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the Consistency Assumption Globally
in a Network of Interventions
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Background. The unrelated mean effects (UME) model has been proposed for evaluating the consistency assumption
globally in the network of interventions. However, the UME model does not accommodate multiarm trials properly
and omits comparisons between nonbaseline interventions in the multiarm trials not investigated in 2-arm trials.
Methods. We proposed a refinement of the UME model that tackles the limitations mentioned above. We also
accompanied the scatterplots on the posterior mean deviance contributions of the trial arms under the network
meta-analysis (NMA) and UME models with Bland-Altman plots to detect outlying trials contributing to poor
model fit. We applied the refined and original UME models to 2 networks with multiarm trials. Results. The original
UME model omitted more than 20% of the observed comparisons in both networks. The thorough inspection of the
individual data points’ deviance contribution using complementary plots in conjunction with the measures of model
fit and the estimated between-trial variance indicated that the refined and original UME models revealed possible
inconsistency in both examples. Conclusions. The refined UME model allows proper accommodation of the multiarm
trials and visualization of all observed evidence in complex networks of interventions. Furthermore, considering sev-
eral complementary plots to investigate deviance helps draw informed conclusions on the possibility of global incon-
sistency in the network.

Highlights

� We have refined the unrelated mean effects (UME) model to incorporate multiarm trials properly and to
estimate all observed comparisons in complex networks of interventions.

� Forest plots with posterior summaries of all observed comparisons under the network meta-analysis and
refined UME model can uncover the consequences of potential inconsistency in the network.

� Using complementary plots to investigate the individual data points’ deviance contribution in conjunction
with model fit measures and estimated heterogeneity aid in detecting possible inconsistency.
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Systematic reviews with network meta-analysis (NMA)
have been at the forefront of evidence-based medicine
over the past 2 decades.1 The explosive rate of published

Corresponding Author

Loukia M. Spineli, Midwifery Research and Education Unit (OE

9210), Hannover Medical School, Carl-Neuberg-Straße 1, 30625,

Hannover, Germany; (Spineli.Loukia@mh-hannover.de).

us.sagepub.com/en-us/journals-permissions
https://doi.dox.org/10.1177/0272989X211068005
journals.sagepub.com/home/mdm


systematic reviews with NMA from several health care
fields and a recent comprehensive review on the metho-
dological advances of NMA attest to the reception of
this evidence synthesis design from the wide research
community.1,2 NMA has the advantage of providing a
hierarchy of interventions for a specific research question
to assist the end users of systematic reviews in selecting
the best intervention for a condition. The intervention
hierarchy results from modeling direct evidence from the
relevant clinical trials and indirect evidence for interven-
tions never compared in any clinical trial simultaneously.
Consequently, NMA provides coherent evidence for all
possible comparisons of interventions under the investi-
gated outcome.3

The credibility of the results from NMA strongly
depends on the validity of the consistency assumption
that underlies this evidence synthesis tool. The consis-
tency assumption dictates the agreement of direct and
indirect evidence for any pairwise comparison in a closed
loop of interventions (i.e., a path that starts and ends
with the same intervention).4 The evaluation of the con-
sistency assumption includes methods for local and glo-
bal detection of possible inconsistency.2,5 The local
evaluation is the most prevalent in the published sys-
tematic reviews.6,7 Among the methods for global eva-
luation, the unrelated mean effects (UME) model,
introduced by Dias et al.,5 is the most frequently
applied.6 The UME model is particularly useful in com-
plex networks, in which the implementation of several
statistical tests of inconsistency, such as the loop-specific
approach,8 may become cumbersome, challenging when
loops are also informed by multiarm trials and prone to
multiplicity issues.

