAHS context (14–25), we have chosen RP as the approach to 

characterize the activity in all the frequency bands considered in this study. Thus, we have 

computed RP of the 3 classical frequency bands (RPVLF, RPLF, RPHF), the 5 bands of 

interest (RPBW1, RPBW2, RPABW1, RPABW2, RPABW3) and the LF/HF ratio.

2.4. Assessment of the diagnostic ability of the HRV spectrum

In order to compare the diagnostic ability of the new frequency bands of interest with the 

classical ones, we first evaluated the individual diagnostic performance of each parameter 

extracted from the HRV spectrum. This was achieved by using optimum cutoff points from 

the receiver operating-characteristic (ROC) curve in the training set. Then, thresholds of 1, 5 

and 10 e/h were selected, and binary classification was performed.

The joint diagnostic performance of the parameters was evaluated by constructing two 

models. On the one hand, a model containing the RPs from the 5 bands of interest was 

considered. On the other hand, a model with the 3 classic RPs and the LF/HF ratio was 

assessed. Then, two classifiers based on linear discriminant analysis (LDA) were trained in 

each binary classification for the three severity thresholds used in this study, and the 

diagnostic performance in the test set was obtained. The LDA classifier was selected due to 

its simplicity and its proved utility in the SAHS context (46,47). LDA is a supervised 

learning algorithm which separates the input features space into decision regions, defining 
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linear decision boundaries (47). A discriminant score yj (x) is computed for each class in 

accordance with (46):

yj x = μjT ∑−1x − 1
2μjT ∑−1μj + ln P Cj (1)

where ∑ is the covariance matrix and μj is the mean vector for class Cj and P(Cj) its 

corresponding prior probability, i.e., the proportion of input feature vectors (xi) belonging to 

class Cj. After computing each discriminant score, the class with the higher yj is assigned to 

the input vector.

2.5. Statistical analysis

Features considered in this study did not fit either normality or homoscedasticity tests. For 

this reason, the non-parametric Kruskall-Wallis test was applied to assess statistically 

significant differences (p-value < 0.01 after Bonferroni correction) between RPs from SAHS 

severity groups in both datasets. The joint and individual diagnostic performances were 

evaluated in terms of sensitivity (Se, proportion of subjects with SAHS correctly diagnosed), 

specificity (Sp, proportion of subjects without SAHS correctly diagnosed) and accuracy 

(Acc, proportion of subjects correctly diagnosed). We also evaluated the area under ROC 

curve (AUC). All these diagnostic evaluations were obtained in the test set.

Furthermore, we conducted a correlation analysis to investigate possible relationships 

between RPs and several polysomnographic indices related to SAHS, sleep quality and 

structure. Indices related to SAHS were total AHI, obstructive AHI (OAHI), obstructive 

apnea index (OAI), and oxygen desaturation index (ODI). On the other hand, indices related 

to sleep quality and structure were the wake after sleep onset (WASO), the number of 

awakenings during total sleep time (#Awakenings), percentage of total sleep time spent in 

N1(%N1), N2 (%N2), N3 (%N3), and REM (%REM) stages, and total arousal index (TAI, 

arousals per hour of sleep). Spearman’s partial correlation coefficient (ρS) was applied to 

control for the influence of age in the relationships between RPs and these 

polysomnographic indices. In order to validate the usefulness of our new bands established 

on the training set, correlations were evaluated in the test set.

3. RESULTS

3.1. Relative powers

Table 2 shows the RPs extracted in each frequency band for each severity group (median 

[interquartile range]), together with the p-values obtained using the Kruskall-Wallis test in 

both the training and the test set. RPBW2, RPLF and LF/HF showed clear increases at higher 

SAHS severities, with RPBW2 and RPLF showing p-values < 10−4 after Bonferroni 

correction (denoted as p-value << 0.01) in both sets. RPBW1 showed a decrease with SAHS 

in the two sets, as did RPABW2, RPABW3 and RPHF, but only in the training set for these 

three measures. VLF was the only band that did not show statistically significant differences 

in any of the two sets evaluated.
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3.2. Correlation analysis in the test set

Correlation results are shown in Table 3. Spearman’s partial correlation coefficient (ρS) is 

represented for each RP and variable, along with the corresponding p-value. No statistically 

significant correlations in RPABW1 and RPABW2 were obtained with any of the 

polysomnographic indices considered. Despite the generally low |ρS| values reached, some 

statistically significant correlations emerged in the other bands. RPBW1 showed positive ρS 

with macro sleep disruptions related variables (#Awakenings and WASO), while RPVLF 

showed association with #Awakenings in a lower degree than RPBW1. RPBW2 reached the 

highest absolute correlations with all the SAHS related indices, as well as with TAI. 

