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Abstract: The application of additive manufacturing changes from prototypes to series production.
In order to fulfill all requirements of series production, the process and the material characteristics
must be known. The machine operator of additive manufacturing systems is both a component
and a material producer. Nevertheless, there is no standardized procedure for the manufacturing or
testing of such materials. This includes the high degree of anisotropy of additively manufactured
polymers via material extrusion. The interlayer bonding performance between two layers in the
manufacturing direction z is the obvious weakness that needs to be improved. By optimizing
this interlayer contact zone, the overall performance of the additively manufactured polymer is
increased. This was achieved by process modification with an infrared preheating system (IPS) to
keep the temperature of the interlayer contact zone above the glass transition temperature during the
manufacturing process. Combining destructive and non-destructive testing methods, the process
modification IPS was determined and evaluated by a systematic approach for characterizing the
interlayer bonding performance. Thereby, tensile tests under quasi-static and cyclic loading were
carried out on short carbon fiber-reinforced polyamide (SCFRP). In addition, micro-computed
tomography and microscopic investigations were used to determine the process quality. The IPS
increases the ultimate interlayer tensile strength by approx. 15% and shows a tendency to significantly
improved the fatigue properties. Simultaneously, the analysis of the micro-computed tomography
data shows a homogenization of the void distribution by using the IPS.

Keywords: additively manufactured polymer structures; material extrusion; computed tomography;
void distribution; infrared preheating; interlayer tensile strength

1. Introduction

Manufacturing processes such as Fused Deposition Modeling (FDM™) or Fused Filament
Fabrication (FFF) are based on material extrusion and generate the components layer by layer.
By exploiting process-specific benefits like function integration or the production of bionically optimized
structures, a holistic improvement of components is possible. Nowadays, these additive manufactured
components are used as prototypes and final products. The mechanical properties represent a major
challenge for the use of additively manufactured (AM) serial components. The current literature shows
an anisotropic material behavior of polymers fabricated via material extrusion as well as reduced
mechanical properties compared to competing production methods like injection molding [1–3].
The obvious weakness of AM polymer was clearly identified in the interlayer contact zone in the
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manufacturing direction z [3]. Thus, the overall performance of constructions depends essentially on
the interlayer tensile strength. The optimization of this interlayer contact zone regarding stiffness and
strength leads to an increase in the overall performance of AM polymer via material extrusion [4].
Furthermore, this is an opportunity for reducing the anisotropic material behavior [5]. Sun et al. [6]
investigated different mechanisms of bond formation for material extrusion-based polymers and
highlighted a thermal dependency of the interlayer bonding performance. Kousiatza and Karalekas [7]
integrated a FaserBragg-grating in an FFF component. The in situ detection of temperature distribution
ensures a detailed description of temperature variation within the component during the manufacturing
process. Thus, the influence of temperature on the interlayer bonding and material performance was
visible. Costa et al. [8] developed a temperature model for material extrusion-based manufacturing
processes and highlighted a correlation between the thermal prehistory and the interlayer bonding
performance. Putting this literature into context, the higher surrounding temperature results in an
increased material performance, in particular for the interlayer tensile strength.

In Figure 1, a stress–strain diagram out of quasi-static tensile tests is shown. In each case, a
specimen in the ZXY orientation was tested, one specimen was manufactured individually in the
printing chamber and the other was manufactured with identical process parameters with two further
specimens in the printing chamber. The experimental setup enforces different surface temperatures
of the polymer, especially in the interlayer contact zone. The results show a significantly reduced
interlayer tensile strength and highlight the challenges for a reproducible manufacturing process. Thus,
the material performance of the AM component is increased by a successful diffusion process in the
interlayer contact zone. This is ensured by keeping the temperature of the interlayer contact zone
above the glass transition temperature of the polymer [9].
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Figure 1. (a) Stress–strain diagram for short carbon fiber-reinforced polyamide (SCFRP) specimens, 
(b) 1 ZXY specimen in printing chamber, and (c) 3 ZXY specimen in printing chamber. 