A global evaluation using the UME model is achieved
by comparing the Bayesian NMA model with the Baye-
sian UME model using measures of model fit,5 such as
the deviance information criterion (DIC).9 The model
with the smaller DIC value by 3 or 5 units may be pre-
ferred regarding model fit and complexity.10 If the UME
model fits the data better, this is evidence of possible
inconsistency in the network.5 A scatterplot of the poster-
ior mean deviance of the individual data points under the

UMEmodel against the NMAmodel can reveal the trials
with a higher than expected posterior mean deviance.5

These trials may help identify the loops with possible evi-
dence of inconsistency.5

Furthermore, the inspection of the between-trial var-
iance for substantial reductions also offers valuable
information on the suitability of the contrasted models.
Suppose the between-trial variance estimated from a
model such as the UME that does not incorporate the
consistency assumption is substantially lower than that
estimated from the NMA model. This implies that the
estimated between-trial variance had to increase for the
NMA model to fit well given the lack of consistent
effects, thus suggesting potential inconsistency.

The presence of multiarm trials in the network may
challenge the application of the UME model. Suppose a
comparison is informed by a multiarm trial alone. In
that case, selecting a different baseline intervention for
that trial may omit this comparison from the estimation
process.11 This was the case with the network of throm-
bolytic treatments that Dias et al.5 considered to illus-
trate the UME model (figure 3 in Ref 5). A closed-loop
of 3 interventions (SK, SK plus t-PA, and Acc t-PA) was
informed by a multiarm trial and a 2-arm trial for 1 of the
comparisons (SK versus SK plus t-PA). Of the 16 observed
comparisons, the UME model estimated 15 treatment
effects, inevitably omitting 1 of the comparisons in the mul-
tiarm trial (SK plus t-PA versus Acc t-PA). Considering a
different baseline intervention for this trial (e.g., SK plus
t-PA) would have resulted in the omission of a different
comparison (in that case, SK versus Acc t-PA).

The omitted comparisons in the multiarm trials may
carry evidence of possible design inconsistency in the net-
work. The design inconsistency indicates disagreement in
the treatment effects across different designs (i.e., 2-arm
and multiarm trials) for the same comparison. Design
inconsistency can be formally investigated using the
design-by-treatment interaction model.12,13 Contrasting
the NMA model with the UME model regarding the
treatment effect of all observed comparisons in the net-
work offers an informal, exploratory investigation of the
design inconsistency.

We aimed to propose a straightforward refinement of
the UME model that accommodates the multiarm trials
properly and yields treatment effects for all observed
comparisons in networks with multiarm trials. There-
fore, the proposed refinement allows the scrutiny of all
observed evidence in the network to draw informed con-
clusions about the possibility of consistency. The article
has the following structure. We first introduce 2 pub-
lished systematic reviews with NMA as motivating
examples. Then we present the Bayesian random-effects
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NMA and UME models—the latter as proposed by Dias
et al.5 (called the UME-Dias model). We follow by pro-
posing a straightforward refinement of the Bayesian
random-effects UME model (called the refined UME
model). We demonstrate the refined UME model using the
motivating examples. Finally, we conclude with a discussion
of the results, strengths, and limitations of the proposed
refinement in complex networks with multiarm trials.

Motivating Examples

We considered 2 motivating examples: 1) the network of
antimanic drugs for the mean change on mania rating
scales,14 and 2) the network of pharmacologic interven-
tions for the exacerbation of chronic obstructive pulmon-
ary disease (COPD).15 Both networks included multiarm
trials. The corresponding articles analyzed these net-
works in the standardized mean difference (SMD) and
log odds ratio (OR) scales. Both outcomes were harmful;
therefore, a negative SMD or log OR favored the first
intervention in the comparison, and a positive SMD or
log OR favored the second intervention. There was infor-
mation on the number of missing (participant) outcome
data in each arm of every trial for both networks. We
excluded the missing outcome data from the analysis for
illustrative purposes. Namely, we subtracted the number
of missing outcome data from the number randomized in
each arm of every trial. Methods to properly account for
aggregate missing outcome data in NMA have been
described elsewhere.16,17