RPABW3 was the only adaptive band that reached statistically significant correlations, 

showing negative ρS with ODI, WASO and TAI. Similar to RPABW3, RPHF presented 

significant negative correlations with ODI and WASO, but showed lower values of |ρS|. 

Indices related with sleep stages did not show any statistically significant correlations with 

the RPs evaluated.

3.3. Diagnostic ability assessments

Table 4 shows the results achieved by each individual RP as well as the two LDA models. 

The individual results showed that the highest AUC was always obtained with RPBW2 in the 

three SAHS severity thresholds considered, together with the highest accuracies and 

specificities in 5 e/h and 10 e/h sub-groups. The only classic band which improved any 

result of the bands of interest was RPVLF (sensitivity in 1 e/h). It is noteworthy that the 

diagnostic performance obtained in HF was always outperformed by at least one of the three 

adaptive bands of interest, except for specificity in the lowest threshold.

Finally, when LDA models were examined, the highest diagnostic performance was 

generally obtained with the models formed by RPs in our five bands of interest. Only 

specificity in 1 e/h threshold was higher with classic bands model, but sensitivity/specificity 

pair was strongly unbalanced.

4. DISCUSSION

In this study, new HRV spectral bands of interest were identified and evaluated to gain 

insight into cardiovascular dynamics in the presence of pediatric SAHS. These bands were 

significantly correlated with respiratory events, as well as with micro and macro sleep 

disruptions. Our newly identified bands also showed a higher diagnostic yield than the 

widely analyzed classical spectral bands, suggesting that new spectral bands are more 

specific when HRV is analyzed in the pediatric SAHS context.

4.1. Physiological interpretation and usefulness of the new spectral bands of interest

BW1 (0.001 – 0.005 Hz) is a narrower band within VLF (26). The physiological meaning of 

VLF band is under discussion (11), and previous studies analyzing this band did not find 

differences across pediatric SAHS severity groups (22,23). In this study, RPVLF was the only 

parameter that did not show significant differences in any of the both sets evaluated. 

However, RPBW1 differed between groups in both the training and the test set, as well as 

showed statistically significant ρS with the number of awakenings and WASO in the test set. 
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These findings suggest that, contrary to the whole VLF band, both the occurrence of the 

awakenings and the time spend awake is embedded in BW1. As one of the SAHS 

consequences is sleep fragmentation, this observation may drive the improvement in the 

individual diagnostic ability of RPBW1 compared to RPVLF in terms of AUC.

BW2 (0.028 – 0.074 Hz) showed the strongest correlations with all SAHS respiratory 

indices (AHI, OAHI, OAI, and ODI) and TAI, the latter being composed of many 

respiratory-related arousals induced by the disease (48). Furthermore, BW2 reached the 

highest individual diagnostic performance, clearly improving the accuracy and AUC of the 

remaining new and classic bands in the 5 e/h and 10 e/h thresholds. BW2 range (0.028 – 

0.074 Hz) comprises part of VLF and LF, which agrees with previous results reported for 

adults (10). Moreover, when analyzing overnight airflow in adults, prior studies found a 

similar band of interest (≈ 0.025 – 0.050 Hz) (49,50). These similarities in cardiac and 

breathing signals may be explained by the increment in the cardio-respiratory coordination 

found when SAHS is present (28). Similarly, the slight differences in the bandwidth may be 

explained by lower duration of cardiac events versus respiratory events, as well as by the 

different annotation rules for apneic events in children and adults (38). Such rules will score 

a pediatric apneic event lasting at least 2 respiratory cycles, usually corresponding to 6 

seconds. Thus, the BW2 frequency range, which reflects periodicities between 13 and 35 

seconds, is also consistent with these annotations, while suggesting a duration for cardiac-

related events. According to the above-mentioned considerations, there are robust 

indications that the typical SAHS-related bradycardia/tachycardia patterns are reflected in 

BW2, underlining the potential usefulness of this HRV band in the pediatric SAHS context.