A reproducible manufacturing process requires a defined window of viscosity and shear rate for 
processability. This window can be adjusted by adding additives [10] or by increasing the 
temperature. The thermal energy for annealing the AM polymer interlayer contact zone can be 
applied in a post process [11] or by increasing the surrounding temperature. Both improve the 
mechanical properties and the reproducibility of the manufacturing process. The higher thermal 
energy in the interlayer contact zone increases the melt diffusion und optimizes the mechanical 
properties. Furthermore, the misalignment of the carbon fibers along the moving direction of printing 
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Figure 1. (a) Stress–strain diagram for short carbon fiber-reinforced polyamide (SCFRP) specimens, (b)
1 ZXY specimen in printing chamber, and (c) 3 ZXY specimen in printing chamber.

A reproducible manufacturing process requires a defined window of viscosity and shear rate for
processability. This window can be adjusted by adding additives [10] or by increasing the temperature.
The thermal energy for annealing the AM polymer interlayer contact zone can be applied in a post
process [11] or by increasing the surrounding temperature. Both improve the mechanical properties
and the reproducibility of the manufacturing process. The higher thermal energy in the interlayer
contact zone increases the melt diffusion und optimizes the mechanical properties. Furthermore, the
misalignment of the carbon fibers along the moving direction of printing head reinforces the interlayer
contact zone [12]. There are several approaches for implementing a higher surrounding temperature.
One of the most common approaches is the use of a heated printing chamber. Kishore et al. [13] achieved
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a significant increase of the interlayer bonding performance by preheating the surface temperature with
infrared heat. Thereby, the interlayer bonding performance was determined by a double cantilever
bending test in fracture mode I. Du et al. [14] introduced a numerical model for the analysis of the
thermal distribution of FDM using a laser-based preheating system. Using the laser-based preheating
system, the experimental results show an improvement of the interlayer bonding performance, which
is characterized by the interlayer tensile strength. As for the higher surrounding temperature, there
are many alternatives to characterize the interlayer bonding performance. Kishore et al. [13] and
Spoerk et al. [15] used a double cantilever test in fracture mode I to determine the interlayer strength.
Davis et al. [16] investigated the fracture toughness of individual welds in fracture mode III. Both
experimental setups are difficult to use under cyclical loads. Sun et al. [6] characterized the interlayer
bonding performance by 3-point bending tests, and Dutra et al. [17] exploited the short beam bending
test according to the interlaminar shear strength for composite materials. The experimental setups
with a flexural load combine the tensile and compressive stresses in the material. Du et al. [14] carried
out the interlayer bonding performance as many others have with the interlayer tensile strength [18,19].
Watschke et al. [20] adapted several approaches for characterizing a multi-material interface. The load
types are separated for tensile, shear and compressive loads to enable a detailed characterization of
the interface.

In this study, the interlayer tensile strength is used to characterize the interlayer bonding
performance. An innovative approach for quality evaluation shows the void distribution depending on
the manufacturing direction z. As an example, this test methodology is demonstrated on an optimized
process by an in situ infrared preheating system (IPS). Due to the large number of testing methods,
the aim of this study is to establish a systematic approach for determining the interlayer bonding
performance and evaluating the quality of the interlayer contact zone. The objective question that
needs to be answered is whether the methodology can detect the process-related errors.

2. Material and Manufacturing

A short carbon fiber-reinforced polyamide (SCFRP) (CarbonX™ Nylon Gen. 2, 3DXTECH,
Grand Rapids, MI, USA) was used for the investigations. The filament has a fiber weight content
of approx. 12.5 wt.%, the fiber diameter is 7 µm and the fiber length distribution is 150 to 400 µm
after extrusion to filament. The composite material is supplied in vacuum-packed spools with a
diameter of 1.75 ± 0.05 mm. Before processing, the material was dried for 4 h at 50 ◦C in an oven
(FP 115, Binder). Table 1 gives the different material properties of the SCRFP from previous studies.
As shown in Figure 1, the results show a high degree of variation due to different parameter settings
and experimental setups. In addition, the anisotropic material behavior is highlighted by significantly
reduced mechanical properties by changing the built orientation in the printing chamber (XYZ, YXZ
and ZXY).

Table 1. Selected material performances of CarbonX™ processed by FFF under tensile loading [3,21].
Layer height = 0.2 mm, Infill = 100%, Extrusion temperature = 260 ◦C, Manufacturing orientation
according to ASTM F2921-11.