Methods

Random-Effects NMA Model with Multiarm Trials

For a network of N trials comparing different sets of
interventions, we have the following information for the
investigated outcome in each trial arm. For a binary out-
come, we collect the number of events, rik , as reported in
arm k of trial i out of the total randomized participants,
nik. We assume that rik is sampled from a binomial distri-
bution with an underlying probability of an event, pik.
Then the underlying log odds in arm k of trial i is a func-
tion of the underlying log odds of the baseline arm, ui,
and the underlying log OR (the treatment effect), dik1,

logit pikð Þ= ui + dik1

where ui = logit pi1ð Þ
For a continuous outcome, we extract the mean out-

come, yik , as reported in arm k of trial i alongside the
standard deviation, sik, as measured in the total rando-
mized participants, nik . We assume a normal distribution

for yik with an underlying mean outcome, uik, and a var-
iance, s2

ik that is commonly assumed known, even though
it has been estimated. Then, the underlying mean in arm
k of trial i is a function of the underlying mean of the
baseline arm, vi, and the underlying SMD (the treatment
effect), dik1,

uik = vi + dik1Si

where vi = ui1 and Si is the pooled standard deviation in
that trial,

Si =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPai

k = 1 s2
ik nik � 1ð ÞPai

k = 1 nik � 1ð Þ

s

with ai being the number of arms in trial i.
Under the random-effects model, dik1 is assumed to

follow a normal distribution with mean mtik ti1
=mtikA

�mti1A
(the consistency equation) and between-trial var-

iance, t2, assumed common within the network.18 With
tik , we indicate the intervention studied in arm k of trial
i, and with A, we indicate the reference intervention of
the whole network. The NMA model estimates the treat-
ment effect of Tj j � 1 comparisons with the selected ref-
erence intervention (i.e., mtikA

with tik 2 T n Af g and
T = A,B,C, . . .f g) and uses the consistency equation to
obtain the remaining possible comparisons.18

Likewise, in a multiarm trial i, in which the consis-
tency assumption is inherent, we estimate the treatment
effects of ai � 1 comparisons with the baseline interven-
tion of the trial. The ai � 1ð Þ3 1 vector of random
effects, di = di21, di31, . . . , diai1ð Þ

0
, is assumed to follow a

multivariate normal distribution with ai � 1ð Þ3 1 mean

vector m= mti2A
� mti1A

,mti3A
� mti1A

, . . . ,mtiai
A

�
�mti1A

Þ
0

and ai � 1ð Þ3 ai � 1ð Þ variance-covariance matrix

S= t2

1 � � � 0:5
..
. . .

. ..
.

0:5 � � � 1

0
@

1
A (equation (10) in Dias et al.10),

which is equivalent to conditional univariate normal dis-
tributions of arm k.2 given the arms from 2 to ai � 1

(equation (11) in Dias et al.10),

dik1j
di21

..

.

di ai�1ð Þ1

0
B@

1
CA; N mtikA

� mti1A

� �
+

1

ai � 1

�

Xai�1

j= 1

dij1 � mtijA
� mti1A

� �h i
,

k

2 k � 1ð Þ t
2

!
:

By assuming a common t2 in the whole network, the cor-
relation between any 2 random effects in the multiarm
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trial equals 0.5.19 These random effects refer to contrasts
with the baseline arm of the multiarm trial. Choosing a
different baseline arm will yield a different vector di.

Random-Effects UME Model of Dias and Colleagues

Contrary to the NMA model, the UME-Dias model does
not pose consistency equations. Therefore, the UME-
Dias model comprises separate random-effects pairwise
meta-analyses for the observed comparisons.5 The
random-effects UME-Dias model also considers a shared
between-trial variance across the observed comparisons
to borrow strength from comparisons with many
trials.5,11 Hence, the estimation of between-trial variance
is greatly improved.19 Suppose the network includes a

total of M observed comparisons with M � Tj j
2

� �
.