As reflected in Figure 2, the main differences between SAHS severity groups in the adaptive 

respiratory band coincide with ABW3 (samples 34–55), with averaged PSD values 

decreasing as SAHS worsens, and RPABW3 showing statistically significant differences in 

the training set. Moreover, ABW3 also showed statistically significant negative correlations 

with ODI, WASO, and TAI, which were higher than the corresponding for RPHF. Thus, the 

higher the power in ABW3, the lower values will be found for oxyhemoglobin desaturations, 

awake time, and arousals. This finding may be indicative that normal sleep respiration 

activity decreases as awakening or micro awakening periods arise, which are often driven by 

inadequate gas exchange and, eventually, blood oxygen deficits (1,38). This would explain 

the increased AUC showed by ABW3 in the three AHI thresholds compared to HF, and 

further support the adaptive analysis rather than the fixed HF band.

ABW1 and ABW2 achieved similar diagnostic performance to HF, except in the higher 

severity threshold, where the diagnostic ability was markedly lower. Moreover, these two 

bands of interest did not show any significant correlation with the PSG indices. To 

investigate whether they are really useful, a final analysis was conducted. The diagnostic 

ability of the LDA models formed by RPs of the bands of interest with and without 

considering ABW1 and ABW2 is showed in Table 5. It can be appreciated that there was a 

slight decrease in AUC for 1 e/h and 5 e/h thresholds when both bands were included, with 

similar accuracies, suggesting that these bands show no evidence of diagnostic utility. It also 

implies that only a frequency range of ≈ 0.04 Hz around the adaptive respiratory peak, 

which corresponds to the width of ABW3, would be enough to analyze HF in SAHS cases.
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4.2. Comparison with previous work

To the best of our knowledge, this is the first work searching for specific HRV spectral bands 

of interest in the pediatric SAHS context. Previous studies in the frequency domain only 

analyzed the HRV classic frequency bands (14–25).

The common finding among previous studies pointed to increased LF activity (14,21) and 

LF/HF ratio (14,17,20), as well as decreased HF power (16,17,19) as SAHS worsens. 

Adenotonsillectomy, the common treatment for SAHS in children, reversed these trends 

(18). This agrees with the results shown in Table 2. It seems that intermittent hypoxia and 

episodic arousals, which are present in children with SAHS and accompanied by increases 

in sympathetic outflow (reflected in the increased RPLF) underlie the autonomic changes 

that persist even beyond sleep period. The effect of SAHS in the ANS was analyzed in 

previous studies (51,52). Somers et al. showed that, in young healthy adults, intermittent 

hypoxia during sleep derived in heightened sympathetic activation, even when the stimulus 

was removed. In the same way, subtle changes in autonomic reactivity are detectable during 

arousals in healthy children as well as in children with SAHS during wakefulness (53,54). 

All these evidences along with the results shown in Table 2 supports previous findings that 

pediatric SAHS leads to enhanced sympathetic activity, as well as decreased 

parasympathetic activation, resulting in impaired cardiac autonomic modulation. The 

absence of differences in RPVLF is also in accordance with previous studies analyzing this 

band (22,23).

On the other hand, previous studies originating from a single research group (23–25) 

conducted an automated classification of pediatric subjects into SAHS or control groups. 

These studies involving only 21 children, derived HRV parameters from declines in 

amplitude fluctuations of the photoplethysmography oximetry signal. Accuracies in the 

range 73.3–80.0%, together with sensitivities between 62.5–87.5% and specificities between 

71.4–85.7% were reported. Despite the similar results achieved in the present study, the 

different criteria used to assess SAHS presence and severity makes further comparisons 

difficult. Similarly, only a previous study conducted automated classification while 

exclusively evaluating HRV signal in pediatric SAHS context (15). However, unlike us, this 

study focused on classification of each apneic event rather than each subject, such that their 

findings and current results cannot be compared. Thus, this is the first study conducting 

automated classification of pediatric subjects into severity SAHS groups employing HRV 

signals exclusively.

4.3. Limitations and outlook

Despite the potential utility of our findings, we need to mention some of the limitations of 

this study. First, our LDA model performance is not yet sufficient for widespread diagnostic 

use, being outperformed by the results derived from the study of other polysomnographic 

signals such as blood oxygen saturation or airflow, which have a direct acquisition (34,41). 