Material Characteristic Unit Variation Values Source

XYZ 4540 [3]
YXZ 2291 [3]

Young’s modulus MPa ZXY 1436 [3]
Infill: ±45◦ 5075 [21]

Infill: Concentric 3839 [21]

XYZ 46.1 [3]
YXZ 29.1 [3]

Tensile strength MPa ZXY 10.6 [3]
Infill: ±45◦ 46.3 [21]

Infill: Concentric 37.8 [21]
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The specimens were generated layer-by-layer with the additive manufacturing process FFF. In this
study, the specimens were manufactured in the ZYX orientation according to ASTM F2921-11. Each
print job contained three specimens in the printing chamber in order to compensate for thermal
gradients during the manufacturing process, with only the same specimen per print job used for
mechanical testing. Selected manufacturing parameters are displayed in Table 2. In order to evaluate
the influence of IPS, standardized FFF specimens were used as a reference. The IPS consists of two
ceramic radiators (QFE, Ceramix Ltd., Ballydehob, Ireland) with 150 W each and emitted long-wave
infrared rays with wavelengths of 2 to 10 µm. For the selective temperature control of the current layer,
the radiations are focused by additional reflectors. Figure 2 shows the standard process FFF and the
modified process FFF IPS during the manufacturing process by a thermographic image. The images
show, in the upper area, the hot-end for applying the molten thermoplastic material and the three
upright specimens on the printing bed. The FFF IPS shows a significantly increased temperature level
of the entire specimens, especially at the deposition point near the hot-end.

Table 2. Selected parameter gradients for the manufacturing processes FFF and FFF IPS. Manufacturing
orientation according to ASTM F2921-11.

Parameter Unit CarbonX™

Nozzle diameter mm 0.4
Extrusion bead mm 0.5

Layer height mm 0.2
Orientation - ZYX

Extrusion temperature ◦C 260
Velocity mm·s−1 10
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Figure 2. Thermographic distribution during the manufacturing process: (a) FFF and (b) FFF IPS.

3. Experimental Setup

The quasi-static tensile tests were executed on a universal testing system (Zwick 1464, Fmax = 50 kN)
according to DIN 527. Strain measurement was done by a tactile extensometer (MultiXtens, ZwickRoell,
Ulm, Germany). After preloading with +10 N, the displacement velocity was set to 1 mm min−1 to
determine Young’s modulus in the range between 0.05% to 0.25% of strain. After that, the displacement
velocity was increased to 50 mm min−1 to identify the tensile strength. The stop criterion was defined
with a 50% drop in force.

The cyclic investigations under tensile loading were done with a servo-hydraulic testing system
(Instron, 8872, Fmax = ±10 kN) under sinusoidal tension loading with a stress-ratio R = 0.1 and a
testing frequency f = 5 Hz. The deformation behavior was observed with digital image correlation
(DIC) (Q-400, Limess), and the change in temperature was monitored via thermal camera (TIM 450,
Micro-Epsilon, Ortenburg, Germany). For all destructive testing methods, the specimen geometry in
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Figure 3a was used in accordance with DIN 527. The experimental setup for the cyclic investigations is
shown in Figure 4.
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Figure 4. Experimental setup for destructive testing under cyclic loading.

The microscopic investigations were performed with a 3D laser scanning confocal microscope
(VK-X100, Keyence, Osaka, Japan). The optical measurement of the surface roughness was performed
with a 10× lens on the untreated surfaces. The indicated surface roughness values represent
the mean value of 100 profile measurements. The void analysis was carried out on the basis of
micro-computed tomography (CT) scans taken by a universal micro-CT inspection system (XT H 160,
Nikon, Tokyo, Japan).

4. Results and Discussion

In general, the results of the destructive testing methods are stress-based. The proper determination
of the specimen cross-section is sophisticated due to a high macroscopic waviness in the untreated
AM surface. Therefore, the specimen cross-section on which the specified stress is based was
determined as follows. The macroscopic dimensions of the cross-sectional area were determined with
a tactile micrometer. These macroscopic results for the length l and width w were corrected by the
microscopically measured surface roughness Rz. The sketch in Figure 3b serves as an example for the
cross-section correctness of the length l with the surface roughness.