Then, under the random-effects model, the random
effects follow separate normal distributions with mean
mtik ti1

(tik, ti1 2 T and tik 6¼ ti1) for the observed compari-

sons and shared between-trial variance, t2.
In the absence of multiarm trials, the UME-Dias

model estimates the treatment effects of all observed
comparisons. When the network includes multiarm trials,
the UME-Dias model estimates the same vector di with
the NMA model in multiarm trial i. However, contrary
to the NMA model, the UME model treats the random
effects in vector di as separate univariate normal distribu-
tions (se pp 651–2, appendix in Ref 5),

dik1 ;N mtik ti1
, t2

� �
k � 2:

By making it similar to fitting separate pairwise meta-
analyses to the data, the random-effects UME-Dias

model retains its simplicity.11 However, of the
ai

2

� �
pos-

sible comparisons in that multiarm trial, the UME-Dias

model will not estimate a total of
ai

2

� �
� ai � 1ð Þ com-

parisons. These comparisons do not include the baseline
arm. If these comparisons are not informed by any 2-arm
trial and are not found in the vector di of other multiarm
trials in the network, they will be omitted completely by
the UME-Dias model. In the Bayesian framework, the
posterior distribution of mjl for the omitted comparisons

will coincide with the prior distribution.11 Hence, if a
noninformative normal prior distribution with zero mean
and variance equal to 10,000 is assigned on mjl, the pos-

terior standard deviation of mjl will be approximately 100

for the omitted comparisons.

Refined Random-Effects UME Model

The UME-Dias model does not properly accommodate
the multiarm trials. The random effects are inherently
correlated in multiarm trials. Hence, as a matter of prin-
ciple, the conditional univariate normal distributions of
the random effects for the multiarm trials (equation (11)
in Dias et al.10) should be maintained in the UME model.
Dias et al.11 also suggested accounting for the correlated
effects in the multiarm trials; however, the authors did
not formally implement this model in their book.

In our proposed refinement of the UME-Dias model,
we have maintained the conditional univariate normal
distributions of the random effects for the multiarm
trials. We have also developed an algorithm to automati-
cally detect pairwise comparisons in the multiarm trials
that the UME-Dias model would omit. When there is
at least 1 omitted comparison, we perform another
random-effects NMA in the subset of multiarm trials,
and we use the consistency equation to obtain the sum-
mary treatment effect of the omitted comparisons. When
the subset of multiarm trials forms subnetworks rather
than a fully connected network, we perform random-
effects NMA with consistency equations in each subnet-
work separately. To prevent the multiarm trials from
contributing twice to the estimation of t2, we consider a
different t2 for the subset of multiarm trials, indicated
by t2

m. This ‘‘companion’’ model does not share any com-
mon parameter with the rest of the model. Therefore,
using the multiarm trials twice does not affect the estima-
tion of the parameters outside the companion model.

In the absence of multiarm trials, the refined UME
model boils down to the UME-Dias model. In the pres-
ence of multiarm trials, comparisons can also be omitted
when the fixed-effect model is considered.5 In that case,
the weighting approach proposed by Rücker and
Schwarzer20 can be used to prevent comparison omis-
sion. Dias et al.11 discussed this weighting approach for
the fixed-effect UME-Dias model in a Bayesian context.