However, we need to remark that the aim of this study was not at optimizing classification 

performance, but rather aimed to characterize new SAHS-specific spectral bands and 

compare their diagnostic ability against the classic HRV bands. Thus, this is a first step that 

justifies future explorations of more complex predictive models with the aim to further 
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improve the diagnostic usefulness and characterization of these novel bands. Finally, despite 

the robust associations found for BW1, BW2, and ABW3 relative to standard PSG indices, 

both ABW1 and ABW2 need further investigation to clarify their significance in pediatric 

SAHS.

4.4. Conclusions

This is the first study whereby specific HRV spectral bands of interest in pediatric SAHS 

have been identified and characterized. We have defined three new spectral bands that show 

significant associations with SAHS disease severity: BW1 (0.001 – 0.005 Hz), related to 

macro sleep disruptions; BW2 (0.028–0.074 Hz), related to the duration of apneic events, 

and ABW3, an adaptive band within the respiratory range, related to oxyhemoglobin 

desaturations and sleep disruption. Higher individual and collective diagnostic ability were 

achieved by the RPs of the new bands compared with the classical RPs for SAHS severity 

thresholds of 1, 5 and 10 e/h. An LDA model that incorporated five RPs from the new 

spectral bands achieved the highest diagnostic performance (82.8% Acc, 0.796 AUC for 10 

e/h threshold). Hence, our results suggest that the new HRV bands provide more specific 

information on pediatric SAHS, and that such novel information could be used to develop 

advanced automated SAHS detection methodologies. Thus, future studies incorporating 

these novel spectral bands should be pursued to further establish their clinical significance 

and clinical applications.
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Impact:

• New specific heart rate variability (HRV) spectral bands are identified and 

characterized as potential biomarkers in pediatric sleep apnea.

• Spectral band BW1 (0.001 – 0.005 Hz) is related to macro sleep disruptions.

• Spectral band BW2 (0.028 – 0.074 Hz) is related to the duration of apneic 

events.

• An adaptive spectral band within the respiratory range, termed ABW3, is 

related to oxygen desaturations.

• The individual and collective diagnostic ability of these novel spectral bands 

outperforms classic HRV bands.
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Figure 1. 
(A) Averaged PSDns in the 0–0.15 Hz band in the training set for the four severity groups. 

(B) p-value for each frequency in each comparison between SAHS severity groups after 

Bonferroni correction in the training group for the range 0–0.15 Hz. Grey shaded areas 

represent those ranges where statistical differences were found.
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Figure 2. 
(A) Averaged PSDns in the adaptive band in the training set for the four severity groups. (B) 

p-value for each frequency in each comparison between SAHS severity groups after 

Bonferroni correction in the training set for the adaptive band selected. Grey shaded areas 

represent those ranges where statistical differences were found.
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Table 1.

Clinical and demographic data from children included in the study.

All Training group (UofC) Test group (CHAT)

Subjects (n) 1738 981 757

Age (years) 6.4 [3.3] 6.0 [6.0] 7.0 [2.4]

Males (n) 962 (55.35%) 602 (61.37%) 360 (47.95%)

BMI (kg/m2) 17.63 [5.37] 18.02 [5.86] 17.28 [4.64]

AHI (e/h) 2.23 [5.27] 3.8 [7.76] 1.46 [2.07]

AHI ≥ 1 (e/h) 1309 (75.31%) 808 (82.36%) 501 (66.18%)

AHI ≥ 5 (e/h) 519 (29.86%) 407 (41.49%) 112 (14.80%)

AHI ≥ 10 (e/h) 298 (17.15%) 229 (23.34%) 69 (9.11%)

Data are showed as median [interquartile range] or n (percentage).

UofC: University of Chicago, CHAT: Childhood Adenotonsillectomy Trial; BMI: Body Mass Index; AHI: apnea–hypopnea index, BMI: body mass 
index.
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Table 2.

Relative power values (median [interquartile range]) in the training and the test sets for the four severity 

groups.