Aeffective = (w − (2 × Rz)) × (l − (2 × Rz)), (1)
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Because no significant differences in the surface roughness profiles were detected, an average
value for Rz = 125 µm was used to correct all specimens. Figure 5 shows the results and corresponding
standard deviations of the quasi-static tensile tests in terms of Young’s modulus and the tensile
strength. The number of specimens was at least n = 5. The bar chart highlights the change in material
performance caused by using the IPS. The change in Young’s modulus of about 6% in combination with
the corresponding standard deviations can be considered as a tendency. The tensile strength increases
by about 17%, which indicates an improvement in material performance due to the usage of IPS.
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Figure 5. Results of the quasi-static tensile tests in terms of Young’s modulus and the tensile strength.

The basis for the cyclic tests was the quasi-static tests and the resulting ultimate tensile strength.
The maximum stress level was selected depending on the ultimate tensile strength. The two stress
levels at 20% and 30% of the ultimate tensile strength were chosen to qualitatively evaluate the
influence of the process modification IPS on the lifetime. The aim of the experimental setup with cyclic
loading was to identify a tendency of the lifetime with minimal experimental effort. The cyclic test
data show no significant changes in temperature due to the cyclic load being at 5 Hz. The optical DIC
device for monitoring the deformation behavior highlights the maximum strain perpendicular to the
load introduction exactly between two layers. Figure 6 gives the results of the cyclic investigations;
the abscissa shows the number of cycles to failure in logarithmic scaling, and the ordinate shows
the maximum stress level in linear scaling. Despite the relative load as a function of the ultimate
tensile strength, the use of IPS shows a significant effect on the material response under the cyclic
tension–tension loading. The formulation of a linear equation describing the geometric relationship
of two points in terms of the intercept of the axis and slope allows a first comparison for the lifetime
performance. In particular, the difference in slope indicates a significant influence of the IPS on the
material performance under cyclic loading and shows great potential for lifetime applications.
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Figure 6. S/N curves for the tendency of lifetime estimation.

The micro-CT scans from the testing area of the respective specimens are shown in Figure 7.
The standard defect analysis results in an absolute void volume content of 5.7% for the standard
process FFF and 4.3% for the modified process FFF IPS. Qualitatively, the scans for the standard process
FFF show a higher defect volume per void within the specimen. On the basis of this standard defect
analysis and the measuring accuracy, the data do not allow any statement about significant differences
in the defects and their distribution. Thus, the limitations of the standard defect analysis show a lack
of informative value, which is to be extended by additional data processing.
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By processing the data of the defect analysis, the void distribution is observed more precisely.
For this purpose, the three-dimensional micro-CT scans were sliced into two-dimensional layers
with a height of 7 µm. The two-dimensional void areas in each layer are ideally calculated in a
three-dimensional void volume per layer by multiplying it with the layer height of 7 µm. For each void
in a layer, this results in an ideally void volume per layer for the defined layer height. Every individual
void volume per layer was plotted as a function of the relative z position, which corresponds to the
manufacturing direction z. In order to put the relative z position into a real context, the microscopically
measured height profile of the specimen surface was superimposed on the void volume data. The height
profile shows the typical macroscopic waviness of untreated additively manufactured FFF materials.
The described data analysis is given in Figure 8 for the standard process FFF and in Figure 9 for the
modified FFF IPS.
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Figure 8. Void analysis of FFF based on micro-CT data, the void volume per void and the height profile
vs. relative position in z.
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In the standard process FFF, voids accumulate at regular intervals of 200 µm, which corresponds to
the manufacturing layer height in Table 2. The synchronization of the relative position in the z direction
makes the position of the void accumulations visible. The increased number of voids appear for the
standard process FFF in the interlayer contact zone. The modified process with the use of IPS does not
show these accumulations. The distribution of void volumes per layer shows a quasi-homogeneous
appearance without a pattern depending on the layer height of the manufacturing process.