Model Implementation

For each network, we applied Bayesian random-effects
NMA, the refined UME model, and the UME-Dias
model.5 We considered a normal prior distribution with
zero mean and variance 10,000 for the location para-
meters of the models, and we assigned a half-normal
prior distribution with scale parameter 1 on t and tm. We
considered 3 chains of different initial values, 100,000
iterations with 10,000 burn-in and thinning equal to 5
and 20 for the network of antimanic drugs under the
NMA and both UME models, respectively, and thinning
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equal to 10 and 20 for the network for COPD under the
NMA and both UME models, respectively. We inspected
the autocorrelation plots to define the values for the thin-
ning. Convergence was assessed using the Gelman-Rubin
convergence diagnostic, where R̂: R̂.1:1 indicates a lack
of convergence for the corresponding model node.21 We
applied JAGS via the R-package R2jags (statistical soft-
ware R, version 4.1.1) to run the models.22–24

We tabulated the posterior median and posterior stan-
dard deviation of t, the posterior mean of the residual
deviance (�D), the DIC, and the number of effective para-
meters under all 3 models. A larger DIC by 5 units for
the NMA model or �D exceeding the number of data
points under the NMA model indicates a possible incon-
sistency in the network. We created scatterplots and
Bland-Altman plots on the posterior mean deviance con-
tribution of the individual points to detect possible data
points where the compared models have a poor fit. We
considered the refined UME model to calculate the bias
and limits of agreement in the Bland-Altman plot. We
also obtained the leverage plots separately for the NMA
and UME models to supplement our observations from
the scatterplot and Bland-Altman plots. We used forest
plots to illustrate the posterior mean and 95% credible
interval of all observed comparisons under the NMA,
the refined UME, and UME-Dias models. All figures

were created using the R-package ggplot2.25 For the net-
work plots, we used the R-package pcnetmeta.26 All
functions related to the present article can be found as
supplementary material (Supplementary Material 1).

Results

Network of Antimanic Drugs

Figure 1A illustrates the network of 13 antimanic drugs
and placebo. There were 17 (27%) 3-arm trials in the
network. Of the 33 (36%) observed comparisons, 7
(21%) were informed solely by at least 1 multiarm trial
and contained no baseline intervention. The UME-Dias
model omitted these comparisons. The maximum value
of R̂ across the parameters of all 3 models was 1.03, thus
indicating convergence. All models yielded a posterior
mean of residual deviance that exceeded the total num-
ber of 141 trial arms. The NMA model provided the
largest �D, followed by the UME-Dias and refined UME
models (�D= 157.82, 149.73, and 146.67, respectively;
Table 1). The DIC was similar for the NMA and UME-
Dias model but lower by 2.54 units for the refined UME
model (Table 1). The posterior median and 95% credible
interval (CrI) of t were almost identical across the 3
models (Table 2). According to the DIC and the

Figure 1 The network of antimanic drugs for the mean change on mania rating scales14 (plot A). The network of pharmacologic
interventions for exacerbating chronic obstructive pulmonary disease15 (plot B). Each node refers to an intervention, and each
link refers to a pairwise comparison. The size of the nodes is proportional to the number of observed comparisons that include
that node. The thickness of the edge is proportional to the number of trials that investigated that comparison. The colored
intervention loops indicate multiarm trials.
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estimated t, there was little to choose between a model
with and without consistency.

Overall, including the consistency equations yielded
similar posterior mean deviance contributions of the trial
arms with discounting these equations and almost identi-
cal deviance contributions for both UME models (Figure
2A). An exception was 7 trial arms associated with larger
deviance under the NMA model compared with the
UMEmodels that greatly exceeded the expected deviance
contribution equal to 1. Of those trial arms, the arms of
the 40th trial yielded a remarkably large posterior mean
deviance contribution under all models.

In the Bland-Altman plot, the bias was slightly posi-
tive, indicating a tendency for the NMA model to yield
slightly larger posterior mean deviance contributions on
average than the refined UME model (Figure 2B). The
trial arms associated with larger deviance under the
NMA model were found outside the upper limit of agree-
ments. These trial arms contributed 1 posterior mean
deviance under the UME models (Figure 2A). Two of
these points referred to 2-arm trials that were the sole
contributors in divalproex versus carbamazepine (the
28th trial) and lithium versus divalproex (the 26th trial;
Supplementary Table S1 in Supplementary Material 2).
The remaining outlying points referred to haloperidol
and lithium compared only in the multiarm trial (the
53rd trial), which included the omitted comparison of
paliperidone versus lithium (Supplementary Table S1 in
Supplementary Material 2). Supplementary Figure S1 (in
Supplementary Material 2) located trials 28, 26, and 53
outside the red parabola (i.e., x2 + y= 3) of the leverage
plot for the NMA model only (plot C) and trial 40 (olan-
zapine versus lithium) outside the red parabola of the
leverage plot for all models. These points contributed to
a DIC an amount larger than 3.