TRAINING SET

Feature no-SAHS Mild SAHS Moderate SAHS Severe SAHS p-value

RPVLF 0.370 [0.174] 0.359 [0.163] 0.381 [0.179] 0.371 [0.164] 0.675

RPLF 0.225 [0.060] 0.224 [0.075] 0.235 [0.081] 0.244 [0.090] <<0.01

RPHF 0.317 [0.179] 0.340 [0.195] 0.300 [0.218] 0.275 [0.213] <0.01

LF/HF 0.706 [0.510] 0.697 [0.594] 0.814 [0.791] 0.892 [0.985] <<0.01

RPBW1 0.083 [0.055] 0.082 [0.050] 0.083 [0.047] 0.071 [0.049] <0.01

RPBW2 0.169 [0.054] 0.175 [0.068] 0.185 [0.086] 0.213 [0.107] <<0.01

RPABW1 0.017 [0.010] 0.016 [0.009] 0.015 [0.007] 0.017 [0.010] <0.01

RPABW2 0.008 [0.005] 0.007 [0.005] 0.006 [0.004] 0.005 [0.005] <0.01

RPABW3 0.119 [0.110] 0.121 [0.121] 0.110 [0.115] 0.087 [0.098] <<0.01

TEST SET

Feature no-SAHS Mild SAHS Moderate SAHS Severe SAHS p-value

RPVLF 0.337 [0.140] 0.332 [0.155] 0.282 [0.149] 0.342 [0.186] 0.200

RPLF 0.218 [0.060] 0.227 [0.063] 0.222 [0.090] 0.259 [0.110] <<0.01

RPHF 0.368 [0.167] 0.363 [0.184] 0.388 [0.198] 0.307 [0.217] 0.015

LF/HF 0.610 [0.407] 0.649 [0.462] 0.597 [0.539] 0.818 [0.886] <0.01

RPBW1 0.081 [0.044] 0.078 [0.039] 0.063 [0.045] 0.061 [0.043] <0.01

RPBW2 0.148 [0.055] 0.161 [0.062] 0.165 [0.078] 0.209 [0.113] <<0.01

RPABW1 0.018 [0.009] 0.018 [0.009] 0.018 [0.007] 0.018 [0.010] 0.880

RPABW2 0.008 [0.005] 0.008 [0.004] 0.009 [0.005] 0.007 [0.006] 0.421

RPABW3 0.132 [0.108] 0.123 [0.107] 0.134 [0.143] 0.103 [0.093] 0.004*

RP: Relative power; SAHS: Sleep apnea-hypopnea syndrome; VLF: Very low frequency; LF: Low frequency; HF: High Frequency

p-values < 10–4 after Bonferroni correction are represented as << 0.01

*
Non-significant after Bonferroni correction.
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Table 3.

Results of the partial correlation assessments between relative powers and the polysomnographic indices in the 

test set.