The results of the experiments show the influence of the process modification IPS on the material
performance and the void distribution. Bellehumeur et al. [22] highlighted that the formation of
bonding in the FDM process is driven by the thermal energy of semi-molten material. The IPS provides
an additional energy source that increases the thermal energy of the polymer surface. The higher
temperature of the interlayer contact zone leads to an increased movement of polymer chains and
thus to a higher interlayer bonding performance [23]. The quasi-static and cyclic experiments in
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this study show the same tendency. The non-destructive tests highlight a different void distribution
within AM polymers due to IPS. The standard process FFF shows void accumulations between two
layers resulting in reduced effective cross-sectional areas within the interlayer contact zone of FFF
specimens. The modified process FFF IPS exhibits a quasi-homogeneous void distribution in the
z direction. Therefore, the interlayer contact zone has an increased effective cross-sectional area
compared to the standard process FFF. The different effective cross-sectional areas can lead to different
stress concentrations, which have their origins at the different shapes of voids between two layers [24].
In addition, the results show various effects of the IPS on the material performance depending on
the load type. The use of IPS improves the ultimate tensile strength by about 17%. Because of the
high standard deviation, this improvement should be considered as a trend. In contrast, the results of
cyclic investigations indicate a great improvement in the lifetime performance due to IPS. Compared
to the quasi-static tensile tests, the tensile tests under cyclic loading are more structure-sensitive.
The different bond formations, void characteristics and effective cross-sectional areas due to the IPS
have a positive effect on the lifetime performance. In addition to the impact on the process development,
the combination of testing technologies used for mechanical characterization can be summarized as a
systematic approach. The methodology shows potential for detecting process-induced defects as well
as structural differences of extrusion-based additively manufactured polymer.

5. Conclusions and Outlook

The obvious weakness of additively manufactured (AM) polymers due to material extrusion
was deduced from the literature and selected preliminary tests in the manufacturing direction z.
The standard process Fused Filament Fabrication (FFF) was adapted by an in situ infrared preheating
system (IPS) to optimize the interlayer bonding performance of AM polymer. The evaluation
of the process modification IPS requires a proper characterization of the interlayer bonding
performance. Hence, a systematic approach to characterize the interlayer tensile strength is introduced.
The destructive tests under quasi-static and cyclic loading were performed to estimate the material
performance, and non-destructive testing methods like micro-computed tomography (CT) and 3D
laser scanning confocal microscopy were executed for quality assessment.

A short carbon fiber-reinforced polymer (SCFRP) was used to investigate the process modification
IPS for material performance and quality. The stress-based evaluation of the destructive tests is based
on the initial cross-sectional area of the specimen. The innovative method for determining the initial
cross-sectional area consists of the macroscopic measurement corrected by the surface roughness Rz.
The quasi-static tensile tests indicate a tendency for an improved interlayer bonding performance by
using the IPS. The mechanical tests under cyclic loading highlight the opportunities to improve the
lifetime performance of AM polymer with the IPS.

The absolute void volume content of the standard process FFF and the modified process FFF IPS
is comparable. By processing the defect data, void accumulations of the standard process FFF are
visible. The synchronization of the macroscopic height profile demonstrates the existence of void
accumulations between the layers for the standard process FFF. The modified process FFF IPS shows
a quasi-homogeneous void distribution for the manufacturing direction z. This results in a higher
effective cross-sectional area in the interlayer contact zone.

The results of this study show the ability to characterize the interlayer bonding performance
and optimize the overall material performance of AM polymer. Nevertheless, there is potential
for improvement, both in the systematic approach and in the process modification. The current
prototype of IPS consists of two long-wave ceramic radiators that are focused on the upper layer.
The investigations, as well as the literature, show that the higher temperature level in the interlayer
contact zone leads to better material performances. Nevertheless, the heat radiation has to be focused
more precisely on the deposition spot, intensifying this effect of optimized material performances.
The external heat source is also suitable for a defined cooling of the AM polymer. The crystallization of
semi-crystalline thermoplastics can be influenced by defined cooling conditions. This is intended to
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further increase the material performance. This modification leads to a local material performance
depending on process parameter gradients.

The systematic approach, which characterizes the interlayer bonding performance, is based
on the interlayer tensile strength. The combination of destructive and non-destructive testing
methods aims to separate process-induced defects for a proper characterization of the local material
performance. In order to cover more application-oriented load types, the evaluation of the interlayer
bonding performance will be extended with shear loadings. In comparison to different manufacturing
directions, a more detailed consideration of the resulting surface roughness is taken. Due to different
roughness parameters in the manufacturing directions, the use of an “as-built” surface does not enable
a comparison. Thus, the effect of the surface roughness and the corresponding impact on the material
performance has to be evaluated. Through quantification, a detailed comparative characterization of
AM polymers is possible.
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