Overall, there were similar posterior estimates and
sufficient overlapping in the 95% CrIs of SMD for the
NMA and either UME model except for the compari-
sons of divalproex versus carbamazepine and of lithium

versus divalproex and haloperidol (Figure 3). These com-
parisons corresponded to trials that contributed to the
poor fit of the NMA model (Figure 2; Supplementary
Figure S1), thus signaling possible inconsistency in the
network

Network of Pharmacologic Interventions for COPD

The network of 5 interventions (and their combinations)
and placebo for COPD included 5 (24%) multiarm trials:
2 three-arm and 3 four-arm trials (Figure 1B). Of the 15
(54%) observed comparisons, 6 (40%) were omitted from
the UME-Dias model. All models converged according
to the R̂ diagnostic: the maximum value across the para-
meters of all models was 1.01. Both UME models yielded
a similarly smaller posterior mean of residual deviance
(�D ffi 55) than the NMA model that exceeded the total
number of 50 trial arms. The DIC indicated little to
choose between these models (Table 1). The estimated t

was substantial in all models but slightly larger and less
precise under the NMA model (Table 2).

Overall, both UME models yielded similar posterior
mean deviance contributions (Figure 4A). The scatter-
plot indicated a poor fit of the NMA model for 2 trial
arms that exhibited substantial deviance under the NMA
model and deviance close to 1 for both UME models
(Figure 4A). These trial arms were flagged as outliers in
the Bland-Altman plot as they exceeded the upper limit
of agreement (Figure 4B). The 2 points referred to the
unique trial that compared formoterol with tiotropium
(Supplementary Table S2 in Supplementary Material 2).
This trial was found outside the red parabola of the
leverage plot for NMA (Supplementary Figure S2, plot
C, in Supplementary Material 2) alongside the 2-arm
trial 1 (0 events in fluticasone; Supplementary Table S2).
Trial 1 also contributed to the poor fit of both UME
models (Supplementary Figure S2, plots A and B) as
both arms were associated with a substantial posterior
mean deviance (Figure 4A).

Table 1 Measures of Model Assessment for the NMA and UME Models

Model Assessment Measures

Network of Antimanic Drugs Network for COPD

NMA UME UME-Dias NMA UME UME-Dias

DIC 264.28 261.54 264.08 92.15 90.47 90.56
pD 106.46 114.87 114.36 35.58 35.62 35.85
�D 157.82 146.67 149.73 56.58 54.85 54.70
Total trial arms 141 50

COPD, chronic obstructive pulmonary disease; �D, posterior mean of the residual deviance; DIC, deviance information criterion; NMA, network

meta-analysis; pD, number of effective parameters; UME, unrelated mean effects.
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The panel of forest plots illustrated almost identical
results for the UME models and, overall, similar results
for the NMA and either UME model (Figure 5). For the

comparison of formoterol with tiotropium, the posterior
estimate of OR differed remarkedly between the NMA
and UME models, which, in conjunction with the

Table 2 Estimated between-Trial Standard Deviation (t) under the Compared Models

t

Network of Antimanic Drugs Network for COPD

NMA UME UME-Dias NMA UME UME-Dias

Posterior median 0.14 0.14 0.14 0.18 0.15 0.14
95% CrI (0.09, 0.21) (0.09, 0.21) (0.08, 0.20) (0.02, 0.40) (0.01, 0.35) (0.01, 0.35)

COPD, chronic obstructive pulmonary disease; CrI, credible interval; NMA, network meta-analysis; UME, unrelated mean effects.