CLASSIC BANDS

PSG index
RPVLF RPLF RPHF LF/HF

ρs p-value ρs p-value ρs p-value ρs p-value

AHI −0.031 0.391 0.150 <0.01 −0.075 0.040 0.118 0.001*

OAHI −0.073 0.043 0.088 0.015 −0.012 0.737 0.046 0.207

OAI −0.035 0.333 0.067 0.066 −0.031 0.392 0.052 0.154

ODI 0.039 0.289 0.194 <<0.01 -0.161 <<0.01 0.195 <<0.01

#Awakenings 0.133 <0.01 0.036 0.324 −0.115 0.014 0.086 0.018

WASO 0.071 0.049 0.112 0.002* -0.146 <0.01 0.145 <0.01

%N1 0.003 0.930 0.063 0.084 −0.040 0.266 0.058 0.111

%N2 −0.085 0.019 −0.076 0.038 0.098 0.007* −0.112 0.002*

%N3 0.068 0.060 0.074 0.043 −0.089 0.014 0.101 0.005*

%REM 0.041 0.262 −0.083 0.022 0.030 0.404 −0.047 0.197

TAI 0.031 0.389 0.128 <0.01 −0.098 0.007* 0.126 <0.01

BANDS OF INTEREST

PSG index
RPBW1 RPBW2 RPABW1 RPABW2 RPABW3

ρs p-value ρs p-value ρs p-value ρs p-value ρs p-value

AHI -0.132 <0.01 0.233 <<0.01 −0.010 0.786 −0.049 0.179 −0.101 0.005*

OAHI -0.157 <0.01 0.164 <<0.01 −0.002 0.962 −0.021 0.555 −0.033 0.368

OAI −0.096 0.008* 0.149 <0.01 −0.010 0.774 −0.031 0.395 −0.049 0.180

ODI −0.033 0.358 0.220 <<0.01 −0.009 0.809 −0.100 0.006* -0.192 <<0.01

#Awakenings 0.174 <<0.01 0.069 0.059 −0.036 0.329 −0.055 0.134 −0.096 0.008*

WASO 0.186 <<0.01 0.054 0.141 0.024 0.514 −0.046 0.210 -0.195 <<0.01

%N1 0.001 0.969 0.087 0.017 0.020 0.584 −0.005 0.887 −0.063 0.083

%N2 −0.073 0.045 −0.092 0.011 0.009 0.798 0.071 0.050 0.083 0.023

%N3 0.058 0.111 0.052 0.155 −0.028 0.443 −0.092 0.011 −0.066 0.069

%REM 0.048 0.187 −0.049 0.175 −0.004 0.913 0.019 0.594 0.041 0.262

TAI −0.059 0.105 0.220 <<0.01 −0.025 0.492 −0.043 0.237 -0.123 <0.01

PSG: Polysomnographic; RP: Relative Power; VLF: Very low frequency; LF: Low frequency; HF: High Frequency; AHI: Apnea-Hypopnea Index; 
OAHI: Obstructive AHI; OAI: Obstructive Apnea Index; ODI: Oxygen desaturation index; WASO: Wake after sleep onset; %N1: Time spent in N1 
stage; %N2: Time spent in N2 stage; %N3: Time spent in N3 stage; %REM: Time spent in REM stage; TAI: Total arousals index.

*
Non-significant after Bonferroni correction.
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Table 4.

Diagnostic performance in the test set for each relative power in each frequency band, as well as for both 

linear discriminant analysis models in terms of Sensitivity (Se %), Specificity (Sp %), Accuracy (Acc %) and 

AUC.

Feature/Model
AHI Threshold = 1 e/h AHI Threshold = 5 e/h AHI Threshold = 10 e/h

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC

RPVLF 68.9 31.6 56.3 0.518 33.0 65.0 60.2 0.456 40.6 64.2 62.1 0.495

RPLF 43.5 62.9 50.1 0.557 52.7 58.4 57.6 0.590 59.4 58.4 58.5 0.666

RPHF 35.5 71.9 47.8 0.523 39.3 68.1 63.8 0.540 43.5 76.7 73.7 0.605

LF/HF 37.7 70.3 48.7 0.540 45.5 66.8 63.7 0.567 49.3 70.8 68.8 0.643

RPBW1 66.3 45.3 59.2 0.559 65.2 54.0 55.6 0.621 69.6 52.3 53.9 0.624

RPBW2 32.7 78.1 48.1 0.591 45.5 82.0 76.6 0.670 58.0 78.2 76.4 0.751

RPABW1 52.7 49.2 51.5 0.516 41.1 59.4 56.7 0.504 55.1 39.0 40.4 0.489

RPABW2 49.1 55.1 51.1 0.526 36.6 69.8 64.9 0.524 44.9 47.8 47.6 0.451

RPABW3 45.5 56.6 49.3 0.532 44.6 64.0 61.2 0.571 49.3 64.0 62.6 0.628

LDA Classic Bands 25.7 81.3 44.5 0.559 46.4 72.2 68.4 0.633 50.7 75.3 73.1 0.685

LDA Bands of Interest 42.5 72.3 52.6 0.592 50.0 80.9 76.4 0.688 63.8 84.7 82.8 0.796

RP: Relative Power; VLF: Very low frequency; LF: Low frequency; HF: High Frequency; LDA: Linear discriminant analysis; AHI: Apnea-
hypopnea index.
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Table 5.

Diagnostic performance in the test set for both linear discriminant analysis models formed by bands of interest 

with and without RPABW1 and RPABW2 in terms of Sensitivity (Se %), Specificity (Sp %), Accuracy (Acc %) 

and AUC.

LDA Model
AHI Threshold = 1 e/h AHI Threshold = 5 e/h AHI Threshold = 10 e/h

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC

With both bands 42.5 72.3 52.6 0.592 50.0 80.9 76.4 0.688 63.8 84.7 82.8 0.796

Without both bands 37.7 80.1 52.0 0.597 48.2 80.8 76.0 0.696 62.8 84.3 82.3 0.774

RP: Relative Power; AHI: Apnea-hypopnea index.
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