Figure 2 Scatterplot on the posterior mean deviance contributions of the trial arms under the unrelated mean effects (UME)
models (refined and Dias and colleagues; y axis) and the network meta-analysis (NMA) model (x axis) for the network of
antimanic drugs (plot A). The gray dotted lines refer to 1 posterior mean deviance contribution. The Bland-Altman plot on the

difference in the posterior mean deviance contributions between the NMA and the UME models (refined and Dias and
colleagues) against the average posterior mean deviance contributions of the compared models (plot B). Each data point
corresponds to a trial arm, indicated by a pair of numbers. The first number refers to the trial ID, and the second number refers
to the trial’s arm, as placed in the analyzed data set (Supplementary Table S1).
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substantial deviance contribution of the corresponding
trial to the poor fit of the NMA model (Figure 4), may
suggest possible inconsistency in the network.

Discussion

The refined UME model and the UME-Dias model gave
the same conclusions regarding possible inconsistency in
both examples. Both models elucidated the same data
points that contributed to possible inconsistency in the
investigated networks. They also yielded similar mea-
sures of model fit and almost identical estimated t. How-
ever, proper accommodation of the multiarm trials and
visualization of all observed comparisons were possible
only with the refined UME model, which are the main
strengths of this model.

The present study considered a series of complemen-
tary plots to thoroughly investigate the individual data

points’ deviance contribution, which laid the foundation
for signaling possible inconsistency in both examples.
Specifically, the scatterplot flagged the data points with
higher posterior mean deviance than expected for the
NMA model. The Bland-Altman plot complemented the
scatterplot by detecting the outlying trial arms among
those with substantial deviance contribution as they laid
outside the 95% limits of agreement. Furthermore, this
plot offers further exploratory insights that are not obvi-
ous by looking at the scatterplot. For instance, the lack
of randomness in the scattered points and a nonzero bias
may indicate a possible mismatch between the direct and
NMA evidence that questions the whole evidence base.
The leverage plot for NMA revealed that the outlying data
points were found outside the red parabola, thus contribut-
ing substantially to the DIC (an amount larger than 3) and
the model’s poor fit. The panel of forest plots pinpointed
poor overlapping in the 95% CrI of the treatment effects

Figure 3 A panel of forest plots on the standardized mean difference (SMD) for all observed comparisons under the network
meta-analysis (NMA), the refined unrelated mean effects (UME) model, and the UME-Dias model. Results refer to the posterior
mean and 95% credible interval of the SMD. Gray panels refer to the omitted comparisons. Red and black indicate weak and
strong evidence, respectively. Namely, the corresponding 95% credible interval includes and excludes the null value, respectively.
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of comparisons informed by the outlying trials, showing
the consequences of possible inconsistency.

The panel of forest plots should be used to aid model
critique and highlight the issues caused when potential
inconsistency is detected rather than scrutinize the rela-
tive effects between the NMA and UME models. A com-
parison of the posterior mean of the treatment effects
obtained via the NMA model with those obtained via
the UME model has been criticized as an inappropriate
method to evaluate inconsistency.6 This is because an
NMA estimate is an amalgamation of direct and indirect
evidence.

In the present study, we elaborated on the random-
effects UME model for 2 reasons. First, the random-effects
model is more appropriate than the fixed-effect model in

systematic reviews, in which clinical and methodological
heterogeneity should be expected and may manifest as sta-
tistical heterogeneity.27 Second, the proper accommoda-
tion of multiarm trials and related parameterization issues
are relevant in the random-effects model.

We have developed an algorithm to automatically detect
the omitted comparisons (if any) in the network and incor-
porate them in the refined UME model. In Supplementary
Material 1, we provide user-defined functions in R to run
the refined UME model in 1 step and obtain the necessary
plots of the present work. The user can employ the follow-
ing effect measures: OR for binary outcomes, mean differ-
ence, SMD, and ratio of means for continuous outcomes.

The refined UME model is not immune to different
parameterization, which comprises our work’s major

Figure 4 Scatterplot of the posterior mean deviance contributions of the trial arms under the unrelated mean effects (UME)
models (refined and Dias and colleagues; y axis) and the network meta-analysis (NMA) model (x axis) for the network of
pharmacologic interventions for chronic obstructive pulmonary disease (plot A). The gray dotted lines refer to 1 posterior mean
deviance contribution. The Bland-Altman plot on the difference in the posterior mean deviance contributions between the NMA
and the UME models (refined and Dias and colleagues) against the average posterior mean deviance contributions of the
compared models (plot B). Each data point corresponds to a trial arm, indicated by a pair of numbers. The first number refers to
the trial ID, and the second number refers to the trial’s arm, as placed in the analyzed data set (Supplementary Table S2).
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limitation. The choice of parameterization will affect the
derived omitted comparisons, because selecting a differ-
ent baseline intervention for the multiarm trials will
derive different omitted comparisons.5,11 Suppose a con-
nected network comprises an ABC, an AC, and an AB
trial. Selecting intervention A to be the baseline arm in
the ABC trial will yield the BC comparison as omitted.
Selecting intervention B or C as the baseline arm in the
ABC trial will not yield omitted comparisons. Suppose
the network did not include an AB trial. Selecting inter-
vention C as the baseline arm in the ABC trial will yield
the AB as an omitted comparison. However, regardless
of the selected parameterization, the refined UME model
will estimate all observed comparisons of the network,
contrary to the UME-Dias model.

Another limitation, common to the UME models, is
that different parameterizations of the multiarm trials
may affect the estimates and possibly the measures of

model fit.11 Suppose there is also a BC trial in the exam-
ple above, and we are interested in the BC comparison.
Since the multiarm and 2-arm trials inform all compari-
sons, there are no omitted comparisons. However, select-
ing a different baseline arm will lead to one comparison
being informed solely by the corresponding 2-arm trial.
When A is the baseline arm in the ABC trial, the BC trial
supports only the BC comparison. When B or C is the
baseline arm, both ABC and BC trials contribute to the
estimation of BC. The extent to which different parame-
terizations lead to different conclusions may also depend
on the extent of between-trial variance. Different para-
meterizations may not affect the conclusions if the
between-trial variance is low.

Useful clinical decisions can be made based only on
models that assume the underlying evidence is consistent
to ensure coherent estimates for a proper incremental
assessment of benefits and costs. Models like the UME

Figure 5 A panel of forest plots on the odds ratio (OR) for all observed comparisons under the network meta-analysis (NMA),
refined unrelated mean effects (UME) model, and the UME-Dias model. The results refer to the posterior mean and 95%
credible interval of the OR. Gray panels refer to the omitted comparisons. Red and black indicate weak and strong evidence,
respectively. Namely, the corresponding 95% credible interval includes and excludes the null value, respectively.

646 Medical Decision Making 42(5)



that synthesize evidence without the consistency assump-
tion are useful for assessing the feasibility of this assump-
tion. When the consistency assumption is not deemed
feasible, the whole evidence base should be called into
question. Decisions should not be based on results from
any syntheses that do not properly account for the rea-
sons for this inconsistency.

Conclusion

The proposed refinement of the UME model handles
multiarm trials properly, and it yields treatment effects
for all observed comparisons. A thorough inspection of
the deviance contribution of the individual data points in
conjunction with visualizing the posterior summaries of
all observed comparisons under the NMA and refined
UME models can aid our conclusions about possible
global inconsistency in the network. In the presence of
inconsistency, we should not be making inferences based
on any of the models because they do not adequately
describe the totality of the evidence available.
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